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ABSTRACT In recent years, reinforcement learning (RL) has received a lot of attention because we
can automatically learn optimal behavioral policies. However, since RL acquires the policy by repeatedly
interacting with the environment, it is difficult to learn about realistic tasks. In recent years, there has been a
lot of research on offline RL (batch RL), which does not need to interact with the environment, but learns from
the accumulated experience prepared in advance. Learning does not work by applying common RL methods
directly to offline RL because of a problem called distributional shift. Methods to suppress distributional
shift have been actively studied in offline RL. In this study, we propose a new offline RL algorithm that adds
constraints from discriminators used in Generative Adversarial Networks to the offline RL method called
TD3+BC. We compare and validate the proposed method with existing methods using a benchmark for
3D robot control simulation. In TD3+BC, the constraint was tightened to suppress distribution shift, but
a challenge arose when the quality of the dataset was poor, leading to difficulties in successful learning.
The proposed approach addresses this issue by incorporating features to mitigate distribution shift while
introducing new constraints to enable learning that is not solely dependent on the dataset’s quality. This
innovative strategy aims to improve accuracy even in cases where the dataset exhibits poor characteristics.

INDEX TERMS Reinforcement learning, offline reinforcement learning, generative adversarial networks,
discriminator, robot control.

I. INTRODUCTION
Recent advances in reinforcement learning (RL), especially
in combination with expressive deep network function
approximators, have produced promising results in areas
such as video games [1], robotics [2] and recommendation
systems [3].
However, one of the factors that prevents reinforcement

learning from becoming popular for real-world tasks is
the fact that reinforcement learning algorithms provide a
fundamentally online learning paradigm. The process of
reinforcement learning involves repeated interactions with
the environment to gather experience, which is then used
to improve the policy [4]. In many cases, such online
interactions can be costly (automated driving, robotic control)

The associate editor coordinating the review of this manuscript and

approving it for publication was Rongbo Zhu .

or dangerous (automated driving, healthcare) to collect
data. [5]

Due to such cost, safety, and ethical issues, offline
RL (batch RL) [5] is expected nowadays. Offline RL learns
policies using only pre-prepared experience data. The appeal
of a complete offline reinforcement learning framework is
enormous. Just as supervised machine learning such as image
classifiers and speech recognition engines have enabled
us to turn data into general-purpose and powerful pattern
recognizers, offline reinforcement learning with powerful
function approximations has the potential to turn data into
general-purpose and powerful decision-making engines.

On the other hand, offline reinforcement learning has the
challenge of not learning policies well if the data is biased.
In fact, most off-policy RL algorithms can be applied in an
offline environment, but they tend to fail to update policies
correctly and degrade performance because the agent cannot
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successfully estimate the values of state-action pairs that are
not included in the data set [6]. Solutions to this problem
revolve around the idea that the policy to be learned should
be close to the policy that generated the data, and various
algorithms (batch constraints [6], KL-control [7], behavioral-
regularization [8], policy constraints [5], etc.) have been
studied depending on how this ‘‘closeness’’ is selected and
implemented.

In this paper, we propose a method Behavior Cloning and
Discriminator Blend Regularization (BDB) to add constraints
using the discriminator used in Generative Adversarial
Networks (GANs) [10] to a simple and high-performing
offline RL algorithm called TD3+BC [9].
In recent training papers on offline reinforcement learn-

ing [11], various approaches to address distribution shift have
been discussed. Among them, a particularly powerful and
straightforward method is an enhancement of TD3+BC. The
paper highlights the importance of uncertainty estimation in
handling distribution shift. In line with the latest research
trends, the proposed method incorporates adjustments based
on uncertainty, making it a contemporary proposal. Using the
policy approximator as a generator, the discriminator is made
to compete with the policy approximator, so that the distance
between the training and data generation strategies is not too
far apart. The goal is to learn better policies even when the
performance of the dataset is low (low dataset quality) by
allowing policies that are ‘‘similar’’ to the data generation
policies. In addition, we propose a method to adjust the ratio
of Behavior Cloning [8] and GANs discriminators in the
normalization term according to the learning situation rather
than heuristically.

We evaluate the proposed method on Mujoco [12],
a benchmark for 3D robot control, and D4RL, a dataset
for offline RL [13]. The experimental results show the
effectiveness of the proposed method.

II. BACKGROUND
A. REINFORCEMENT LEARNING
We target reinforcement learning based on the assump-
tion of a general Markov Decision Process. The goal of
reinforcement learning is to learn the optimal policy π .
Reinforcement learning algorithms can be broadly divided
into model-free algorithms and model-based algorithms [14].
In the model-free algorithms, the agent learns the policy
based on the experience it gathers from interacting with the
environment.

In reinforcement learning, the subject of the action is called
the agent. At time t , the state that the agent observes from the
environment is st , and the action that the agent performs on
that state is at . Return obtained as the result of performing
action at on state st is defined as reward rt . The goal of
reinforcement learning is to learn the policy π that maximizes
the sum of rewards Gt .

Gt =
∞∑

τ=0

γ τRt+1+τ = Rt+1 + γRt+2 + γ 2Rt+3 + · · · (1)

γ (0 < γ ≤ 1) is used to account for the uncertainty of future
rewards. The expected value that is considered conditional
on state st in revenue Gt , is called state value V (st ). V (st )
indicates the goodness of the state of how much return Gt the
agent will ultimately receive from that st if it follows policyπ .

V π (s) = Eπ {Gt+1|St = s} (2)

Also, action valueQ(st , at ) indicates the goodness or badness
of action at in state st .

Qπ (s, a) = Eπ [Gt+1|St = s,At = a] (3)

The relationship betweenQ(st , at ) andV (st ) can be expressed
by the following equations.

Qπ (s, a) =
∑
s′
Pass′

[
r + γV π

(
s′
)]

(4)

V π (s) =
∑
a

π (s, a)Qπ (s, a) (5)

where Pass′ = Pr
{
st+1 = s′ | st = s, at = a

}
is state tran-

sition probability. If Q(st , at ) can be calculated accurately,
continuing to perform at with the highest Q(st , at ) is
equivalent to finding the optimal π∗.

There are two main ways to learn to estimate Q(st , at ):
Monte Carlo and TD learning (temporal difference learn-
ing) [15], [16]. Monte Carlo method is a simple method, but
is not often used because of the potentially large variance in
reward and the difficulty of resetting to a particular state when
estimating while interacting with environment. TD learning
is a way to deal with such Monte Carlo problems, and is
one of the most important ideas in reinforcement learning.
A feature of TD learning is use of bootstrapping, a method
that uses current estimate of value function as target value
during training.

Q-learning [17] of value-based reinforcement learning is
a type of TD learning that updates the action value with
equation (6).

Q (St ,At)← Q (St ,At)+ α

(
Rt+1 + γ max

a′∈A(s′)
Q

(
St+1, a′

)
−Q (St ,At)) (6)

Rt+1 + γ maxa′∈A(s′) Q
(
St+1, a′

)
is more reliable than

Q(St ,At ) because it is the actual reward rather than an
estimate of one step, so it can be treated as supervisor data.
α is a hyperparameter called the learning rate.

Policy Gradient [18] is not a method of determining the
value of actions and then selecting the action that maximizes
that value, as in Q-learning, but rather it is a method of
solving the reinforcement learning problem by optimizing a
stochastic model πθ (a|s) parameterized by some parameter
vector θ . The goal of Policy Gradient is to find the parameters
of the optimal policy parameter θ∗ such that it maximizes
return G. To find the optimal parameters, an evaluation
method is needed. Policy Gradient uses equation (7) to
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determine whether the policy πθ is good or bad.

J (θ ) = E [G0 | S0 = s0]

= E

[
∞∑
t=1

γ t−1Rt | S0 = s0

]
(7)

Update parameter θ in the direction of the gradient obtained
by differentiating as in equation (10) using J .

θ t+1 = θ t + η∇θJ (θ ) (8)

The gradient of J can be transformed using action value
function Q(s, a) as follows.

∇θJ (θ ) = Eπθ

[
∂πθ (a | s)

∂θ

1
πθ (a | s)

Qπ (s, a)
]

= Eπθ

[
∇θ logπθ (a | s)Qπ (s, a)

]
(9)

Actor Critic [14], [19] is a reinforcement learning method
that combines Q-learning and Policy Gradient. In Policy
Gradient, Q(s, a) is simply the sum of rewards at a
discount rate, but in Actor Critic, the Q function and policy
are learned simultaneously. The Actor (policy) learns to
maximize Q(s, a).

FIGURE 1. Actor critic framework.

B. OFFLINE RL
As mentioned in section I, general reinforcement learning,
which learns by interacting with the environment, is difficult
to adapt to real-world tasks (automated driving, robotics, etc.)
due to safety, cost issues, and ethical issues. Offline
RL (BatchRL) [5] is a new reinforcement learning framework
proposed to address such problems.

In deep reinforcement learning, which uses neural net-
works for function approximation such as DQN [20], it stores
agent’s experience in Replay Buffer and uses it for training.
Offline RL uses pre-prepared experience for learning, rather
than interacting with the environment to collect experience in
the Replay Buffer. It solves the problems of online RL, such
as cost and security due to interaction with the environment,
by using pre-prepared datasetsD. However, offline RL is not

FIGURE 2. Pictorial illustration of classic online reinforcement learning
and offline reinforcement learning.

successful simply by stopping interaction from online RL and
training on a prepared the datasets. Offline RL has to solve the
problem of ‘‘distributional shift’’.

Distributional shift is one of the major problems encoun-
tered in offline RL. There are two types of distributional shift:
policy and state.

Distributional shift of policy is the condition that the
probability of action selection between the behavioral policy
πβ collecting (st , at ) in the dataset D and the current policy
πθ under training deviates significantly. Distributional shift of
state is that distributional shift of policy causes current policy
πtheta to refer to unknown domains with less data (st , at )
in D. A domain with little data has high uncertainty and high
error in predicting the value function and expected reward
due to out-of-ditribution. In particular, when value function
erroneously overestimates value, current policy πθ selects
actions to maximize the value and therefore selects different
actions tha behavior policy πβ . Then there is a vicious cycle
of more distributional shift of policy, which in turn makes
distributional shift of state even worse.

With online RL, even if the value function is incorrectly
estimated and πθ learns wrong actions, the agent can receive
feedback from interacting with the environment and correct
the error. Offline reinforcement learning does not allow for
additional data, so once it falls into out-of-ditribution, it is
difficult to correct.

C. GENERATIVE ADVERSARIAL NETWORKS
Generative Adversarial Networks (GANs) [10] involve two
networks, a generator and a discriminator, competing to
achieve high-accuracy outputs. Machine learning models,
based on probability concepts, are broadly categorized into
discriminative and generative models. In equation (10),
neural networks serve for both generation and discrimination,
with the discriminator aiming to correctly label real or fake
instances, while the generator aims to produce outputs that
deceive the discriminator into believing they are real. This
adversarial learning process searches for optimal discrimi-
nator (D) and generator (G), updating them alternately to
advance the learning process.

min
G

max
D

V (D,G) =Ex∼pdata(x) [logD(x)]

+ Ez∼pz(z) [log(1− D(G(z)))] (10)
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GANs have a high affinity to reinforcement learning. When
it is difficult to design reward function R(s, t) for the
environment, it can be used in inverse reinforcement learning
(IRL) [21] to learn R using states and its actions as
input [22], or it can be incorporated into an imitation learning
framework, such as GAIL [24].

III. RELATED WORK
Here, we describe how existing studies have successfully
used offline reinforcement learning.

A. TD3+BC
TD3+BC is an offline RL proposed by Fujimoto et al [9].
Based on an online RL algorithm called Twin Delayed
DDPG (TD3) [25], it makes two simple changes for
successful offline RL.

First, the algorithm adds Behavior cloning regularization
term to the standard policyπ update step in TD3 to strengthen
the policy to prioritize the behaviors in the dataset D.

π = argmax
π

E(s,a)∼D
[
λQ(s, π(s))− (π (s)− a)2

]
(11)

Behavior Cloning [26], [27] is a form of imitation learning,
but the framework is supervised learning, not reinforcement
learning. For each pair of (st , at ) in the dataset, st is input
and at is supervised data. The model (policy) is trained to
maximize the probability of correct data for the input.

While the selection of λ in equation (11) is ultimately just a
hyperparameter, the balance between RL (maximizingQ) and
imitation (minimizing the BC term) is adjusted by the scale
of Q. Given the dataset of N transitions (si, ai), Fujimoto et
al. define the scalar λ as:

λ =
α

1
N

∑
(si,ai) |Q (si, ai)|

(12)

And second, to normalize the characteristics of each state in
the provided dataset. Normalize the states using the mean µi
and standard deviation σi of the states in the dataset as in
equation (13). (ϵ is a constant value to avoid division by zero.)

si =
si − µi

σi + ϵ
(13)

TD3+BC is a simple modification of TD3, but offers high
performance.

B. CQL
Conservative Q-learning (CQL) [28] solves the problem
of offline RL with a different approach from the major
methods of constraining policy and using uncertainty in
value function Q. CQL suppresses overestimation of value
by conservatively estimating value for highly uncertain out-
of-distribution state and action pairs.

CQL learns to estimate Q value conservatively (small) for
pairs (s, a) that are not in the dataset. In this way, the policy
will select (s, a) that is of high value (not conservatively
estimated) in the data set and prevent distributional shifts.

C. BEAR
Bootstrapping Error Accumulation Reduction (BEAR) [29]
is one of the offline Actor-Critic based on TD3 or
SAC [30] frameworks. BEAR uses the variance (uncertainty)
of Q(s, a) to suppress the bootstrapping error of the
Q function.

In BEAR, ensemble Q functions
{
Qθi

}K
i=1 are updated

by calculating the uncertainty from the maximum and
minimumusing the following equation forQ(s, a) of p actions{
ai ∼ πφ′

(
· | s′

)}p
i=1 sampled by the currently learning

policy πθ .

∀i, θi← argmin
θi

(Qθi (s, a)− (r + γ y(s, a)))2

y(s, a) := max
ai

[λ min
j=1,..,K

Qθ ′j
(s′, ai)

+ (1− λ) max
j=1,..,K

Qθ ′j
(s′, ai)] (14)

IV. PROPOSED METHOD
In this section, we mention the proposed method. TD3+BC
has a simple architecture and is capable of fast learning (in
terms of execution speed on a computer). However, TD3+BC
is strongly dependent on the performance of the dataset D
because the method of constraints to suppress the distribution
shift is simple Behavior Cloning. In other words, learning
TD3+BC is likely to depend on the πβ used when creating
theD data set for training purposes. The goal of offline RL is
not to imitateπβ , but to learn a complete policyπ∗ that allows
optimal action selection even in real environments, just from
a given dataset D.
In this context, we consider the constraint imposed by BC,

which only allows actions within the dataset, to be too strong.
Therefore, we propose Behavior Cloning and Discriminator
Blend Regularization (BDB), which aims to obtain a better
policy by making the constraint more flexible by using a
discriminatorD in theGANand allowing actions not included
in the dataset D BDB is a new approach to the data set
regularization.

π = argmax
π

E(s,a)∼D[λQ(s, π(s))

−(1−β)(π (s)− a)2 + βlog(D(s, π(s)))] (15)

In BDB, the normalization, which was performed only by
BC, is partially performed by discriminator D in GANs.
In TD3+BC, the loss of policy πθ becomes large when
actions outside the data set are selected during policy
network learning. Therefore, BDB learns to allow actions
that are outside the distribution of the data set D, but
that the discriminator perceives to be in the distribution,
similar to the action aD in the dataset. The discriminator
is trained to take state s and action a as input and to
determine whether the action is in the dataset aD or
estimated by πθ , where πθ playing the role of generator G
of GANs.

Equation (15) presents the update formula for the proposed
policy. When compared to the policy update formula for
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FIGURE 3. Pictorial illustration of our proposed method.

TD3+BC, the first term remains identical, representing the
value of the Q-function. In the second term, the weight
of the constraint is adjusted by multiplying 1 − β, which
penalizes actions outside the dataset. The third term involves
the GANs [10] discriminator determining whether the action
is within the dataset. Similar to the GANs discriminator in
the cited references, it outputs a value in the range of 0 to 1.
To adjust this value, it is multiplied by β and used as an
increment to the action evaluation. Collectively, the policy
learns, considering all these components, which actions are
preferable in a mechanism that evaluates and adjusts the
policy.

In this proposed method, as β increases, the constraint
imposed by TD3+BC on actions outside the dataset
decreases. However, due to the evaluation by the GAN
discriminator, actions that are close to those within the dataset
are positively assessed. This allows the model to evaluate
and incorporate actions that are similar to those within the
dataset, even if they are outside the dataset. Because learning
can be conducted using actions that are similar to those in the
dataset but outside of it, the evaluation is less likely to deviate
significantly, leading to a reduced occurrence of distribution
shifts.

The learning flow of BDB is shown in Algorithm 1.
The first term in equation (16) considers actions within

the dataset as real data, while the second term trains the
discriminator by treating actions chosen by the current policy
as data generated by GANs. In equation (17), the objective
function Lπ is utilized to learn the policy π , aiming to
minimize it for policy learning.

We also propose that the parameter β.
In our proposed approach, the ratio of behavior

cloning (BC) and discriminator constraints is not a fixed
heuristic value but a variable method depending on the
learning conditions. The Behavior Cloning andDiscriminator
Blend Regularization (BDB) method allows actions outside
the dataset, making it less constrained than TD3+BC. How-
ever, this flexibility may lead to distribution shifts. To address

Algorithm 1 Proposed method
Require: dataset D
1: Initialize Q-functionQθ , policy πφ and discriminatorDω

2: for step in 1, · · · ,N do
3: st , at , st+1, rt from sampling D
4: Calculate TD error and train the Q-function Qθ using

loss LQ
5: if step is policy update step then
6: Update the discriminator parameters ω

E[logD(st , at )]+ E[log(1− D(st , π(st )))] (16)

7: Train the policy using Lπ on objective from
equation (15)

Lπ = −λQ(st ,π (st ))+ β(−log(D(st , π(st ))))

+ (1− β)(π (st )− at )2

(17)
8: end if
9: end for

this, we introduce a variable parameter, β, which adjusts
the balance between BC and discriminator constraints. The
uncertainty in the Q function is utilized to determine β. BDB
estimates uncertainty by sampling Q values from the variance
of Q(s, a) similar to BEAR. When distribution shift occurs,
the increased uncertainty in Q(s, a) results in a decreased
β value, tightening the BC constraints. Conversely, when
the Q function accurately estimates Q(s, a), the proportion
of constraints on the discriminator increases, facilitating the
learning of behaviors outside the dataset.

We define the adjustment of parameter β as follows
Algorithm 2.

In Algorithm 2, the determination of the variable β

during the experiment is described. Initially, several Q
values are sampled. The difference between the maximum
and minimum values is defined as uncertainty, and its
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TABLE 1. Average normalized score over the final 10 evaluations and 5 seeds.The table shows the results in our experiment. We compared different task
and data set combinations. We highlight those with relatively high scores within the same data set.

TABLE 2. Average similar score over the final 10 evaluations and 5 seeds.This score represents the percentage of similarity between the action in the
dataset based on the current Q-value and the action taken according to the proposed method. We highlight the highest normalized score within the same
dataset in this table, in conjunction with TABLE 1.

Algorithm 2 Adjustment of parameter β

Require: dataset D
1: sampling s from D
2: a = π (s)
3: Unc := maxi=1,··· ,M Qi(s, a)−mini=1,··· ,M Qi(s, a)
4: β = min(1, 1

Unc )

reciprocal is used as the value for β within the range of 1
or less. As a result, when a distribution shift occurs, the
uncertainty in Q(s, a) increases, leading to a decrease in
the β value and strengthening the constraints of behavior
cloning (BC). Conversely, when the Q function accurately
estimates Q(s, a), the proportion of constraints on the

discriminator increases, making it easier to learn behaviors
outside the dataset.

V. EXPERIMENTAL DETAILS
A. SOFTWARE
We used the following software versions:
• Python 3.7
• MuJoCoi [12] 2.00
• Gym [31] 0.18.0
• mujoco-py 2.0.2.13
• dm-control [32] 0.0.364896371
• D4RL [13] 1.1

All D4RL datasets use the v0 version.
iLicense information: https://www.roboti.us/license.html
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We also used RLkitii 0.2.1 to use the public CQL.
The parameters of the algorithm we used in our experi-

ments are listed in Tables 3, 4, and 5.

B. HYPERPARAMETERS
The parameters of TD3+BC and the proposed method are
shown in Table 3. TD3+BC and Our proposed method
have the same architecture except for the use of GANs
discriminator, so we used common parameters.

TABLE 3. TD3+BC and our proposed method hyperparameters.

The parameters of the GANs discriminator used in the
proposed method are shown in Table 4. Note that the output
during training of the discriminator is through sigmoid
function.

TABLE 4. Discriminator hyperparameters.

The parameters of the CQL used for the comparison
experiments are shown in Table 5.

VI. COMPARISON EXPERIMENTS AND DISCUSSION
To evaluate the performance of the proposed method,
we conducted a comparative experiment.

We chose Mujoco [12] for our experimental task.
We used Datasets for Deep Data-Driven Reinforcement
Learning (D4RL) [13] as the offline reinforcement learning
datasets. D4RL is one of the famous libraries for offline
RL benchmarking that integrates a dataset and an evaluation
environment.

iihttps://github.com/rail-berkeley/rlkit/tree/v0.2.1

TABLE 5. CQL method hyperparameters.

We compared the proposed method with some parame-
ters β (β := 0.25, 0.50, 0.75, and adjust by uncertainty),
TD3+BCiii which is the basis of the proposed method,
and CQL.iv (The source code for each of these is available in
the annotations.)We trained each algorithm for 1million time
steps and evaluated it every 5, 000 time steps. Each evaluation
was done in 10 episodes.We experimented with 5 datasets for
each of 3 tasks.

The table for each task shows the mean of the
last 10 evaluations for the 5 seeds and the stan-
dard deviation between the seeds. The best scores are
highlighted.

Figure 4 illustrates an example of experimental results
represented in a bar graph. This experiment focuses on
the hopper’s random dataset, with the horizontal axis
indicating steps and the vertical axis normalized scores
mean. In this experiment, where learning is challenging due
to the low quality of the dataset, the proposed method,
BDB, visually exhibits better accuracy compared to CQL
and TD3+BC.

To further examine the extent to which a change in the
value of β would lead to a choice of behavior outside
of the data set, we tested the percentage of behavior
within the data set for all data sets for each value of
β in the exact same environment. Here, we compared
how similar the behavior selected in the datasets was
to the behavior selected by the policy learned in the
proposed method, and recorded the percentage of the same
behavior chosen, defined as the similar score. The lower

iiihttps://github.com/sfujim/TD3_BC/tree/
79c9fb923f3811feb6e01b8c1c61862225dfd942

ivhttps://github.com/aviralkumar2907/CQL/tree/
d67dbe9cf5d2b96e3b462b6146f249b3d6569796
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FIGURE 4. An example of comparison experiment(hopper-v0, random).

the similar score, the more acceptable the behavior outside
the data set is.

Looking at Table 1, While CQL demonstrates the best
performance in certain cases, the proposed method outper-
forms in many task and dataset pairings. In the case of
the medium replay setting, particularly for walker2d-v0,
a notable improvement of 22 percent in scores was observed
compared to existingmethods (TD3+BC, CQL). In scenarios
where CQL, TD3+BC, and our proposed method all exhibit
high performance, our proposed method demonstrates the
lowest variance. We attribute this to the capability of
our proposed method to learn about actions beyond the
dataset, enabling the acquisition of robust policies for
broader distributions. Furthermore, it can be observed from
Table 2 that as the value of β increases, the proportion
of selecting actions outside the dataset also increases.
Moreover, it is evident that reducing the value of β as
the quality of the dataset improves leads to better results.
This is because for datasets of higher quality, effective
learning can be achieved solely within the dataset, resulting
in higher scores when β is reduced. On the other hand,
for datasets of lower quality, allowing actions outside the
dataset is considered beneficial for successful policy learning
compared to learning policies only within the dataset.
Integrating insights from Tables 1 and 2, it can be concluded

that there are situations in certain high-quality datasets
where efficient learning is predominantly achieved within
the dataset. Conversely, in lower-quality datasets, allowing
actions outside the dataset leads to more diverse behaviors,
thereby enhancing learning efficiency. The flexibility of
Adjust in adjusting based on the proficiency of learning has
demonstrated the highest accuracy across numerous datasets.
Additionally, increasing to allow actions outside the dataset
enables learning a broader range of behaviors. However, this
comes with the trade-off of loosening constraints imposed
by behavior cloning, potentially increasing the risk of
distribution shift. Therefore, determining how to set based on
the characteristics of the dataset is deemed a crucial aspect
for effective learning without succumbing to distribution
shift.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed an offline reinforcement learning,
Behavior Cloning and Discriminator Blend Regulariza-
tion (BDB). To suppress distributional shifts which is the
problem of offline RL, the method uses GANs discriminators
to constrain the training in addition to the existing method of
behavior cloning. The performance of the proposed method
was evaluated through comparison experiments with existing
offline RL.
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TD3+BC, which is the basis of the proposed method, is a
simple modification of TD3 and is a successful algorithm
for learning offline RL. However, since it only uses simple
behavior cloning as a constraint to prevent distribution shifts
from occurring, the learning performance is highly dependent
on the given data set, and the learning is unstable. In our
proposed method, BC constraint and GANs discriminator
constraint are mixed in a certain ratio, so that even if
the action is not in the dataset, it is acceptable if it is
dataset-like.

In this paper, we also proposed a method in which the
ratio of BC constraints to discriminator constraints is not
heuristically determined, but is variable during training.
Ideally, offline RL should train on (s, a) outside the dataset
if there is no distribution shift, and if there is distribution
shift, it should be constrained not to cause out-of-distribution.
Therefore, in our proposed method, the uncertainty of Q(s, a)
is used as an indicator of the presence or absence of
distribution shift and is used to determine the ratio between
BC and discriminator constraints.

In particular, it outperformed existing methods, albeit
unstably, when the quality of the data set was low. This
is likely due to more flexible learning constraints, which
makes learning more unstable, but also allows the method to
effectively learn behaviors that deviate from the distribution.
In addition, when quality is high, the variation in scores
is smaller than with existing methods. Therefore, the ratio
of imitation learning is higher than that of discriminator,
indicating that the proposed method takes advantage of the
high quality of the dataset. Thus, we can say that the proposed
method overcomes the shortcomings of TD3+BC. However,
it cannot be said that variable β performs better than heuristic
β in all experiments, and there may be a better way to
determine β.

We would like to explore better ways to determine β in the
future.

For example, We should use implementing a dynamically
portioned β learned through the training process would result
in a more adaptable network for any dataset. Also, the
proposed method learns only by constraining the policy to
avoid distributional deviations, but we would like to consider
combining it with an algorithm that learns by constraining the
Q function, such as CQL.

REFERENCES
[1] AlphaStar: Mastering the Real-Time Strategy Game StarCraft II. [Online].

Available: https://deepmind.com/blog/article/alphastar-mastering-real-
time-strategy-game-starcraft-ii

[2] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
‘‘QT-Opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,’’ 2018, arXiv:1806.10293.

[3] L. Li, W. Chu, J. Langford, and R. E. Schapire, ‘‘A contextual-bandit
approach to personalized news article recommendation,’’ in Proc. 19th Int.
Conf. World Wide Web, 2010, pp. 661–670.

[4] R. S. Sutton and A. G. Barto, Introduction To Reinforcement Learning,
vol. 135. Cambridge, MA, USA: MIT Press, 1998.

[5] S. Levine, A. Kumar, G. Tucker, and J. Fu, ‘‘Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,’’ 2020,
arXiv:2005.01643.

[6] S. Fujimoto, D. Meger, and D. Precup, ‘‘Off-policy deep reinforcement
learning without exploration,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 2052–2062.

[7] N. Jaques, A. Ghandeharioun, J. H. Shen, C. Ferguson, A. Lapedriza,
N. Jones, S. Gu, and R. Picard, ‘‘Way off-policy batch deep rein-
forcement learning of implicit human preferences in dialog,’’ 2019,
arXiv:1907.00456.

[8] Y. Wu, G. Tucker, and O. Nachum, ‘‘Behavior regularized offline
reinforcement learning,’’ 2019, arXiv:1911.11361.

[9] S. Fujimoto and S. Shane Gu, ‘‘A minimalist approach to offline
reinforcement learning,’’ 2021, arXiv:2106.06860.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’
in Proc. Adv. Neural Inf. Process. Syst., in Polymers of Hexadromicon,
vol. 27, J. Peters, Ed. NewYork, NY, USA:McGraw-Hill, 2014, pp. 15–64.
[Online]. Available: http://www.bookref.com

[11] R. F. Prudencio, M. R. O. A. Maximo, and E. L. Colombini, ‘‘A survey on
offline reinforcement learning: Taxonomy, review, and open problems,’’
IEEE Trans. Neural Netw. Learn. Syst., early access, Mar. 22, 2023, doi:
10.1109/TNNLS.2023.3250269.

[12] E. Todorov, T. Erez, and Y. Tassa, ‘‘MuJoCo: A physics engine for model-
based control,’’ inProc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012,
pp. 5026–5033.

[13] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, ‘‘D4RL: Datasets
for deep data-driven reinforcement learning,’’ 2020, arXiv:2004.07219.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[15] R. S. Sutton, ‘‘Learning to predict by themethods of temporal differences,’’
Mach. Learn., vol. 3, no. 1, pp. 9–44, Aug. 1988.

[16] R. S. Sutton, ‘‘Temporal credit assignment in reinforcement learning,’’
Ph.D. dissertation, Univ. Massachusetts, Amherst, MA, USA, 1984.

[17] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[18] H. Lyu, N. Sha, S. Qin, M. Yan, Y. Xie, and R. Wang, Advances in Neural
Information Processing Systems, vol. 30, 2019.

[19] T. Degris, P. M. Pilarski, and R. S. Sutton, ‘‘Model-free rein-
forcement learning with continuous action in practice,’’ in Proc.
IEEE Amer. Control Conf. (ACC), Montreal, QC, Canada, Oct. 2012,
pp. 2177–2182.

[20] V. Mnih, ‘‘Human-level control through deep reinforcement learning,’’
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[21] S. Russell, ‘‘Learning agents for uncertain environments (extended
abstract),’’ in Proc. 11th Annu. Conf. Comput. Learn. Theory. ACM Press,
Jul. 1998, pp. 101–103.

[22] C. Finn, P. Christiano, P. Abbeel, and S. Levine, ‘‘A connection between
generative adversarial networks, inverse reinforcement learning, and
energy-based models,’’ 2016, arXiv:1611.03852.

[23] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, ‘‘A survey of
robot learning from demonstration,’’ Robot. Auto. Syst., vol. 57, no. 5,
pp. 469–483, May 2009.

[24] J. Ho and S. Ermon, ‘‘Generative adversarial imitation learning,’’
in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016,
pp. 4565–4573.

[25] S. Fujimoto, H. van Hoof, and D. Meger, ‘‘Addressing function approx-
imation error in actor-critic methods,’’ in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1587–1596.

[26] S. Ross and D. Bagnell, ‘‘Efficient reductions for imitation learning,’’ in
Proc. 30th Int. Conf. Artif. Intell. Statist., 2010.

[27] S. Ross, G. Gordon, and D. Bagnell, ‘‘A reduction of imitation learning
and structured prediction to no-regret online learning,’’ in Proc. 14th Int.
Conf. Artif. Intell. Statist., 2011, pp. 627–635.

[28] A. Kumar, A. Zhou, G. Tucker, and S. Levine, ‘‘Conservative Q-learning
for offline reinforcement learning,’’ 2020, arXiv:2006.04779.

[29] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, ‘‘Stabilizing off-policy
Q-learning via bootstrapping error reduction,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019.

[30] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ in Proc. 35th Int. Conf. Mach. Learn., 2018.

19950 VOLUME 12, 2024

http://dx.doi.org/10.1109/TNNLS.2023.3250269


S. Kidera et al.: Combined Constraint on BC and Discriminator in Offline RL

[31] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ 2016, arXiv:1606.01540.

[32] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel,
T. Erez, T. Lillicrap, N. Heess, and Y. Tassa, ‘‘Dm_control: Software
and tasks for continuous control,’’ Softw. Impacts, vol. 6, Nov. 2020,
Art. no. 100022.

[33] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

SHUNYA KIDERA received the B.S. degree from
Kanazawa University, in 2021. He is currently pur-
suing the M.S. degree in reinforcement learning.

KOSUKE SHINTANI received the M.S. degree
from Kanazawa University, in 2022. His research
interest includes reinforcement learning.

TOI TSUNEDA received the M.S. degree from
Kanazawa University, in 2021. His research inter-
est includes reinforcement learning.

SATOSHI YAMANE received the B.S., M.S.,
and Ph.D. degrees from Kyoto University. He is
currently a Professor with Kanazawa University.
His research interests include formal verification
of real-time and distributed computing.

VOLUME 12, 2024 19951


