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ABSTRACT Sound source localization is a critical problem in various fields, including communication,
security, and entertainment. Binaural cues are a natural technique used bymammalian ears for efficient sound
source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing
binaural sound source localization approaches. However, optimizing the topology and size of SNNs is
crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure
of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing
sound sources in the time domain by integrating an energy-based localization method. The dataset used
in this work is recorded by two different omnidirectional microphones from a real environment. The dataset
includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN
architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound
source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and
state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth
angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound
source localization in practical applications.

INDEX TERMS Sound localization, spiking neural network, dynamic structure, ITD, energy-based method,
adaptive resonance theory.

I. INTRODUCTION
Imagine we are blindfolded in a room, and we hear someone
asking for help while the receiving sound is gradually
diminishing or moving around. How is it that we can quickly
detect where the sound may be coming from and how far
away it is? Also, consider the environment is noisy. How do
we manage to filter out the noise to still make a good guess
as to the source of the sound? Sound Source Localization
(SSL) stands as a skill of utmost importance in a varied
range of applications, such as robotics, human-computer
interaction (HCI), and virtual reality (VR). In the realm of
robotics, SSL assumes a fundamental role in identifying
the location of a sound source, especially in the presence
of noise, which enables robots to identify and comprehend
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control commands.Within HCI, SSL proves to be an essential
tool in isolating the speaker’s voice from background noise,
thus fostering clear communication in settings dominated by
noise. In the context of VR, SSL is adopted to establish
an immersive experience by localizing sound sources in the
virtual environment and allowing users to perceive sound as
if it were coming from a specific location. The problem of
SSL has been approached by means of various techniques,
which include traditional signal processingmethods, machine
learning algorithms, and biologically inspired models. These
techniques encompass sound source localization modules,
convolutional neural networks (CNNs), and recurrent neural
networks (RNNs). Additionally, immune-based machine
learning algorithms have been shown to increase accuracy
and reliability, particularly in audio-visual approaches [1].
For sound classification, innovative techniques leverage
Spiking Neural Network (SNN) encoding and spike pattern
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generation. Reference [2] exploits the echo state SNN
capability synergized with CNN classification methods,
resulting in enhanced accuracy. Furthermore, [3] employs
Convolutional Recurrent Neural Network (CRNN) methods
incorporating Gammatone filtering and frequency-based
approaches, yielding promising results. These multifaceted
methodologies showcase the evolution of SSL techniques,
embracing diverse technologies and demonstrating promising
outcomes.

Traditional methods for a single SSL are based on time
delay estimation and phase difference estimation using
multiple microphones. These methods have limitations in
noisy environments and require complex signal process-
ing techniques [4]. In contrast, machine learning-based
approaches for SSL, such as deep neural networks [5],
support vector machines [6], and random forests [7], use
large datasets to learn the relationship between the input
sound signals and their corresponding source location. These
approaches can handle noisy environments and do not require
complicated signal-processing techniques. Instead, they solve
the problem by feeding many examples of sound localization
for the machine learning system to learn for itself how to
localize the source. These approaches have shown promising
results in the single SSL and have the potential to outperform
traditional methods in terms of accuracy and computational
efficiency. While these methods have shown promising
results, they require a large amount of training data and
computational resources.

To overcome the limitations of both traditional methods
and machine learning-based approaches, researchers have
turned to biologically inspired models for SSL. These models
are inspired by the mammalian auditory system, which
uses binaural cues, such as interaural time difference (ITD)
and interaural intensity difference (IID), which together
form the duplex theory of sound localization [8], [10].
Mammalian ears excel in sound localization, and researchers
suggest that the human hearing system still outperforms
machines in various auditory perception tasks [8]. One
promising bio-inspired approach is the use of spiking neural
networks (SNNs) that mimic the behavior of neurons in
the human brain. SNNs are highly parallel and energy-
efficient models that can process sensory information with
high temporal precision and adapt to changing environmental
conditions. Notably, these networks excel in energy reduction
through event-triggering methods, employing spike encoding
strategies. In simple terms, the spike-based coding in SNNs
dictates that neurons activate solely in response to continuous
spiking trains, utilizing all-or-none pulses (spikes) for infor-
mation transmission. This coding strategy fosters sparseness
in neuron activations, further enhancing the efficiency of
SNNs [9].

Two popular types of SNNs are recurrent SNNs and
reservoir SNNs. Recurrent SNNs have feedback connections
that enable them to maintain temporal information and
perform complex computations [11]. Reservoir SNNs have

fixed random connections that create a dynamic system that
can process input signals in a nonlinear manner [12]. Both
types of SNNs have been used for SSLwith promising results,
but they also face challenges in optimizing their networks and
achieving high accuracy [13], [14]. Numerous studies have
explored Spiking Neural Network (SNN)-based methods for
sound source localization, often leveraging interaural time
difference (ITD) and interaural intensity difference (IID)
cues and occasionally incorporating frequency features [15],
[16], [17], [18]. Some investigations have focused on low-
frequency pure tone localization using delay lines [20],
while others extended their scope to wider frequency
ranges, achieving remarkable accuracy through medial
superior olive (MSO) neurons [21]. Furthermore, a multi-
tone phase coding ITD model demonstrated exceptional
direction resolution [22], although hardware constraints led
to the development of an energy-based method for enhanced
practicality [23]. Additionally, these studies have explored
diverse bio-inspired sound localization mechanisms, includ-
ing spatiotemporal filtering and spiking nonlinearity [21].
To further improve SSL accuracy and reliability, recurrent

neural networks (RNNs) have been developed for both
static and dynamic scenes, capable of localizing events in
full azimuth and elevation under matched and unmatched
acoustic conditions, regardless of microphone arrays [24].
Additionally, a neuromorphic real-time sound tracking sys-
tem was proposed, consisting of a neuromorphic auditory
system with the aim of tracking high-frequency sounds in a
biologically inspired way [25].
However, certain issues arise when using SNNs for sound

localization. Representing sound data inside the network with
precise timing and providing significant information to allow
the network to learn and analyze data accurately is a key
challenge. Obtaining sufficient training data to teach the
SNN how to localize sound accurately is also a challenge,
which can be addressed by generating realistic simulations.
However, creating an environment similar to the real world
in simulations is also a challenge. Another issue is the
computation time required by the SNN to process data, which
can render it useless for certain tasks [28]. Additionally,
SNNs are limited to single-tone frequency analyzing or
narrow-band applications, which is another challenge that
needs to be addressed.

Overall, there are still several key issues that need to be
addressed before SNNs can be effective in real-world sound
localization problems. These range from sensor calibration
and obtaining realistic training data to data signal processing
and computation time. However, with the right expertise,
these issues can be managed successfully, allowing sound
localization problems to be addressed faster, more accurately,
and at a lower energy cost. To reduce computation costs,
an important consideration for SNNs is the size of the
network. A larger SNN may provide greater accuracy and
complexity in its output, but it also requires higher amounts
of memory and computational power [29]. To maximize the
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efficiency of the SNN, optimization techniques are used to
determine the smallest network size necessary to achieve a
desired performance level [30].
The optimization of an SNN initiates with the careful

selection of an architecture tailored to the specific task.
Various architectures, including recurrent and convolutional
SNNs, present distinct strengths and weaknesses. Once
the architecture is chosen, adjusting inter-neuronal weights
becomes pivotal for optimizing the network size [31]. This
process, often coupled with cost measures such as neuron
count or parameter size aims to determine the most efficient
network size. Beyond weight adjustments, optimization
extends to fine-tuning each neuron’s threshold and learning
rate. The threshold regulates neuronal activity, while the
learning rate influences the formation of new connections,
which is crucial for achieving accurate performance with
minimal size [31].

The selection of an appropriate cost function is a critical
step in sizing optimization. Cost functions dictate the trade-
off between accuracy, memory usage, and computation
time [32]. Studies such as like [33] emphasize the role
of proper cost functions in enhancing noise rejection
and reducing sensitivity, offering an effective optimization
approach. Depending on the optimization goal, an SNN may
prioritize accuracy, leading to a larger size, or opt for low
memory with reduced accuracy.

Balancing the threshold, learning rate, network weights,
and cost function constitute a complex but vital process. This
meticulous tuning ensures the creation of an SNN with the
most suitable size and performance for the given task [34].
Neuron models proposed in [34] expedite response speed
by dynamically regulating neuron membrane conductivity
based on spiking activity and external input. Other opti-
mization approaches, such as adjusting firing thresholds [35]
and [36], focus on reducing latency. While numerous
studies have achieved significant advancements, challenges
persist in mitigating computation costs, selecting opti-
mal network sizes, and refining application-based learning
laws.

Addressing the mentioned issues, this paper proposes a
new recurrent SNN architecture to detect and localize a
single sound event. The main contribution of this study
is developing a self-modified architecture of SNN to SSL,
in broadband frequency ranges. This structure uses machine
learning methods to identify the event, and then track the
sound source in a dynamic indoor environment. The reservoir
structure of the proposed SNN as a kind of recurrent Neural
network architecture is efficiently able to jointly detect and
track the sound source [29] due to taking advantage of fast
learning at low training cost and amenability to hardware
implementation [30]. In this regard, this study tailors a
reservoir-SNN (rSNN) structure in order to investigate
the impact of several interconnection parameters on the
performance of sound event localization. The superiority of
the newly designed rSNN architecture can be expressed as
follows:

• Integration of Energy-based and ITD cues to increase
accuracy and determine distance as well as azimuth
angle

• Addressing possible false negative azimuth angle esti-
mation in the proposed algorithm

• Self-modification of the network size and the spatial
position of the neurons

• Fusing spatial and temporal features of the proposed
rSNN to localize the sound source

In addition to comparing the proposed strategy with three
conventional and well-established methodologies, namely
Energy-Based, GCC-PHAT, and Music Algorithms, this
paper also scrutinizes it alongside a recent conventional
STDP-based SNN method [21], and LS-SVM [37]. This
paper investigates how modifying the network size and
arrangement can speed up the convergence of the proposed
rSNN for sound source localization. This is conducted by
comparing the proposed algorithm within two fixed and
dynamic structures. The paper is organized as follows:
Section II describes the materials and methods, Section III
presents the proposed novel rSNN architecture and learning
algorithm, and Section IV represents simulation results.
Section V evaluates the role of dynamic structure, and finally,
Section VI concludes.

II. MATERIALS AND METHODS
A. ART-RSNN ARCHITECTURE
The overall structure of the presented Art-rSNN architecture
consists of three modules, the input, rSNN, and the output.
Figure 1 indicates the overarching steps in the Art-rSNN
method. It reveals that the proposed sound localization
strategy is composed of five main stages, data acquisition,
encoding, input to the observed neuron, mapping received
information to the size-growing hidden network, and finding
the maximum potential neuron place as the estimation of the
sound source.

Due to the linearity of the sound physical laws, the received
sound is a linearly filtered version of the audio, corresponding
to the location of the sensors and sources, as well as the
acoustical environment. In the proposed structure, inspired
by binaural hearing, there should be considered at least two
sensors in the environment to specify the synchrony patterns,
by means of a pair of location-specific filters related to the
sensors.

Figure 1 depicts that sound is first encoded based on a
desired spike detection algorithm, here is BSA, and then both
the audio signal and the spike sequence code are input to
the proposed structure which is composed of two groups of
observed and hidden neurons. The observed neurons directly
receive data from the environment, and the hidden neurons
do not receive direct outside input and train based on the
observed neurons’ activities. In this structure, the location
of the maximum-energy hidden neuron estimates the sound
source location. As shown in Fig. 2, the first network size is
directly relevant to the number of sensors in the under-study
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FIGURE 1. Main stages and ingredients of the proposed method.

FIGURE 2. Changing the network size approach.

environment, and here we have considered that the minimum
possible sensor quantity is two. In the proposed recurrent
network, each neuron position in the initial arrangement
is matched to the locations of the sensors. Clarifying the
issue, the given figure indicates how the network grows and
the new neurons are generated. Figure 2 indicates that at
the initial state, architecture embarks on its work by the
number of observed neurons as same as the number of sound
sensors. The number of hidden neurons can be considered
as the minimum possible number, for example, zero. Then,
in each estimation epoch by the rSNN, a new hidden neuron
will be generated according to the estimated location of
the sound source. Then by considering the small-world
technique, the role of newly generated neurons improves
the learning quality of the proposed structure. In the new
configuration, a threshold of a minimum required energy is
considered to eliminate the neurons that receive low-power
signals. This threshold limits the networks’ connectivity. The
active neighborhood area is detected based on the neurons’

FIGURE 3. Art-rSNN sound localization process pipeline.

interaction criterion. In this regard, this paper proposes a
new dynamical structure inspired by the resonance theory in
neural networks. The pipeline of the proposed methodology
is illustrated in Fig. 3. According to the given pipeline
in Fig. 3, the incoming sound signal is normalized and
temporally encoded. The membrane potential of the observed
neuron is also normalized and the weights of the rSNN
are updated so that normalized membrane potential outputs
track the normalized measured data in order to reduce
energy estimation error. The ITD and IID cues are intended
between two high-potential neurons to estimate the new
position of the generated hidden neuron by the time that
the error estimation is reduced to a desired value. At last,
the location of the highest potential hidden neuron is the
final estimation of the sound source. The architecture of the
proposed method is demonstrated in the following figure.
To extend the proposed idea in a mathematical model, this
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paper uses the concept of Adaptive Resonance Theory (ART)
as a biologically plausible theory of how a brain learns
to consciously attend, learn, and recognize patterns in a
constantly changing environment. The next section develops
Art-rSNN.

B. ADAPTIVE RESONANCE THEORY
The theory states that resonance regulates learning in neural
networks with feedback (recurrence). Thus, it is more than a
neural network architecture or even a family of architectures.
Through the dynamic creation of recognition categories for
encoding distinct input samples, an ARTmodule is capable of
self-adjusting the scale of its recognition field, in terms of the
number of committed nodes, with respect to the complexity
of the problem domain. Its fast commitment mechanism and
capability of learning at a moderate speed guarantee high
efficiency. However, given a dataset, the scale of the ART
recognition field (i.e., the number of output clusters) depends
on a global threshold parameter called vigilance. While in
principle, one could control ART’s recognition representation
by fine-tuning the vigilance parameter, in practice, suggesting
an appropriate vigilance value requires prior knowledge of
the scale and the distribution of the problem data set, which
is unlikely to be available [23].
In addition, while sound travels through the air, acoustic

energy is emitted omnidirectionally from the sound source.
The strength of a sound source diminishes at a rate inversely
proportional to the square of the distance. The tradition of this
algorithm is given as follows [16]:

yi(t) = ζi
S(t)

|ri − r(t)|α
+ εi(t) (1)

Equation (1) describes the relation of measured signal yi(t) on
the ith sensor with S(t) as the actual sound energy, recorded
from a 1-meter distance from the sound source. ζi is the gain
factor of the ith acoustic sensor. ri (sensor location) and r(t)
(unknown location) indicate the coordinate of the ith sensor
node and sound source at time t . Each variable is a vector with
two additional variables (when in a two-dimensional (2-D)
plane). ϵi is the measurement noise, modeled by zero-mean
Gaussian Noise. When there are m sensor nodes, the value
of α is the path loss exponent which is considered α = 2.
Regarding both deterministic and metaheuristic algorithms,
all observations from the multiple sensors are aggregated as
an estimator of r(t), where the solution of the localization
problem is the argument (pair of coordinates) that minimizes
the expression.

r̂(t) = argmin
r

m∑
i=1

1

σ 2
ξi

(
yi − ζi

S(t)
|ri − r(t)|α

)2

(2)

where 1
σ 2

ξi

is the variance of acoustic gain factor. The

estimator in (2) is highly nonconvex, with singularities in
each sensor’s coordinates, several suboptimal solutions, and
saddle regions. All the enumerated features make the problem
very challenging in the field of numerical optimization,

making it a good candidate in the context of regression
and ANNs. Recurrent spiking neural networks have shown
promise in addressing optimization problems due to their
ability to process spatial and temporal data effectively. The
rSNN architecture, as a type of Recurrent SNNs, leverages
SNNs and embodies a Liquid State Machine architecture,
which is instrumental in tackling complex problems [26].
In the design and architecture of rSNNs, leaky integrate-and-
fire (LIF) neurons are often chosen as the spiking neuron
models due to their capacity to generate diverse spike patterns
with a logical time cost [27]. The membrane potential V in
the LIF neurons evolves according to a specified equation,
contributing to the adaptability and efficiency of the proposed
neural network model [27].
Incorporating the LIF model enhances the computational

capabilities of rSNNs, allowing for the representation of
intricate temporal and spatial patterns in the context of
the optimization problem under consideration [27]. The
membrane potentialV evolves according to the equation [25]:

dVi(t)
dt

=
1
τm

(−Vi(t) + Ii(t)) (3)

where τm denotes the membrane decaying time constant. Ii(t)
is the synaptic current.

III. PROPOSED ART-RSNN METHOD
This paper introduces a novel structure of a Liquid
State Machine (LSM), which is a type of reservoir spiking
neural network capable of generating new hidden neurons.
The proposed structure leverages a small-world connection
strategy to achieve its functionality. The architecture and
construction details of the LSM are inspired by the principles
of reservoir computing and spiking neural networks. The
LSM consists of randomly connected liquid layers and
readout layers, allowing for the modification of weights. This
design enables the generation of complex dynamics akin to
the brain and facilitates real-time task processing. Figure 4
indicates the proposed architecture.

In the initial states, only m observable neurons that receive
input signals, measured signals of microphones/sensors, are
regarded. The main goal is estimating the real energy of the
signal by approximating y as the neuron output value. The
algorithm of the proposed strategy is given below and the
proof of updating weights in(5) is presented in Appendix.

1tij is the difference of spike time in neuron i and neuron
j, and ϵ is a constant parameter. β is 0.001. Equations (7)
to (11) describe how a new neuron is generated. κ is the ratio
of neuron potential i and j.Wij is the synaptic weight between
neurons i and j. This parameter indicates that the received
energy by neuron i how much is stronger than jth neuron. d
denotes the sound source distance from the reference neuron.
Equation (14) calculates the new position of the neuron.
f(ϕ) in (10) indicates if the source is located at the front or
back. Equation (11) describes the azimuth angle calculation
formula. Figure 5 indicates the graphical abstract of the
proposed method. The power of the signals is considered
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Algorithm 1 Art-rSNN Algorithm
1: Initialization:

Wij, φi,τ ,A, ϵ, and τm to be the Non-Zero arbitrary values.
Set β to a value between 0 and 1 Set Vj to random values.
Set Ij to zero value.
Set Constant Parameter, c=342

Art-rSNN Algorithm: Continue

2: update Synaptic currents:

Ii(t) = WijVj exp (−c1ts/τ) (4)

3: Update Observed Neurons’ Weights:

1Wij = 0.5 (tanh (yo) − tanh (Vi))
(
1 − tanh (Vi)2

)
× Vj exp

(
−c

ti − tj
τ

)
(5)

4: Update Hidden Neurons’ Weights:

Wij =

{
AVje

1tsij
τ 1t ≥ 0, i, j ∈ Ni

0 1t < 0, or i, j /∈ Ni
(6)

5: Estimate Hidden neuron position:

κ =
Vi

Vj + sgn
(
Vj

)
ε

(7)

6: Generate a New Hidden Neuron i, and Determine Its Voltage
Potential equal to the Maximum Voltage of all Neurons:

Vi = max(V ) and Vi ≥ Vj > Vk , ε > 0 k ̸= i, j (8)

7: Calculate the distance of the new neuron From the Maximum
Voltage Neuron:

d =


cκ1tsij
1 − κ

if Vi ̸= Vj dij = ∥ Pos i − Posj ∥2
dij
2

else
(9)

8: Determine the location of the new neuron position:

PosVnew = PosVi +
[
d cos(θ )
d sin(θ )

]
(10)

9: Determine the sign of Azimuth angle:

f (ϕ) = αl (ϕ + sin(ϕ)) − αl (sgn(ϕ)π − 2ϕ)|β sin(ϕ)|,

αl =
dij
2c

, 0 < β < 1 (11)

θ =



cos−1
(
c1tsij
d · dij

)
if

∣∣1tsij − f (ϕ)
∣∣ <

∣∣1tsij − f (−ϕ)
∣∣ ,

ϕ = cos−1
(
c1tsij
d · dij

)
− cos−1

(
c1tsij
d · dij

)
else

(12)

directly relevant to the membrane potentials of the neurons
in the proposed structure. To evaluate the performance of
the proposed method, we implement the proposed strategy
on a real database, including two omnidirectional sensor
data. The data utilized for assessing the suggested approach

was captured by the researchers within their laboratory
and subjected to pre-processing prior to being inputted
into their proposed architecture alongside other comparable
methodologies, fairly. Then, we compare the results with
several well-known methods.

The proposed algorithm’s practicality is highlighted by its
innovative use of Spiking Neural Networks (SNNs) for event
triggering, offering an energy-efficient solution. Integrated
into a 2D spatiotemporal SNN framework, it processes
signals’ magnitudes, reducing preprocessing time compared
to other techniques. While time-domain methods alone might
sacrifice accuracy, the algorithm’s swift localization strategy
excels in tracking moving sound sources, surpassing current
deep learning methods in speed. Notably, the algorithm’s
reliance on online learning laws eliminates the need for
extensive datasets or pre-training. These enhancements
distinctly showcase the algorithm’s practicality and detail
effectiveness in sound source localization

IV. SIMULATION RESULTS
In this section, we analyze and compare several methods of
DOA, TDOA, and IMID to localize sound sources. Python
3.10 is used to analyze the data in this study. The utilized
dataset is described in the following section.

A. DATASET
We evaluated the proposed approach on two datasets:
our recorded data and the L3DAS22 multi-channel speech
enhancement challenge dataset. The first dataset comprises
four couples of recorded signals, including periodic noisy
clapping sounds at positions (0,0), (0,1.5), (1,1.5), and (1,2).
Two sensors are located on the ground at positions (0,0)
and (2,3). The mean of the background noise is 0.42 (W)
with a standard deviation of 5 (kW), and the signal-to-
noise ratio ranges between 5 to 8 dB. Two omnidirectional
microphones were used to record the audio. The noises
are mainly generated by vehicle movements, approximately
lower than 30 dB. The area under study is 2*3 m, located in
a larger 12 m2 area equipped with furniture and negligible
reverberation. The microphone’s Z-axis is zero. A sound
source is considered in this record, which moves linearly
along a 2D environment. The environment arrangement and
the sound source’s x and y movement paths are indicated in
Fig.6. The second dataset is provided by the L3DAS22 Task
2. It is split into three subsets, consisting of 600, 150, and 150
30-second-long audio recordings for the train, validation, and
test splits, respectively. There are 14 types of sound events
selected from the FSD50K dataset. The maximum number
of overlapping sound events is three, but here we utilized
one overlapping and 4 classes of the sound events, ‘writing,
knock, Drawer open and close, cupboard open and close’. The
room impulse response (RIR) is sampled in an office room
with dimensions around 6 m (length) by 5 m (width) by 3 m
(height). FOA microphone arrays are placed in the center of
the room, with the position of the FOA microphone arrays
set to be the origin of the coordinates. The signals recorded
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FIGURE 4. The architecture of the proposed Art-rSNN sound localization strategy.

FIGURE 5. Sinusoidal relation between parameters based on time delay.

in a real environment are depicted in Fig. 8. Real datasets are
typically favored over synthetic datasets due to their broader
range of inputs and improved representation of real-world
scenarios. Despite the benefits of artificial datasets, including
the ability to generate large training datasets without manual
data labeling and the alleviation of privacy concerns, the
techniques employed to train with synthesized datasets may
not be equipped to handle the uncertainties inherent in
real environments. Additionally, synthetic data is difficult to
validate for its accuracy, and it does not copy the original
content exactly [38], [39] As shown in Fig. 7, Signal Noise
Ratio (SNR) is low, and there is background noise in both
recorded signals; So, filtering is necessary to clean the data.
The first 10 seconds of the recorded signals include only
a single clap hand audio signal in position (0,1). We use
a band-pass filter to remove the background noise of the
recorded audio. The utilized filter is Butterworth, 5 degrees
with bandpass 400 Hz – 1000 Hz. Figure 8 reveals 1-second
filtered signals, recorded by two sensors 1 and 2.

V. EVALUATION OF THE ROLE OF DYNAMIC STRUCTURE
IN RSNNS
In this section, the performance of an RSNN is evaluated
with two different real sample data in an environment.
Sound sources are respectively recorded at (0,1.5) and

(1,1.5), considering the location of Mic2, namely (0,0) as
the reference node. Figure 9 (a,b,c) depicts the proposed
architecture how localizes a sound source, located at (1,1.5).
In the fixed structure, hidden neurons are randomly arranged,
and the location of the neuron with the higher membrane
potential is considered as the best estimation of sound
sources. With the aim of integrating spatial data, instead of a
mere time difference cue, the STDP updating law is modified
according to the following equation.

wij(t) = AVj e
−

( dij
c0

)
, c0 > 0, A > 0 (13)

VI. EVALUATION OF THE ROLE OF DYNAMIC STRUCTURE
IN RSNNS
In this section, we analyze the performance of an RSNN
with a fixed and dynamic structure. The tuning law is chosen
based on the acoustic velocity in the environment. A sample
arrangement of the fixed structure RSNN is indicated in
Fig. 11.
As shown in Fig. 11 hidden neurons are considered as

well as two I/O neurons. Received energy is predicted by
the observed neurons, which the relevant Mean Square Error
(MSE) is illustrated in Fig. 12. Figures 12, and 13 illustrate
that the calculated MSE converges to a specific value which
denotes that the proposed estimator is biased; therefore,
we should have normalized the input, properly to have an
unbiased estimation. Although MSE quickly converges to its
steady-state value, this question still arises what happens if
the number of hidden neurons increases? To respond to this
question, we raise the number of hidden neurons to 100.

Figure 13 indicates the MSE of sound energy prediction
by the 100 hidden neurons. Higher convergence speed is
detectable in Fig.13; however, utilizing the time-process
function of the time library in Python 3.10 indicates a
logarithmical increase of computational time cost from
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FIGURE 6. The sound source and microphones arrangements and movement path of the sound source in 2D x- y axes.

FIGURE 7. Recorded raw signals by microphones 1 and 2 which are
respectively located at (2,3) and (0,0). The upper figure is the recorded
signal by microphone 1 and the lower figure indicates the recorded signal
by microphone 2.

approximately 0.024 to 0.079 seconds at each iteration in
the same processor. Calculating the processing time of the
first fixed structure and the second larger structure indicates
that although the iteration numbers of the smaller network
are higher, the incremental time process of the smaller
network is not significantly much more than the larger
one, while their accuracy is almost the same. Therefore,
knowing how much we can increase the network size can
reduce computational costs. So comparing the computational
time cost and convergence speed of fixed and dynamic
structures, figures 11, 12, and 13 indicate that although the
computational cost of the proposed strategy is not much
lower than the fixed one with 10 hidden neurons, possibly
due to integrating the ART section computation costs to the
ART-SNN method, the precision of sound localization has

FIGURE 8. Filtered signals, in the upper figure, signal1 is recorded at
position(2,3) and the lower figure indicates the signals which are
recorded at (0,0). The signals are filtered by a Butterworth band pass
filter. 1 second of the recorded signal is depicted.

TABLE 1. Network parameters.

increased. The simulated network parameters are given in
Table 1.

We compare some well- and conventional SSL algorithms,
namely known energy-based, MUSIC, GCC-PHAT, LS-
SVM, and conventional SNN, to better understand their
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FIGURE 9. a) Tracking high potential neuron position progress in the environment, b) x-time sample data of the neuron
position, created by the proposed dynamic architecture, c) y-time sample data of the neuron position, created by the proposed
dynamic architecture- Sound Source (green square) is located at (1,1.5).

FIGURE 10. a) Tracking high potential neuron position progress in the environment, b) x-time sample data of the neuron
position, created by the proposed dynamic architecture, c) y-time sample data of the neuron position, created by the proposed
dynamic architecture- sound source (green square) is located at (0,1.5).

performance in at least 5 sample examples. Table 2 compares
the proposed method with two conventional sound localizing
methods for sound source steady-state error averages and the
standard deviations for the four mentioned recorded data.
The given Table 2 indicates the superiority of the proposed
method in localizing the sound source with only two sensors
in comparison to both SNN-based and non-SNN-based

approaches. Furthermore, it seems that sensitivity to the
sensors’ arrangements in both MUSIC and GCC-PHAT
algorithms should have triggered the higher error in sound
localizing.

To assess our proposed method on the L3DAS22 dataset,
we employed two key metrics: Accuracy and Mean Error
at 20 degrees (ER20). The results are visually presented in
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FIGURE 11. Fixed neuron arrangement with 10 hidden and 2 I/O neurons
(located at (0,0) and (2,3)).

FIGURE 12. Sound energy prediction MSE, calculated by the fixed
structure RSNN. The Y-axis indicates MSE amplitude and the X-axis
represents the iteration number.

FIGURE 13. MSE of sound energy prediction fixed structure RSNN method
with 100 hidden neurons. The Y-axis indicates MSE amplitude and the
X-axis represents the iteration number.

Fig. 14. Accuracy, calculated as the percentage of correct
predictions among the total, serves as a comprehensive

TABLE 2. Comparison of SSL algorithms on the recorded data.

FIGURE 14. Mean error and accuracy comparison on L3DAS22 in 2D
sound source localization task.

indicator of the system’s overall performance. A higher
accuracy percentage signifies better alignment between
predicted and true sound source locations. The accompanying
chart also illustrates the Mean Error at 20 degrees, providing
insights into the average angular deviation between predicted
and true angles. This metric offers a nuanced evaluation,
emphasizing the system’s accuracy specifically at the critical
angle of 20 degrees. The bar chart collectively provides a
comprehensive view of our sound localization system’s effec-
tiveness, facilitating interpretation and comparison under
various conditions.

In Fig. 14, we present a comparative analysis of sound
localization results achieved by the CRNN, ART-rSNN,
ResNet-Conformer, and SRP-PHAT methods. The plot
showcases the mean error at 20 degrees for each method
and their corresponding accuracy values. Notably, our
proposed method, ART-rSNN, exhibits a lower mean error
at 20 degrees compared to the other methods, indicating
superior performance in terms of localization precision. The
accuracy of our method stands out, showing results nearly
identical to CRNN, with only a marginal 0.01 decrease
in accuracy compared to CRNN. Furthermore, our method
outperforms ResNet-Conformer and SRP-PHAT in accuracy.

These outcomes affirm the efficacy of incorporating Mag
features in the L3DASS dataset for sound localization.
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Specifically, our method achieves an accuracy of 69.8%,
slightly below the 70.3% accuracy achieved by CRNN, while
maintaining a notable advantage in computational efficiency.
The proposed ART-rSNN method demonstrates a calculation
time, approximately one-tenth that of deep learning methods
like CRNN and ResNet-Conformer. This significant reduc-
tion in computation time not only attests to the computational
efficiency of our approach but also positions it as a promising
solution for real-time applications where speed is crucial.
In summary, the results presented in Fig. 9 underscore
the favorable trade-off between accuracy and computational
efficiency offered by our ART-rSNNmethod when compared
to existing state-of-the-art techniques in sound localization.

VII. CONCLUSION
This paper proposes a new rSNN architecture with a dynamic
network arrangement that can modify network size to
increase the performance of compromise between accuracy
and network structure. The proposed network initializes
by the possible smallest size and grows gradually based
on the error of estimation. The proposed system works
based on the encoding procedure’s threshold to provide an
event trigger-based approach. These features can enhance the
ability of the new architecture to be utilized in event-trigger
sound source localization so that the neurons in different
positions are activated based on the target path trajectory. The
proposed method is investigated by a fixed structure network
and four other conventional algorithms: Energy–Based by
Normal and random search distribution strategy and GCC-
PHAT, MUSIC algorithms, and a conventional STDP-based
SNN and LS-SVM. Results indicate that the proposed ART-
rSNN method is able to converge to the target location in
a few iteration numbers with a higher estimation accuracy
rather than the fixed structure SNNs and the other classic
methods. Furthermore, in our comprehensive evaluation of
the L3DAS22 dataset for 2D sound source localization,
a comparative analysis with CRNN, ResNet-Conformer,
and SRP-PHAT reveals the superior performance of the
proposed ART-rSNNmethod. Despite the higher speed of our
approach compared to state-of-the-art deep learningmethods,
our system exhibits lower mean error and nearly identical
accuracy. These results underscore the efficiency of our
system in achieving precise sound source localization with
reduced computational demands.

While these findings demonstrate the efficacy of the
proposed method, it is essential to address challenges
associated with high-speed moving sound sources in real-
time implementations. Future research endeavors could focus
on refining the architecture to effectively handle multiple
sound sources, broadening the applicability of the proposed
neural network beyond single-source localization scenarios.
In conclusion, the proposed ART-rSNN architecture exhibits
promising capabilities, marking a significant advancement
in sound source localization techniques, particularly in the
context of 2D localization on the L3DAS22 dataset, where

it outshines deep learning counterparts in both speed and
accuracy.

APPENDIX
To prove an updating law for a supervised learning strategy
for LIF neurons, we start with a cost function based on the
error of energy estimation from normalized recorded sound
signal power inputs and normalized membrane voltage of
LIF neurons. The weights are then updated based on this
cost function. The proof will involve demonstrating that the
updating law leads to a decrease in the cost function over
time, indicating that the network is learning to estimate the
energy of the sound signal more accurately. Let’s consider
the cost function as follows:

J =
1
2
ETE

E =
(
tanh

(
ysN×1

)
− tanh

(
VoN×1

))
N×1

Vo: Observed Neuron (14)

Equation (13) describes the square error on normalized
energy estimation, and the concept of energy-based methods
is integrated into ITD via the formula provided in the text.
However, the search results do not provide any additional
information on ITD or how it is related to the cost function
and energy estimation:

V = exp (−c1ts/τ) I → (15)

I =
1 − c

τ
exp (−c1ts/τ)V → I = Wij exp (−c1ts/τ)V

(16)

c: sound speed

1ts = input spike time - neuron spike time (17)

where Wij is the synaptic weight between neurons i and j and
updated based on Spike Time Dependent Plasticity (ST DP)
laws for hidden neurons: ST DP:

Wij =

{
AVje

1tsij
τ 1t ≥ 0, i, j ∈ Ni

0 1t < 0, or i, j /∈ Ni,

1ts = ti − tj (18)

where ti and tj are spike times of the ith and jth neurons,
respectively. Ni is the Neighbourhood of the neurons in the
small word connections, A is the maximum synaptic weight,
1t = ti − tj is the spike time difference, and τ is the time
constant. τ is the time constant of synaptic plasticity law.

Our proposed methodology is rooted in an energy-based
framework, with a central focus on the manipulation of
Leaky Integrate-and-Fire (LIF) neuron voltages, which play
a pivotal role in our approach. To facilitate comprehension,
we draw an analogy between the behavior of observed neu-
rons and input-output (I/O) entities, akin to the functionality
of loudspeakers. This analogy is substantiated by the inherent
resemblance between the LIF neuron model and the dual
loudspeaker lumped model.
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In the context of our algorithm, the behavior of the
LIF neuron aligns seamlessly with the dual circuit of
a loudspeaker’s lumped element model. Specifically, the
equation representing the lumped model of a loudspeaker
captures the dynamics of the electrical circuit, reflecting
the LIF neuron’s ability to adjust its voltage in response to
incoming signals. This logical connection between the LIF
model and the dual loudspeaker lumped model forms the
foundation of our energy-based framework. Neuron Voltage
adjustment, akin to tuning a loudspeaker, facilitates dynamic
adaptation to signals. Our energy-based law systematically
enhances simulation by tuning LIF neuron parameters,
crucial for optimizing the algorithm’s performance.

To calculate the error boundary on the evaluated dataset,
we integrate principles from the loudspeaker lumped model.
This serves as a reference for analyzing spatial characteristics
and quantifying the maximum error in distance estimation,
providing insights into the algorithm’s spatial accuracy.

Lc
di
dt

+ Ri+ Bl ·
dx
dt

= E(t), (19)

V +
R
C
dV
dt

+ Bl ·
dx
dt

= E(t) (20)

R
C
dV
dt = −Bl ·

dx
dt

+ E(t)︸ ︷︷ ︸
I

= −V + I → LIF Model and

I ∝ Sound Energy

I = τ
dV
dt

+ V → V = k · e
1t
τ · I → I

= W · V · e−
1t
τ

ysound_Energy =
S

|d − ds|2
+ ε ≈

S
|d |2

= W · V · e−
1t
τ (21)

Taylor Expansion:{
e−

1t
τ = 1/ exp

(
1t
τ

)}
≈

1

1 +
1t
τ

+
1
2

(
1t
τ

)2 ≈
1
d2

if 1
τ

= sound wave speed = c → we expect that c1t ≈ d
in the best 1t calculation, (TDOA) Under this assumption,
the Error boundary is calculated as follows:

|Er| :

∣∣∣∣d2 −
1
2

(
d2 + 2d + 2

)∣∣∣∣ =

∣∣∣∣12 (
d2 − 2d − 2

)∣∣∣∣
=

1
2

∣∣∣(d − 1)2 − 3
∣∣∣ (22)

According to our dataset, the maximum of d is 3, So:

|Er| ≤ 0.5 (23)

After calculating the error boundary, which was found to
be 0.5 meters in our evaluation, we gained valuable insights
into the spatial accuracy of our proposed algorithm on the
L3DAS22 dataset. This measure signifies the maximum
allowable deviation between the estimated and actual dis-
tances, providing a critical metric for assessing the reliability
of our method. The demonstrated accuracy reinforces the
robustness of our algorithm and its potential applicability in

real-world scenarios where precise sound source localization
is essential.

ACKNOWLEDGMENT
The authors would like to express their sincere appreciation
and deepest gratitude to the Auckland University of Technol-
ogy for providing them with the opportunity to conduct their
research.

REFERENCES
[1] L. Ngo, J. Cha, and J.-H. Han, ‘‘Deep neural network regression for

automated retinal layer segmentation in optical coherence tomography
images,’’ IEEE Trans. Image Process., vol. 29, pp. 303–312, 2020.

[2] A. Zhang, W. Zhu, and J. Li, ‘‘Spiking echo state convolutional neural
network for robust time series classification,’’ IEEE Access, vol. 7,
pp. 4927–4935, 2019.

[3] K. G. R. Jacome, F. L. Grijalva, and B. S. Masiero, ‘‘Sound events
localization and detection using bio-inspired gammatone filters and
temporal convolutional neural networks,’’ IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 31, pp. 2314–2324, 2023.

[4] B. Rafaely, Fundamentals of Array Signal Processing. Hoboken, NJ, USA:
Wiley, 2015.

[5] Y. Wu, R. Ayyalasomayajula, M. J. Bianco, D. Bharadia, and P. Gerstoft,
‘‘SSLIDE: Sound source localization for indoors based on deep learning,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Jun. 2021, pp. 4680–4684.

[6] L. Wang, Y. Wang, G. Wang, and J. Jia, ‘‘Near-field sound source
localization using principal component analysis multi-output support
vector regression,’’ Int. J. Distrib. Sensor Netw., vol. 16, no. 4, 2020,
Art. no. 1550147720916405.

[7] M. A. Pillai, A. Ghosh, J. Joy, S. Kamal, C. C. Satheesh, A. A.
Balakrishnan, and M. H. Supriya, ‘‘Acoustic source localization using
random forest regressor,’’ in Proc. Int. Symp. Ocean Technol. (SYMPOL),
Dec. 2019, pp. 191–199.

[8] J. C. Middlebrooks, ‘‘Sound localization,’’ in Handbook of Clinical
Neurology, vol. 4, 1996, pp. 411–484.

[9] A. Zhang, X. Li, Y. Gao, and Y. Niu, ‘‘Event-driven intrinsic plasticity for
spiking convolutional neural networks,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 33, no. 5, pp. 1986–1995, May 2022.

[10] R. O. Schmidt, ‘‘Multiple emitter location and signal parameter estima-
tion,’’ IEEE Trans. Antennas Propag., vol. AP-34, no. 3, pp. 276–280,
May 1986.

[11] Y. Xu, J. Du, L.-R. Dai, and C. Lee, ‘‘A regression approach to
sound localization in reverberant environments,’’ IEEE/ACMTrans. Audio,
Speech, Language Process., vol. 25, no. 3, pp. 676–688, Jun. 2017.

[12] Y. Chen, X. Zhang, L. Li, and L. Ma, ‘‘Sound source localization based
on improved support vector machine,’’ in Proc. 11th World Congr. Intell.
Control Autom., 2014, pp. 5363–5368.

[13] J. Yang, W. Chen, and Y. Zheng, ‘‘A sound source localization method
based on random forests,’’ in Proc. IEEE Int. Conf. Robot. Biomimetics,
Sep. 2015, pp. 401–406.

[14] H. Lu and Q. Zhou, ‘‘Recurrent neural networks for sound localization in
both static and dynamic scenes,’’ IEEE Access, vol. 7, pp. 36307–36317,
2019.

[15] Y. Ding and X. Bao, ‘‘A bio-inspired sound localization method using
synchronous spiking patterns,’’ IEEE Trans. Cybern., vol. 51, no. 9,
pp. 4251–4260, 2021.

[16] X. Chen, H. Xu, M. Lu, and Y. Zhou, ‘‘A low-complexity and energy-
efficient sound source localization method based on acoustic energy decay
model,’’ IEEE Sensors J., vol. 21, no. 5, pp. 5459–5469, 2021.

[17] T. Zhang, Z. He, and H. Wang, ‘‘A bio-inspired spiking neural net-
work model for sound source localization,’’ Neurocomputing, vol. 363,
pp. 39–49, May 2019.

[18] Z. Zhang, J. Gao, Y. Ma, and S. Liu, ‘‘A bio-inspired auditory system with
attention-based sound localization for robot audition,’’ IEEE Trans. Cognit.
Develop. Syst., vol. 12, no. 3, pp. 343–355, 2020.

[19] S. A. Saeedinia, M. R. Jahed-Motlagh, A. Tafakhori, and N. Kasabov,
‘‘Design of MRI structured spiking neural networks and learning
algorithms for personalized modelling, analysis, and prediction of EEG
signals,’’ Sci. Rep., vol. 11, no. 1, p. 12064, Jun. 2021.

VOLUME 12, 2024 24607



Z. Roozbehi et al.: Dynamic-Structured Reservoir Spiking Neural Network

[20] K. Voutsas and J. Adamy, ‘‘A biologically inspired spiking neural network
for sound source lateralization,’’ IEEE Trans. Neural Netw., vol. 18, no. 6,
pp. 1785–1799, Nov. 2007.

[21] A. Glackin, ‘‘A spiking neural network model of the medial superior olive
using spike timing dependent plasticity for sound localization,’’ Frontiers
Comput. Neurosci., vol. 4, p. 18, Jul. 2010.

[22] Z. Pan, M. Zhang, J. Wu, J. Wang, and H. Li, ‘‘Multi-tone phase coding of
interaural time difference for sound source localization with spiking neural
networks,’’ IEEE/ACM Trans. Audio, Speech, Language Process., vol. 29,
pp. 2656–2670, 2021.

[23] S. D. Correia, S. Tomic, and M. Beko, ‘‘A feed-forward neural network
approach for energy-based acoustic source localization,’’ J. Sensor
Actuator Netw., vol. 10, no. 2, p. 29, Apr. 2021.

[24] S. Adavanne, ‘‘Sound event localization, detection, and tracking by deep
neural networks,’’ Tech. Rep., 2020.

[25] E. C. Escudero, F. P. Peña, R. P. Vicente, A. Jimenez-Fernandez,
G. J. Moreno, and A. Morgado-Estevez, ‘‘Real-time neuro-inspired sound
source localization and tracking architecture applied to a robotic platform,’’
Neurocomputing, vol. 283, pp. 129–139, Mar. 2018.

[26] W. Zhang, H. Geng, and P. Li, ‘‘Composing recurrent spiking neural
networks using locally-recurrent motifs and risk-mitigating architectural
optimization,’’ 2021, arXiv:2108.01793.

[27] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein,
and W. Maass, ‘‘A solution to the learning dilemma for recurrent networks
of spiking neurons,’’ Nature Commun., vol. 11, no. 1, p. 3625, Jul. 2020.

[28] K. Roy, A. Jaiswal, and P. Panda, ‘‘Towards spike-based machine
intelligence with neuromorphic computing,’’ Nature, vol. 575, no. 7784,
pp. 607–617, Nov. 2019.

[29] F. Denk, S. D. Ewert, and B. Kollmeier, ‘‘On the limitations of sound
localization with hearing devices,’’ J. Acoust. Soc. Amer., vol. 146, no. 3,
pp. 1732–1744, Sep. 2019.

[30] F. Grondin and J. Glass, ‘‘SVD-PHAT: A fast sound source localization
method,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2019, pp. 4140–4144.

[31] M. Cobos, F. Antonacci, A. Alexandridis, A. Mouchtaris, and B. Lee,
‘‘A survey of sound source localization methods in wireless acoustic sensor
networks,’’ Wireless Commun. Mobile Comput., vol. 2017, pp. 1–24,
Jan. 2017.

[32] M. U. Liaquat, H. S. Munawar, A. Rahman, Z. Qadir, A. Z. Kouzani, and
M. A. P. Mahmud, ‘‘Localization of sound sources: A systematic review,’’
Energies, vol. 14, no. 13, p. 3910, Jun. 2021.

[33] A. Zhang, Y. Niu, Y. Gao, J. Wu, and Z. Gao, ‘‘Second-order information
bottleneck based spiking neural networks for sEMG recognition,’’ Inf. Sci.,
vol. 585, pp. 543–558, Mar. 2022.

[34] A. Zhang, Y. Han, Y. Niu, Y. Gao, Z. Chen, and K. Zhao, ‘‘Self-
evolutionary neuron model for fast-response spiking neural networks,’’
IEEE Trans. Cognit. Develop. Syst., vol. 14, no. 4, pp. 1766–1777,
Dec. 2022.

[35] A. Zhang, J. Shi, J. Wu, Y. Zhou, and W. Yu, ‘‘Low latency and sparse
computing spiking neural networks with self-driven adaptive threshold
plasticity,’’ IEEE Trans. Neural Netw. Learn. Syst., 2023.

[36] Y. Chen, Y. Mai, R. Feng, and J. Xiao, ‘‘An adaptive threshold mechanism
for accurate and efficient deep spiking convolutional neural networks,’’
Neurocomputing, vol. 469, pp. 189–197, Jan. 2022.

[37] H. Chen andW. Ser, ‘‘Acoustic source localization using LS-SVMswithout
calibration of microphone arrays,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2009, pp. 1863–1866.

[38] T.-H. Tan, Y.-T. Lin, Y.-L. Chang, and M. Alkhaleefah, ‘‘Sound source
localization using a convolutional neural network and regression model,’’
Sensors, vol. 21, no. 23, p. 8031, Dec. 2021.

[39] N. Yalta, K. Nakadai, and T. Ogata, ‘‘Sound source localization using
deep learning models,’’ J. Robot. Mechatronics, vol. 29, no. 1, pp. 37–48,
Feb. 2017.

ZAHRA ROOZBEHI received the degree from
the Shahid Bahonar University of Kerman and
the M.Sc. degree from Alzahra University. She
is currently pursuing the Ph.D. degree, with a
focus on spatiotemporal behavior of the brain.
Her expertise includes data analysis, mathematics,
neuroscience, and research tool implementation.
She enjoys generating new ideas and finding solu-
tions. Her colleagues describe her as motivated
and resourceful. She is working on mimicking the

mammalian hearing systems and applying the model in technology. Her
research interests include data analytics, computational neuroscience, brain-
inspired modeling, fractal geometry, and spiking neural networks.

AJIT NARAYANAN received the B.Sc. degree
(Hons.) in communication science and linguis-
tics from Aston University, Birmingham, U.K.,
in 1973, and the Ph.D. degree in philosophy from
the University of Exeter, Exeter, U.K., in 1976.
He was a Lecturer, a Professor, and the Dean at
universities in the U.K., before arriving in New
Zealand, in 2007. He is currently a Professor with
the School of Engineering, Computer Science, and
Mathematics, Auckland University of Technology.

He has published more than 100 articles and conducted reviews for various
journals and conferences on artificial intelligence and its applications in the
medical field. His research interests include artificial intelligence, nature-
inspired computing, machine learning, computational statistics, and machine
ethics.

MAHSA MOHAGHEGH (Member, IEEE) is
currently a Senior Lecturer and the Director of
Women in Tech of the AUT’s School of Computer,
Engineering, and Mathematical Sciences. She is
the well-recognized Leader in AI and machine
learning. She is also the Founder of the Charitable
Trust She Sharp and the Women’s Technology
Networking and Learning Group, where she works
to encourage young New Zealand girls to consider
what a career in technology offers. She was named

the Emerging Leader Category Winner in the 2013 Westpac Women of
Influence Awards and was one of ten finalists for the 2018 Kiwibank New
Zealander of the Year. In 2019, she was the Champion Award Winner of the
YWCA Equal Pay Awards, and in 2020 presented the Massey University
Distinguished Alumni Award.

SAMANEH-ALSADAT SAEEDINIA received the
bachelor’s degree from Imam Khomeini Interna-
tional University and the master’s degree from the
Iran University of Science and Technology, where
she is currently pursuing the Ph.D. degree. In 2018,
she published a book on electrical instruments.
Her areas of research interests include intelligent
control and modeling, neuroscience, and neural
computations. She received the Third Prize in the
Kharazmi Scientific Competition, Tehran, in 2006.

24608 VOLUME 12, 2024


