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ABSTRACT Power outages can severely affect individuals, businesses, and communities, leading to
disruptions, economic losses, and safety risks. The existing power recovery strategies often fail to
adequately address the challenges associated with such outages. These challenges encompass a range
of complexities, including resource allocation disparities, efficient prosumer integration, energy demand
variability, and isolated generators. This paper presents a microgrid-centric power recovery strategy that
leverages IoT, blockchain, smart contracts, and optimisation techniques for peer-to-peer energy sharing
within the microgrid. The proposed strategy comprehensively addresses the challenges associated with
the existing power recovery strategies. The paper outlines the system architecture for IoT and blockchain-
enabled microgrids, discusses the mathematical modelling for energy sharing, and explores cost-optimal
power restoration strategies. An incentive mechanism motivates prosumers to support restoration strategies
during outages. Furthermore, the paper describes a blockchain smart contract facilitating peer-to-peer energy
exchange in regions affected by power outages. This approach can mitigate the disruptive impact of power
outages by providing reliable and community-centric power recovery solutions. Through validation with
real-world data from our university’s distribution grid test bed, Mean Time To Recover (MTTR) analysis
and performance evaluations using the Hyperledger Caliper benchmark tool, this paper demonstrates its
feasibility and effectiveness, paving the way for enhanced power recovery strategies and increased resilience
in the face of energy disruptions.

INDEX TERMS Blockchain technology, Internet of Things, microgrid-centric approach, peer-to-peer energy
exchange, smart contracts, power outage restoration.

I. INTRODUCTION
Power outages can cause significant disruptions in electricity
supply and affect various aspects of society, such as bank-
ing, communication, traffic, and safety. Such outages also
have economic consequences, leading to reduced business
operations, financial losses and the need to invest in backup
systems. According to the World Bank, power outages cause
annual losses of 4.4 billion dollars [1]. Frequent power
outages in the United States have been reported to result
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in significant financial losses of approximately 1 million
dollars per hour in one in four companies [2]. The existing
power recovery strategies often fail to effectively address
the challenges inherent in such outages. These challenges
encompass a range of complexities, including Resource Allo-
cation Disparities, Prosumer Integration, Energy Demand
Variability, Microgrid Stability, Incentive Mechanisms and
Isolated DERs. Mean Time to Recovery (MTTR) is one of
the key metrics used in assessing the resilience of microgrid
systems during power outages [3]. Table 1 shows the MTTR
for power outages in different categories of cities in India
during 2022-23.
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TABLE 1. MTTR for power outages in different cities in india.

The table shows that the average MTTR for a power
outage in India is 5 hours and 28 minutes. Metro cities
exhibit the shortest MTTR, with power restoration typically
occurring within 26 minutes to 1 hour. In contrast, rural
areas face substantially longer recovery times, with MTTR
extending up to 18 hours. Although advanced machine
learning algorithms and data analysis enable the prediction
and detection of power outages in large area distribution
networks [4], [5], there is a critical need for a sustainable
system that can support energy demands within outage
areas. Peer-to-peer energy exchange can be a viable solution,
provided fragmented lines are isolated and no faults exist in
the remaining lines. This paper proposes a resilient outage
restoration approach to quickly restore power to critical loads
quickly. We leverage blockchain technology, smart contracts,
optimisation techniques, and the Internet of Things (IoT) to
achieve this.

Blockchain technology, originally introduced as part
of the Bitcoin proposal in 2008 [6], provides an open,
distributed, and decentralised ledger for secure transaction
storage [7]. Nodes within the blockchain network participate
in or validate transactions, while miners receive rewards
for validation. Transactions are data transfers between
entities, recorded in the blockchain ledger after successful
validation [8].
The ledger, accessible to all network nodes, stores

cryptographically encoded data linked to previous records,
ensuring immutability. Consensus algorithms such as Proof
of Work and Proof of Authority validate transactions. Smart
contracts define transaction processing protocols, while
cryptocurrencies are digital assets within the blockchain
platform. We leverage the Ethereum platform, known for
its performance and support for smart contracts and the
Ether cryptocurrency [9], as demonstrated in our previous
work [10], [11], [12], [13].

Integrating blockchain technology into the smart grid
offers numerous advantages. It facilitates the seamless
integration of renewable energy sources into the grid,
enhancing energy efficiency and sustainability. Additionally,
blockchain enables peer-to-peer energy trading, eliminating
intermediaries and enabling new business models and market
structures. When combined with IoT, blockchain improves
grid security and reliability by allowing transparent and
secure monitoring of electrical flow, helping to detect and
prevent potential threats [14]. Blockchain IoT and smart
contracts can automate energy supply management, ensuring
reliable and secure grid operation [15].

We propose using IoT to collect real-time data from
the smart meters installed at the consumer, prosumer, and
DERs. The IoT system will collect and record the smart
meter data to the blockchain ledger, thus ensuring immutable
record keeping. The IoT system will also provide application
programming interfaces (API) using which the prosumers,
consumers and DERs can exchange information such as
energy generation, usage and stored energy.

The microgrid is a self-sufficient hyperlocal community
that generates and consumes electricity locally, primarily
from renewable sources such as wind and solar [16], [17].
However, these microgrids often face power imbalance
during generation shortfalls or low-demand periods. This
paper proposes a peer-to-peer energy exchange systemwithin
a microgrid during a power outage. The system facilitates
energy transfers by assuming uninterrupted distribution
lines within the microgrid and leveraging existing grid
infrastructure, such as distribution lines and controllers.
The focus is on scenarios with higher consumer energy
demand, particularly during critical load outages. We aim to
utilise optimisation techniques to improve the power shared
by prosumers, effectively supporting power demand during
outages.

A. KEY CONTRIBUTIONS OF THE PAPER
Our paper significantly addresses the challenges and gaps in
microgrid management with resilience to outages, peer-to-
peer energy exchange, and sustainable energy distribution.
The key contributions of our work are as follows:

• We introduce a microgrid architecture, integrating IoT
and blockchain, enabling peer-to-peer energy exchange
during power outages.

• We develop microgrid-centric optimisation strategies
to ensure reliable operations and efficient energy
utilisation.

• We propose an incentive mechanism encouraging pro-
sumers to actively support power restoration during
outages without causing any burden on the microgrid.

B. PAPER OUTLINE
The remainder of this paper is organised as follows.
Section II delves into research similar to our proposed
methods. Section III discusses the mathematical modelling
of microgrids and introduces key entities involved in peer-to-
peer energy exchange. Section IV outlines the problemwe are
solving in this paper. SectionV describes the proposed system
architecture. Section VI summarises the microgrid-centric
strategies we have developed to restore power. Section VII
explains the development and implementation of smart
contracts on the Ethereum blockchain platform. Section VIII
presents the numerical analysis of optimisation strategies and
discusses the evaluation of smart contract performance. The
paper is concluded in Section IX, which briefly discusses the
limitations of the paper and its future scope.
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II. LITERATURE REVIEW
This section provides a comprehensive overview of previous
research and relevant studies on the proposed system.
This section also systematically reviews the literature on
fault localisation, identification, restoration techniques, and
blockchain technology in smart grids, highlighting the key
findings and research gaps.

Fault location identification algorithms developed by
Aly and El-Sayed [18] for smart grids in wind farms
address system tripping caused by high power injection.
The fault location algorithms based on wind power gener-
ation yield showed higher accuracy by comparing voltage
and current signals at both ends of the power line. The
simulation results demonstrated the effectiveness of the
algorithms. However, their application to smart grids with
multiple renewable and non-renewable sources remains
untested.

An approach for black-out detection and response within
smart grids was presented by Shahinzadeh et al. [19] through
the integration of IoT and fog computing. The resilience of
smart grids was improved by introducing an agile black-out
detection and response paradigm by leveraging IoT-oriented
initiatives, such as sensors and data collection devices, and
integrating fog computing, which involves processing data
closer to the data source. This combination enhances the
efficiency and resiliency of black-out detection and response,
ensuring minimal disruptions in power supply.

A microgrid architecture developed by Devidas and
Ramesh [20] identifies and localises power theft incidents
using smart meter data. The architecture includes renew-
able energy systems, distribution lines, transformers, and
consumer loads, with smart devices deployed at common
coupling points to transmit data to a central server. However,
the proposed algorithm faces challenges, including increased
communication cost, energy consumption, and latency with
more smart devices. However, the system’s effectiveness
is compromised when a single point of failure occurs,
suggesting the need for a decentralised architecture for
improved functionality.

The fault localisation method in interconnected power
transmission grids was proposed by Neethu et al. [21] using
the discrete wavelet transform (DWT) and artificial neural
networks (ANN). Combining DWT and ANN ensures an
adaptive and accurate fault-locating scheme. The algorithms
were deployed and tested on an IEEE nine-bus system using
MATLAB/Simulink. The decision-making strategy devised
by Xu et al. [22] restores the power grid in two steps with
photovoltaic sources. The fault network is first isolated, and
the renewable sources power the affected area in islanded
mode. Then, power is restored by using the grid’s additional
power after fixing the faults.

An intelligent transmission line protection system Raj and
Chandran [23] developed can detect faults, classify them,
and identify their location using Artificial Neural Networks
(ANN). The fault data set was generated through simulation
by changing the fault parameters. A real-time model was

developed for transmission line protection, which detects
faults and turns off the circuit breaker to protect the system.
The approach provides insights into predicting line outages
and detecting multiple line failures in smart grids, highlight-
ing the need to improve outage anticipation, power planning,
and fault identification. However, a research gap remains
in exploring fault location algorithms for smart grids with
multiple renewable sources and developing decentralised
architectures for improved functionality. Additionally, using
artificial neural networks shows promise in fault localisation.
At the same time, decision-making strategies for efficient
power restoration and intelligent transmission line protection
systems present innovative approaches to ensure grid relia-
bility and stability. The fault location algorithms proposed
in [18], [20], [21], and [24] can be combined with blockchain
technology to improve fault identification and localisation.
The blockchain can securely store and share fault data among
relevant stakeholders, enabling real-time collaboration and
faster resolution.

Blockchain technology is pivotal in reshaping the
landscape of smart grids by revolutionising energy
trading, enhancing grid security, and combating data
tampering. Blockchain and cooperative game theory for
peer-to-peer energy trading in smart grids, proposed
by Moniruzzaman et al. [25], aims to maximise users’
profit. Their proposed approach allows users to store
renewable energy credits as an asset in the blockchain
network and establish energy sharing with other users
on the grid. Similarly, our proposed approach utilises
blockchain technology but primarily concentrates on power
restoration and outage resilience with minimal burden on
the microgrid rather than profit maximisation. While the
authors emphasise improving the proof of energy generation
consensus algorithms and mining rewards, our work
addresses the critical aspect of equitable resource allocation
during power outages, which isn’t directly tackled in
their study.

The integration of emerging technologies such as Big Data
Analytics, the Internet of Things (IoT), Artificial Intelligence
(AI), and Blockchain in the context of transactive energy
markets was discussed by Shahinzadeh et al. [26]. This
paper’s primary focus is to explore these technologies’
potential in optimising energy trading and management,
thereby contributing to more efficient and sustainable energy
markets. The concepts presented in this paper align with
the technological components of our proposed idea for
optimising energy management within microgrids. The paper
deals with large-scale energy markets, where numerous
participants engage in energy trading, and the emphasis
is on optimising these markets at a macro level. Our
proposed idea is focused on a smaller scale, addressing
microgrids’ unique challenges and opportunities. It empha-
sises localised energy management and resilience during grid
outages.

The application of blockchain technology and smart
contracts to enhance the security of the Internet of Things
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(IoT) was explored by Zanjani et al. [27]. Security chal-
lenges in IoT systems were also discussed, including
data privacy, device authentication, and secure communi-
cation. Blockchain technology is proposed to enhance IoT
security because it provides tamper-proof and transparent
record-keeping. The paper and our proposed approach
recognise the value of blockchain technology and smart
contracts for IoT data sharing. The paper applies them
to enhance IoT security. Our approach utilises blockchain
and smart contracts for peer-to-peer energy exchange,
leveraging IoT data and microgrid management during
outages.

Near-real-time bilateral energy trading was proposed by
Wang et al. [28] within a smart community. The proposed
approach manages the supply and demand of the community
without intermediaries using peer-to-peer energy trading.
Smart contracts were developed for various processes such
as grid initialisation, user registration, user negotiations,
energy trading, power balancing, and settlements in peer-
to-peer energy trading. A benchmark was conducted using
the hyperledger caliper tool to understand the performance
of the proposed approach in real-world scenarios. Our
work optimises energy sharing during power outages within
microgrids by emphasising the power restoration process
during outages, aiming to minimise disruptions and ensure
fair energy allocation.

Ethereum-based peer-to-peer bidirectional electric vehicle
charging algorithms demonstrated by Kapoor et al. [10]
use Ethereum virtual machines and smart contracts with
fuzzy logic to manage energy balance in the power grid by
harnessing the energy stored in electric vehicles.

Similarly, the Hyperledger blockchain platform perfor-
mance was evaluated on a Raspberry Pi single-board
computer by Mahesh et al. [29]. A cluster was set up
using 6 Raspberry Pis, and the Hyperledger network was
deployed using community-developed docker images. Our
proposed system utilises the foundation laid by these studies
but applies it uniquely to address power restoration and
outage resilience.

A prosumer-centric framework proposed by
Tushar et al. [30] for peer-to-peer energy trading using
coalition formation games enable prosumers to form alliances
and sell energy to the grid. Our work shares similarities
in considering microgrid-centric trading but primarily
emphasises outage resilience. Prosumers were classified
according to the availability of energy storage. A case
study conducted considering market size and energy demand
demonstrates the effectiveness of their approach, revealing
improved efficiency and cost savings compared to traditional
trading methods. Our work extends beyond trading strategies
to address power restoration during outages, which is not
explicitly explored in the cited study.

The implementation and evaluation of a blockchain-based
local energy market (LEM) in Walenstadt, Switzerland,
demonstrated by Meeuw et al. [31], where 37 households
trade energy using smart meters that run a private blockchain.

The feasibility and scalability of a Byzantine fault-tolerant
blockchain system under different bandwidth and validator
settings were tested using a real-world microgrid setup.
Communication networks with a bandwidth lower than
1000 kbit/s were unsuitable for operating a blockchain-
managed microgrid and increasing the number of validators
significantly reduces the throughput. The paper also provides
guidelines and recommendations for utilities or grid operators
interested in implementing LEMs based on blockchain
technology.

A blockchain consensus model discussed by Hu et al. [32]
for real-time distributed energy trading propose a con-
sensus resource-slicing model that aims to improve the
efficiency of energy trading by dividing the nodes into
different domains. Blockchain-based decentralised virtual
power plants for small prosumers were proposed by
Cioara et al. [33] use smart contracts for registering a new
prosumer, prosumer offering the energy to the grid, energy
settlement, delivery tracking and financial settlement. The
Ethereum platform was used to implement and validate the
proposed system. Our work focuses on power restoration
and outage resilience within microgrids, offering solutions
for mitigating disruptions during grid disturbances. The
research gaps identified from the literature are summarised
below.

• Traditional approaches struggle to ensure appropriate
allocation of energy resources during outages, poten-
tially favouring specific microgrid segments [34], [35].

• Integrating prosumers into the grid poses unique chal-
lenges, as existing strategies may not effectively utilise
their distributed energy resources [36], [37].

• Managing the fluctuating energy demand within a
microgrid during outages is a challenge, as failures
to predict and accommodate variations can lead to
shortages or overloads [38].

• Designing incentive mechanisms to motivate pro-
sumers without creating imbalances is intricate,
balancing operational burden and prosumer
participation [39], [40].

• Energy optimisations between buyers and sellers are
primarily conducted off-chain, neglecting the potential
benefits of utilising blockchain technology for contract
validation and execution [30], [31].

To the best of our knowledge, our approach addresses
a significant research gap that has not been explored
extensively in the literature. Our paper focuses on a
specific use case: peer-to-peer energy exchange within a
microgrid during a power outage. We present microgrid-
centric optimisation strategies that effectively balance power
availability and consumption in outage situations. Our
approach leverages the Internet of Things (IoT) to identify
energy producers and consumers within the microgrid,
monitor the generation and consumption, and use smart
contracts to enable localised energy trading. This ensures that
energy resources are efficiently allocated and used within
the microgrid. We employ blockchain technology to facilitate
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secure and transparent peer-to-peer transactions, enhancing
the overall reliability and trustworthiness of the proposed
energy-balancing strategies.

III. MATHEMATICAL MODELING OF THE MICROGRID
In this section, we introduce the key entities in the microgrid
and discuss the mathematical modelling.

A. MICROGRID ENTITIES
The proposed microgrid comprises entities such as Dis-
tributed Energy Resources (DER), Prosumers and Con-
sumers. Each microgrid may contain a different combination
of entities.

DER comprises solar photovoltaic systems and wind
generators. The solar photovoltaic system works from 8 am
to 6 pm with peak efficiency from 12 pm to 2 pm. The
wind generator works throughout the day, and its efficiency
depends on the wind conditions.

Prosumers produce their energy through rooftop solar
photovoltaic systems and import energy from the microgrid if
generation is insufficient. They also export excess energy to
the microgrid. The efficiency of the energy produced by the
prosumers depends on the weather conditions.

Consumers rely on microgrids, prosumers, or supporting
services to meet their power needs. The microgrid provides
electricity to consumers who do not generate electricity.
Ancillary services support consumers, such as energy storage
and load management.

B. LEVERAGING IOT FOR REAL-TIME DATA COLLECTION
AND CONTROL
The microgrid is equipped with IoT technology, enabling
real-time data collection of energy statistics from all its
entities and controlling the power flow. Illustrated in
figure 1, our IoT middleware architecture, known as the
Real-Time Data Collection and Control Unit (RTDCCU),
orchestrates this data collection and power flow control
seamlessly.

This architecture features a smart energy meter that cap-
tures parameters, including energy generation, consumption,
and storage from all the entities in the microgrid. The data
generated from the smart meter is first securely stored in a
local database and subsequently committed to the Ethereum
blockchain node, ensuring data integrity and transparency.
The RTDCCU features a Power Flow Controller, which
is crucial in rerouting power based on our optimisation
strategy. The RTDCCU offers Application Programming
Interfaces (APIs), allowing other entities to monitor power
availability, consumption, storage, and generation status
in real-time.

These APIs use a common data format called JavaScript
Object Notation (JSON) to share information between
different technologies. This format is widely accepted and
works well with various systems [41]. The APIs are secured
using Transport Layer Security (TLS) by implementing
a public-private key combination [42]. TLS ensures a

secure data transaction between different entities and tech-
nologies, protecting against data theft attempts, hijacking,
and tampering [43]. This encryption protocol establishes a
secure communication channel, encrypting data in transit
and safeguarding the confidentiality and integrity of the
exchanged information.

Two Decentralised Applications (DApps) run atop the
Ethereum blockchain node within this framework. One
DApp serves entity owners, providing them with a clear
view of their energy parameters, while the other DApp is
tailored for the grid operator, facilitating data visualisation
and analysis. All entities function as edge nodes within
this decentralised network, fostering seamless information
sharing and collaboration.

C. ENERGY BALANCE CONSENSUS IN THE MICROGRID
This paper introduces the Energy Balance Consensus,
a consensus algorithm designed to validate the energy
balance within a microgrid. By solving a mathematical
equation, this algorithm ensures trust and agreement among
the nodes in the blockchain network, verifying that power
generation, consumption, and storage are in equilibrium, thus
contributing to a stable and resilient microgrid.

Consider a microgrid ‘M’ consisting of ‘n’ consumers
denoted as C = c1, c2, . . . , cn and ‘n’ prosumers denoted
as P = p1, p2, . . . , pn. The microgrid includes battery
banks for auxiliary services denoted as B = B1,B2, . . . ,Bn.
All entities within the microgrid are interconnected through
distribution lines denoted L = l1, l2, l3, . . . , ln. The DER
generates power from solar and wind sources. Batteries store
excess energy and discharge it during peak demand. The
total power requirement of consumers in the microgrid is
denoted as Pc = Pc1 + Pc2 + . . . + Pcn. The power
exported by all prosumers in the microgrid is denoted as
Ppe = Ppe1 + Ppe2 + . . . + Ppen. The power generated by
the DER is represented as PDER. The energy stored in the
battery banks is indicated as PBBi = PBBi1 + PBBi2 + . . . +

PBBin, and the energy discharged from the battery banks is
represented as PBBd = PBBd1 + PBBd2 + . . . + PBBdn. Equa-
tion 1 illustrates the Energy Balance Consensus within the
microgrid.

6[Pc + PBBi − Ppe − PDER − PBBd ] (1)

The microgrid is balanced when the power generation is
equal to the power consumption [44]. Equation 1 minimises
the absolute value of the difference between the energy
produced by prosumers, DERs, the energy consumed by
consumers, and the energy stored and discharged from bat-
teries. This distributed validation process involves the active
participation of microgrid entities, accessing smart meter
data through an Application Programming Interface [29].
Leveraging an IoT network and APIs enables efficient data
collection, facilitating prompt consensus validation [45].
The algorithm 1 shows the steps in the energy balance
consensus.
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FIGURE 1. IoT for real time data collection and control unit.

Algorithm 1 Smart Contract to identify the number of
entities in the microgrid and their power status

1: Inputs: nP, nC, nDER, nBB
2: Output: PBal
3: function GET data from Smart Meter and Compute

Export, Consumption, Generation and Storage(nP, nC,
nDER, nBB)

4: Pe = Pe1 + Pe2 + · · · + Pen
5: Pc = Pc1 + Pc2 + · · · + Pcn
6: PDER
7: PBBi = PBBi1, +PBBi2, . . . ,PBBin
8: PBBd = PBBd1, +PBBd2, . . . ,PBBdn
9: return Pe,Pc,PDER,PBBi,PBBd

10: functionCheck Power Balance(Pc,PBBi,Ppe,PDER,PBBd )
11: Compute: Pbal = 6[Pc+PBBi−Ppe−PDER−PBBd ]
12: if Pbal == 0 then
13: Condition: Balanced
14: return Pbal
15: else if Pbal < 0 then
16: Condition: Unbalanced; (Generation > Con-

sumption)
17: return Pbal
18: else if Pbal > 0 then
19: Condition: Unbalanced; ( Consumption > Gen-

eration)
20: return Pbal

The GET data from Smart Meter and Compute Export,
Consumption, Generation, and Storage function utilises the
smart meter API to retrieve essential data, including energy
consumption, energy generation, storage, and export from
each entity within the microgrid. Subsequently, the function
calculates the total energy generation, export, storage,
and consumption, aggregating the data for comprehensive
analysis and evaluation.

The Check Power Balance function accepts inputs includ-
ing Pc (consumer power), PBBi (battery charge power),
Ppe (prosumer power), PDER (distributed energy resource
power) and PBBd (battery discharge power), and evaluates

the power balance condition. The function outputs the
variable Pbal representing the power balance. The consensus
algorithm is executed automatically whenever new readings
are generated by the smart meters, typically within a
15-minute interval, ensuring real-time validation of the power
balance.

1) SAMPLE ENERGY BALANCE CONSENSUS VALIDATION
WITHIN THE MICROGRID
Table 2 provides a consensus sample validation within the
IoT-enabled microgrid. Condition 1 demonstrates a balanced
system where generation matches consumption. However,
in the other scenarios, a discrepancy between generation
and consumption results in an unbalanced system, often
encountered during microgrid outages. Our proposed system
focuses on resolving the condition where generation is less
than consumption (Condition 2), providing effective peer-
to-peer power exchanges to optimise energy distribution.
Addressing condition 3, where generation exceeds consump-
tion, is considered for future work.

D. TARIFF CALCULATIONS FOR PEER-TO-PEER ENERGY
EXCHANGE BETWEEN PROSUMERS AND CONSUMERS IN
THE MICROGRID
Traditionally, in power grids, consumer and prosumer tariffs
are computed at the substation level over a designated period,
typically 30 or 60 days, according to state policies [46]. Smart
energy meters or net meters with SIM cards are commonly
deployed for transmitting consumption and export data. Tariff
calculations are automated, and the generated tariffs are sent
to consumers and prosumers.

1) TARIFF CALCULATIONS FOR PROSUMERS
The tariff for prosumers (Ti) in the microgrid is calculated
using Equation 2. The prosumer tariff is based on the energy
they export to the microgrid in kWh at time t represented
as Pei, multiplied by the base tariff represented as BTp.
The base tariff for prosumers is Rs. 3 per unit of energy
exported.

Ti = Pei × BTp (at time t) (2)
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TABLE 2. Sample energy balance consensus validation.

2) TARIFF CALCULATIONS FOR CONSUMERS
Our proposed consumer tariff is based on a slab system
established by the Kerala State Electricity Board Limited in
India ([47]). Consumer tariff (Tj) is determined by the amount
of energy a consumer uses at a given time t (Pcj), multiplied
by the corresponding slab rate (BTc). The consumer tariff
equation is shown in Equation 3, and the tariff slabs are
presented in Table 3.

Tj = Pcj × BTc (at time t) (3)

TABLE 3. Tariff slabs considered for consumers([47]).

The tariff is structured in slabs, encouraging consumers to
use electricity more efficiently while ensuring profitability
for the microgrid.

IV. PROBLEM DEFINITION
In a power outage, the microgrid ‘M’ becomes isolated from
the main grid and may require additional energy or auxiliary
energy contribution ‘δ’ to sustain itself without the main grid.
Efficient distribution of this additional energy requirement
among prosumers based on availability, cost, and restoration
time is critical to ensure optimal power restoration. Thus, the
problem can be defined as follows:
To determine the optimal power restoration strategy that

efficiently distributes the additional energy requirement
among prosumers while minimising the cost burden on the
microgrid.

A. RESEARCH OBJECTIVES
1) Optimal Power Restoration Strategy: Develop an

optimal strategy for power restoration in a microgrid
that efficiently distributes the additional energy avail-
able with the prosumers to consumers who require it
during an outage situation.

2) Cost Minimisation: Develop a strategy to minimise
the cost burden on the microgrid while ensuring
efficient power restoration.

B. RESEARCH QUESTIONS
The following research questions are designed to address the
challenges and issues faced in maintaining energy balance
in a microgrid during a power outage and finding efficient
solutions to power outages.

1) How can the additional energy requirement be effi-
ciently distributed among consumers within the iso-
lated microgrid to optimise power restoration?

2) How can the prosumers be incentivised and the
cost burden for the microgrid be minimised while
maintaining energy balance?

3) How do microgrids communicate with consumers and
prosumers to power outages and restoration scenarios?

C. ASSUMPTIONS
Some of the assumptions for the proposed approach are as
follows:

• Our proposed approach is designed primarily for post-
outage scenarios, assuming a blackout detection system
similar to the one discussed in [19] or another suitable
system to support our approach.

• We assume that prosumers within the microgrid possess
sufficient generation and storage capacity to meet their
power requirements and can export surplus power to the
grid.

• The microgrid’s network topology, including the
arrangement of prosumers, consumers, and distribution
lines, is considered fixed after a power outage event.

• For our research, we assume that at least one prosumer
is available within the microgrid during an outage
situation.

• Our analysis operates under the assumption that power
losses, such as transmission and distribution losses, can
be considered negligible for the scope of our study.
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These assumptions provide a simplified yet practical
scenario for our optimisation problem and allow for a more
streamlined solution. They also enable a comprehensive
evaluation of system performance. Our proposed power
restoration strategy involves reorganising isolated sections of
the primary microgrid into microgrids comprising a small
number of consumers and prosumers. In these microgrids,
prosumers distribute surplus energy to consumers, enabling
peer-to-peer energy sharing and utilisation.

V. IOT AND BLOCKCHAIN-ENABLED PEER-TO-PEER
ENERGY SHARING ARCHITECTURE
The architecture of the blockchain-enabled peer-to-peer
energy-sharing system in a microgrid, as shown in Figure 2,
uses smart contracts and optimisation strategies to maintain
power balance during regular grid operation and power
outage situations. This system comprises microgrid entities,
IoT-enabled metering and monitoring devices (RTDCCU),
blockchain ledger, cryptocurrency, and smart contracts.

FIGURE 2. System architecture for blockchain-based P2P energy sharing
in microgrid.

IoT-enabled smart energy meters with power flow con-
trollers (RTDCCU) capture data such as power generated by
prosumers, DER, consumer consumption, and energy storage
generated from microgrid entities. The data collected by
the IoT-enabled smart meters is recorded in the blockchain
distributed ledger and broadcast to all entities in the
microgrid. The smart meter can also control the power flow
using contractors and relays.

This will enable routing power during peer-to-peer energy
sharing. At each time interval t , a smart contract for the
microgrid configuration calculates the number of prosumers
(nP), consumers (nC), DERs, storage connections, power
flow and tariffs for each entity. This paper considers
a 15-minute calculation slot to simplify computation and
optimise computing resources.

The system operates in two modes: power outage and
regular grid operation. During the outage mode, the smart
contract is invoked to compute the power balance. The smart
contract checks all entities’ generation and consumption.
An optimisation strategy computes the additional power
requirements and the reward for prosumers contributing to
the power balance condition. Once the power transfer is
completed, prosumers are rewarded using cryptocurrency.
During the regular grid mode, the system computes and
optimises the power balance. The system also calculates
and collects tariffs from all entities in the microgrid. This
architecture enables efficient and secure P2P energy sharing
in microgrids, contributing to a sustainable and decentralised
energy ecosystem.

VI. POWER RESTORATION STRATEGIES: MICROGRID
CENTRIC OPTIMIZATION MODEL FOR ENERGY BALANCE
DURING OUTAGES
Outages are inherent in power grids, as they can occur
unexpectedly at any time. While prosumers and distributed
energy resources (DER) may be available to support during
such outages, the key challenge lies in ensuring fair power
allocation to consumers without imposing an excessive
burden on the microgrid. The proposed microgrid-centric
optimisation model addresses the fair distribution of power
during outages, considering the availability of prosumers and
DERs while maintaining the stability and reliability of the
microgrid system.

During a power outage, the primary microgrid is divided
into small microgrids, as shown in figure 3. Each microgrid
may operate in islandmode using the energy generated within
the microgrids. The islandedmicrogrid may have one or more
prosumers, consumers, and DERs. This ensures that power is
still available to consumers.

FIGURE 3. Primary microgrid split into small microgrids during outage
scenario.

Consumption within the microgrid is assumed to remain
constant, allowing the microgrid to focus on generating the
required energy to meet demand. The microgrid considers
the available energy from prosumers, consumer demand, and
tariffs to optimise power generation and balance. This section
discusses the energy balance strategies within a microgrid
based on the limited energy availability, consumer demand,
and tariff.
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A. CASE 1: PROSUMERS SHARE EXCESS ENERGY WITH
CONSUMERS
In this case, we assume that all prosumers share the excess
energy available with consumers. The optimisation function
to calculate the energy balance is given in equation 4.

Min
n∑
i=1

[Pei × BTp + δi × BTp +
δi × BTp∑n
i=1(Pei + δi)

+ αi × δ × (BTp)2] (4)

The non-linear optimisation equation minimises the total
cost of electricity while ensuring that the energy demand
of consumers is met without exceeding the available energy
limit. In the equation, Pei represents the energy exported by
the ith prosumer at time t − 1, BTp is the base tariff for the
prosumers, δi is the auxiliary energy contribution required
by the ith prosumer at time t to meet the demand under
power outage conditions, αi is the energy reduced from the
consumption of the ith prosumer at time t to meet the demand
under energy outage conditions and Pci represents the energy
consumed by the ith prosumer at time (t − 1).
The optimisation function is subject to the conditions

mentioned in Equation 5 to Equation 13. In Equation 5, the
term

∑n
i=1 NTi represents the total tariff paid by themicrogrid

to prosumers, while
∑n

j=1 NTj is the total tariff collected from
consumers in the microgrid. The inequality constraint states
that the total tariff paid to prosumers should be less than or
equal that collected from consumers.

n∑
i=1

NTi ≤

m∑
j=1

NTj (5)

Equation 6 shows that the energy shared by all the
prosumers (

∑n
i=1 Pei) in themicrogrid at time t is greater than

or equal to 0. Furthermore, the energy the prosumers share
after an outage at time t is greater than before the outage at
time (t − 1).

n∑
i=1

Pei ≥ 0 and
n∑
i=1

Pei (at t) >

n∑
i=1

Pei at (t − 1)

(6)

Equation 7 shows that the energy required by all consumers
(
∑m

j=1 Pcj) in themicrogrid at time t is greater than or equal to
0. Similarly, consumption during the outage at time t equals
before the outage at time (t − 1).
m∑
j=1

Pcj ≥ 0 and
m∑
j=1

Pcj (at t) =

m∑
j=1

Pcj (at (t − 1))

(7)

Equation 8 represents an inequality constraint that ensures
that the energy shared by the prosumers and the additional
energy from the prosumers is greater than or equal to the total
energy demand in the microgrid. In the equation,

∑n
i=1(Pi +

δi) is the additional energy shared by prosumers, while∑n
j=1 Cj is the total energy demand in the microgrid. With

this condition, the microgrid can guarantee sufficient energy
to meet the needs of all consumers.

n∑
i=1

(Pi + δi) ≥

m∑
j=1

Cj (8)

Equation 9 represents an equality constraint that ensures
that the energy generated by prosumers is equal to the energy
exported, consumed and stored in their battery bank, with
negligible losses. In the equation, PGi represents the energy
generated from renewable sources by the ith prosumer, Pei
is the energy exported to the microgrid, Pci is the energy
consumed by the prosumer, and PBi is the energy stored in
the battery.

PGi = Pei + Pci − PBi (9)

Equation 10 is an equality constraint that shows how a
prosumer can reduce their consumption (Pci) in time t by a
factor of α times their consumption t − 1, to generate the
additional energy required for export (δpci). α is a constant
from 0 to 1, and the prosumer decides the value.

δpci = α × Pci where : 0 ≤ α ≤ 1 (10)

Equation 11 is an equality constraint that shows how the
energy stored in a prosumer’s battery (PBi) can be used to
export to the grid. In the equation, δpbi represents the amount
of energy the prosumer shares from their battery, and β

is the fraction of the stored energy used from the battery
for exporting to the microgrid. By reducing their energy
consumption and sharing the energy from battery storage,
prosumers can contribute more energy to the microgrid and
receive incentives.

δpbi = β × PBi where : 0 ≤ α ≤ 1 (11)

Equation 12 is an equality constraint that shows how the
additional energy shared by prosumers (δi) is equal to the
sum of energy reduced from their consumption (δpci) and
the energy shared from their battery (δpbi). The values for δi,
δpci and δpbi are greater than or equal to 0 for all prosumers,
indicating that any energy reduction or share by the prosumer
should not exceed their available energy capacity.

δi = δpci + δpbi, where : δi ≥ 0, δpci ≥ 0

and δpbi ≥ 0 ∀ i (12)

Equation 13 represents an equality constraint that shows
how the energy generated by the i(th) prosumer at time t
is equal to the sum of the additional energy shared by the
prosumer at time t (Pei + δi), the energy reduction at time t
(Pci − α × Pci), and the energy shared from their battery at
time t (PBi − (1 − α) × PBi).

PGi ≥ (Pei + δi) + (Pci − αi × δi) − (PBi − βi × δi) (13)
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B. CASE 2: FEW PROSUMERS DO NOT HAVE SUFFICIENT
POWER FOR SHARING
Once all prosumers’ shares of the auxiliary units (δ) have
been determined and allocated fairly, the issue of prosumers
backing off their initial commitments becomes significant.
This case examines the strategies and mechanisms imple-
mented to handle such instances, ensuring uninterrupted
microgrid operation effectively. When certain prosumers
cannot provide sufficient power due to poor generation
or load requirements, the microgrid adjusts accordingly
by excluding those prosumers and recalculating the power
balance equation (4). Assuming P2 and P4 cannot share
δ, the objective function can be represented as shown in
Equation 14.

Min
∑

i=1,3,5

[Pei × BTp + δi × BTp +
δi × BTp∑n
i=1(Pei + δi)

+ αi × δ × (BTp)2] (14)

By solving equation 14, we can obtain the precise value
of the auxiliary units (δ) that need to be obtained from other
prosumers within the microgrid. This equation considers
various factors discussed in the previous case to determine the
auxiliary units from the prosumers. Both the models depicted
in 4 and 14 exhibit high sensitivity to initial conditions,
boundary conditions, and parameters α and β.
Our incentive mechanism is designed to encourage pro-

sumers within the microgrid to contribute their energy
resources during power outages actively. We have integrated
a system of rewards into the optimisation strategy to motivate
prosumers. Prosumers are offered fair compensation for the
energy they provide during outages. This also depends on the
energy source, such as power generated fromDER and energy
stored in batteries. The compensation is based on an equitable
calculation as shown in 4 and 14, ensuring that prosumers are
adequately rewarded for their contributions.

VII. INTEGRATING MICROGRID-CENTRIC OPTIMIZATION
STRATEGIES WITH SMART CONTRACTS ON ETHEREUM
BLOCKCHAIN PLATFORM
This section discusses integrating the microgrid-centric
optimisation strategies presented in the previous sectionswith
smart contracts on blockchain. This integration enables the
secure execution of peer-to-peer energy exchange, ensuring
reliable and sustainable operation within the microgrid
ecosystem.

Smart contracts are algorithms in the Ethereum platform
that define the transaction execution process. The implemen-
tation of these smart contracts is achieved using the Solidity
programming language.

A. GRID INITIALISATION: SMART CONTRACT TO CLASSIFY
ENTITIES IN THE MICROGRID
Grid Initialisation Smart Contract focuses on classifying
entities within the microgrid as prosumers, consumers,
or distributed energy resources (DER). This smart contract

leverages the Internet of Things (IoT) technology to gather
energy data from smart meters, allowing the assessment of
total generation and consumption. The algorithm 2 shows the
pseudo-code of the smart contract.

Algorithm 2 Smart Contract to identify the number of
entities in the microgrid and their power status

1: Inputs: nP, nC, nDER
2: Output: network configuration, Entity Power Data
3: for every t do
4: function FindEntities(Input 1)
5: NWConfig = arrange(nP,nC,nDER)
6: return NWConfig
7: functionPowerData(NWConfig,Pet ,Pct ,PnBBt ,PDERt)
8: Pp = Pe1t + Pe2t · · · + Pent
9: Pc = Pc1t + Pc2t · · · + Pcnt
10: PDER = P1DERt + P2DERt · · · + PnDERt
11: return (Pp,Pc,PDER)

12: function TotalGeneration(Pp, ,PDER)
13: Pgen =

∑n
j=1[PDER + Ppj]

14: return Pgen
15: function TotalConsumption(Pc)
16: Pcon =

∑n
j=1[Pcj]

17: return Pcon
18: Exit

The primary input to the smart contract is the number of
entities. The function FindEntities identifies the entities such
as prosumers, consumers, and DERs in the microgrid and
maps the network configuration. This function returns the
network configuration (NWConfig variable), which we can
use during other calls. The function PowerData computes
the net power generation or consumption of each category of
entities. The input to this function is the power consumption
or generation of data from individual entities collected using
IoT-enabled smart energy metres. The function returns the
total power consumption and generation data variables (Pp,
Pc, PBBi, PBBd , PDER) of all entities categories. We can use
the output variables in other function calls.

The function TotalGeneration compute the total power
generation in the microgrid. The inputs to this function are
the power data from entities such as DER and Prosumers.
The function returns the total power generation variable
(Pgen), which we can use in other calls. The function
TotalConsumption computes the total power consumed
by all consumers and returns the variable total power
consumed (Pcon).

B. TARIFF COMPUTATION: SMART CONTRACT TO
COMPUTE THE TARIFF FOR PROSUMERS AND
CONSUMERS
Tariff Computation Smart Contract is designed to compute
the tariffs for prosumers and consumers within the microgrid.
The algorithm outlined in Algorithm 3 presents the pseu-
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docode that drives the tariff computation process within the
smart contract.

Algorithm 3 Smart Contract to compute tariff for prosumers
and consumers
1: Input 1: Pi, Peit
2: Input 2: Cj, Pcjt
3: Output 1: Ti
4: Output 2: Tj
5: for every t do
6: function ProsumerTariff(Input 1)
7: Ti = Peit × BTp
8: return Ti
9: function ConsumerTariff(Input 2)

10: Tj = Pcjt × BTc
11: return Tj
12: Exit

This smart contract has two functions, two inputs and two
outputs. The function ProsumerTariff computes the tariff for
the prosumers. The input to this function is the number of
prosumers (P1, . . . ,Pn) and the power they export to the
microgrid (P1expt , . . . ,Pnexpt ). The output of this function
is the tariff (Ti).

The function ConsumerTariff computes the consumer
tariff, and the inputs for this function are the number
of consumers (C1, . . . ,Cn) and their power consumption
(P1impt , . . . ,Pnimpt ). The output of this function is the
tariff (Tj).

C. OPTIMISATION HANDLER: SMART CONTRACT FOR THE
MICROGRID-CENTRIC OPTIMISATION MODEL
The Optimisation Handler smart contract consists of two
main functions. These smart contracts interact with the off-
chain optimisation model and record the auxiliary energy unit
values obtained after solving the blockchain. Algorithm 4
shows the pseudocode for the Smart Contract of the
Optimisation Handler.

The smart contract has one input and four outputs. The
algorithm initiates Step 1, where the optimisation function is
defined. In Step 2, the constraints are set up. Step 3 solves
the optimisation equation by employing the Python Scipy
library’s optimisation function with the Sequential least
squares programming (SLSQP) option. Step 4 obtains the
optimal auxiliary units δ, α&β, the tariff, and the rewards.
Finally, in Step 5, the algorithm returns the obtained results
to the optimisation handler.

Algorithm 4 Optimisation Strategies to minimise the total
cost of energy obtained from prosumers to balance the
power required by consumers in the microgrid

1: Input: Pei,Pci,Pcj,BTp
2: Output: α, δ, β,Rδ + Rextra
3: function OptimisationExecution(Input)
4: Step 1: Define the optimisation function as follows:

5: Min
∑n

i=1[Pei × BTp + δi × BTp +
δi×BTp∑n
i=1(Pei+δi)

+ αi ×

δ × (BTp)2]
6: Step 2: Set the following constraints:
7:

∑n
i=1 NTi ≤

∑m
j=1 NTj

8:
∑n

i=1 Pei ≥ 0 and
∑n

i=1 Pei (at t) >∑n
i=1 Pei at (t − 1)

9:
∑m

j=1 Pcj ≥ 0 and
∑m

j=1 Pcj (at t) =∑m
j=1 Pcj (at (t − 1))

10:
∑n

i=1(Pi + δi) ≥
∑m

j=1 Cj
11: PGi = Pei + Pci − PBi
12: δpci = α × Pci
13: δpbi = (1 − α) × PBi
14: δi = δpci + δpbi
15: PGi ≥ (Pei + δi) + (Pci − αi × δi) − (PBi − βi × δi)
16: Step 3: Solve the optimisation problem using the

Python Scipy Optimise Library using the Sequential
Least Squares Programming (SLSQP) algorithm.

17: Step 4: Obtain the optimal auxiliary units δ, α and β to
be shared by the prosumers and the rewards, Rpet−1 and
Rδ + Rextra.

18: Step 5: Return δ, α, β, Rpet−1 and Rδ + Rextra as output.
19:

20: function OptimisationHandler(Output)
21: Transact δ, α, β,Rδ + Rextra to ledger

D. INTEGRATING OPTIMISATION STRATEGIES WITH
SMART CONTRACTS
Ethereum smart contracts have limitations and do not
support complex optimisation algorithms. To implement
these algorithms alongside smart contracts, we must deploy
them off-chain, i.e. outside the blockchain network. Web3
is a Python library to interact with Ethereum blockchain
networks [48]. It provides a secure interface to deploy smart
contracts on the Ethereum blockchain and interact with off-
chain algorithms.

We developed a smart contract to gather and store data
from the optimisation algorithm discussed in Algorithm 4 on
the Ethereum blockchain. This smart contract integrates the
off-chain optimisation strategy with the Ethereum blockchain
platform. Using the Web3 Python library, we integrated the
optimisation algorithms discussed in section VI with the
smart contract. This enables us to achieve desirable results
for power restoration in the microgrid using the energy from
the prosumers. We illustrate the integration of optimisation
algorithmswith smart contracts in Ethereum using the Python
Web3 library in Figure 4.

Figure 4 demonstrates how optimisation strategies can
be integrated with Ethereum smart contracts using the
Python Web3 library. We used the truffle suite to set up a
local Ethereum test network, which provided ten Ethereum
addresses and test tokens representing the entities in the
microgrid. We deployed the smart contracts within this test
network, and once deployed, Truffle provided the contract
address and Application Binary Interface (ABI).
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FIGURE 4. Integrating optimisation strategies with ethereum platform.

Using the deployed address and ABI, the Web3 library
interacted with the smart contract to check the power balance
using the data from the smart energy meter through the IoT
network. If there was an imbalance in power, optimisation
strategies were invoked with the necessary inputs, such as
Pei, Pci, Pcj, and BTp. The optimisation algorithm optimised
the energy balance and provided δ, α, and β. These auxiliary
unit contributions were required for energy balance in the
microgrid and passed back to the smart contract. After the
energy exchange, the smart contract validated the energy
balance and distributed the reward to the prosumers.

The UML sequence diagram, depicted in Figure 5,
illustrates the interaction and message flow between key
entities, including prosumers, consumers, smart contracts,
the Ethereum blockchain, and off-chain optimisation. This
diagram represents the system’s communication and data
exchange processes, highlighting the seamless integration
of off-chain optimisation with blockchain-based smart
contracts. The UML sequence diagram has three stages:
Initialisation, Tariff Computation, and Optimisation Handler.

1) INITIALISATION
During the initialisation stage, the Ethereum blockchain
platform assigns unique addresses to all entities participating
in the microgrid. The smart contract, designed for energy
transactions (as shown in algorithm 2), is deployed on the
blockchain platform. As the system operates, energy data
from consumers and prosumers is transmitted through the IoT

network and recorded on the blockchain. The smart contract
facilitates peer-to-peer (P2P) energy transfers between pro-
sumers and consumers, ensuring direct exchanges within the
microgrid. The smart contract actively monitors the power
balance in the microgrid. It checks whether total energy
production matches demand, ensuring a balanced and stable
energy distribution within the network.

2) TARIFF COMPUTATION
The Tariff Computation stage calculates tariffs for the
energy consumed by consumers and the energy exported
by prosumers. Once the tariffs are calculated, the system
collects consumer payments based on the units consumed.
Simultaneously, payments are made to prosumers based on
the units of energy they export. This process ensures a
fair and transparent exchange of energy, where consumers
are accurately billed for their consumption and prosumers
are appropriately compensated for their contribution to
the grid.

3) OPTIMISATION HANDLER
Optimisation Handler demonstrates the interaction between
the Ethereum platform and an off-chain optimisation algo-
rithm. The optimisation algorithm estimates the contribution
of the prosumer’s auxiliary energy unit to the microgrid,
which supports the demand during a power outage. During
this process, prosumers securely share their power data with
the off-chain optimisation algorithm. The algorithm then
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FIGURE 5. UML sequence diagram for blockchain based P2P power exchange in the microgrid.

computes the auxiliary energy contribution for each prosumer
and communicates this information to the smart contract. The

smart contract monitors peer-to-peer energy exchange and
power balance and handles reward and tariff payments.
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FIGURE 6. Entities in the university’s distribution grid testbed.

VIII. RESULTS AND DISCUSSIONS
In this section, we discuss the simulation results of the
optimisation algorithm during outage conditions. We also
analyse the performance of our Ethereum smart contract.
We evaluated the effectiveness of our optimisation algorithms
in achieving power balance in the microgrid and investigated
the system’s efficiency.

A. SIMULATION RESULTS OF THE MICROGRID-CENTRIC
OPTIMISATION MODEL DURING POWER OUTAGE
CONDITIONS
In this section, we present the simulation of the optimisation
model defined in the equations 4 to 13 and the simulation of
the algorithm described in Section VII-D. The optimisation
model simulation is performed with the data from the
microgrid setup within the campus-level smart distribution
network on the university campus [49] as shown in figure 7.

We built the simulation environment on our university
campus smart distribution network testbed. The testbed
encompasses a 13-node system that incorporates various key
components, including the power source from the Kerala
State Electricity Board (KSEB), university hostel buildings
with rooftop solar panels, a sewage treatment plant, water
pumps, solar-based Distributed Energy Resources (DER),
and the mess hall. Within this system, the university hostel
buildings play the role of prosumers, equipped with rooftop
solar panels capable of generating electricity, which can
be supplied to the microgrid. Meanwhile, other energy-
consuming entities, such as water pumps, sewage treatment
plants, and themess hall, are consumers. Figure 6 shows some
of the entities in the smart distribution grid testbed.

The connection topology of these entities is visually
represented in Figure 7. Each entity has a Real-Time
Data Collection and Control Unit (RTDCCU) responsible
for collecting and disseminating real-time data, including
information on energy generation, consumption, storage, and
power routing control. In our simulation, we intentionally
introduce faults, specifically between Node 3 and Node 4,
as well as between Node 6 and Node 7. These simulated
faults, depicted as red cross marks in Figure 7, effectively
isolate the incoming power supply from KSEB and the Solar
DER, creating an outage scenario.

Consequently, this fault simulation transforms the system
into a microgrid configuration, with Node 7, Node 8, Node 9,
Node 10, and Node 11 operating as prosumers, actively
contributing energy resources, while Node 4, Node 12, and
Node 13 continue to serve as consumers. Table 4 illustrates
the mapping of microgrid entities within the simulation
environment.

TABLE 4. Mapping entities in the microgrid with simulation setup.

The primary objective of simulating this model is to
ascertain each prosumer’s optimal tariff and auxiliary energy
contributions during power outage conditions. This insight
is invaluable for designing efficient and resilient micro-
grid strategies, ensuring continued power supply despite
disruptions.

In our simulation, we consider five prosumers and three
consumers, each characterised by varying power export,
power consumption, power generation, battery backup, and
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FIGURE 7. Simulation setup within the campus-level smart distribution network.

TABLE 5. Simulation parameters for microgrid-centric optimisation model for acquiring auxiliary energy contribution.

tariff or reward structures. The values of all these parameters
considered for the simulation are given in table 5. The reward
optimisation model gives the auxiliary units δ, expected from
each prosumer based on the power outage condition, and
also gives the auxiliary unit contribution from the remaining
battery units and each prosumer’s energy consumption
reduction, β and α respectively.

The results in figure 8 show the units of energy exported
(Pet−1) in t − 1 before the power outage and the distribution
of the export of the auxiliary units among the prosumers after
the power outage. The plot shows that the distribution of
exported auxiliary units to meet demand is almost uniform,
except for Prosumer 1 (P1) and Prosumer 2 (P2). There is a
14-unit reduction in the value of prosumer1 ’s δ and a 13-unit
increase in the value of prosumer4 ’s δ compared to exporting
all other auxiliary units of prosumers. The Pet−1 of P1 is

comparatively high and its energy consumption is close to
the average of all other prosumers. In the case of P4, Pet−1
is the lowest compared to all other prosumers, and the energy
consumption is the highest. At the same time, the remaining
battery units are the lowest compared to all other prosumers.
The δ value for all other prosumers is uniform.
The simulation result shown in figure 9 shows the rewards

provided to the prosumers for exporting energy units at
t − 1 before the power outage and the rewards provided
for exporting auxiliary energy units after the power outage
condition. Rextra is the extra reward the prosumers are gaining
other than Rt−1 and Rδ for the export of energy units after
power outage. The table 6 shows the values of α, β, Rδ and
Rextra for each prosumers. The export of auxiliary energy
units is mainly from the remaining battery units. The gain
Rextra is predominantly based on α. Since the α for prosumer4
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FIGURE 8. Energy export at (t-1) and expected auxiliary energy
contribution after power outage.

FIGURE 9. Rewards at (t-1) and rewards for the auxiliary energy units
contribution after power outage.

is zero, the Rextra of prosumer 4 becomes 0.0962 INR. For the
other prosumers, 1% of their power consumption is reduced
and contributes to δ. So the extra rewards are higher for the
other prosumers except for the prosumer 4. The total rewards
for all prosumers are within the limit of the total consumer
tariffs. Therefore, the simulation results shown in figure 9 and
table 6, show that the optimisation model fairly allocates the
expected auxiliary energy unit exports among the prosumers
without burdening the microgrid.

For new consumers and prosumers joining the microgrid
during or after a power outage, validating the optimisation
model’s results is crucial. To evaluate this, we introduced two
additional consumers with consumption values of 780 and
480 units while keeping all other parameters consistent with
the previous simulation case.

Figure 10 presents the results, showing the exported energy
units (Pet−1) before the power outage and the distribution

TABLE 6. Rewards to prosumers and energy units contribution from
battery and consumption to auxiliary energy units to meet the demand
after power outage.

of auxiliary units among prosumers after the power outage
with the inclusion of new consumers. The plot indicates that
the distribution of auxiliary units to meet the demand is not
uniform. Prosumer2 (P2) and prosumer1 (P1) contribute the
highest δ values, while prosumer4 (P4) contributes the lowest
δ value contribution. Prosumer3 (P3) and prosumer5 (P5)
exhibit similar contributions of value δ.

FIGURE 10. Energy export at (t-1) and expected auxiliary energy
contribution after power outage with new consumers.

Figure 11 displays the simulation results, showing the
rewards offered to prosumers for exporting energy units
before and after the power outage. Prosumer2 received the
highest reward, while prosumer4 received the lowest based
on their contributions to the demand of the microgrid during
outages. Table 7 presents the values of α, β, Rδ , and Rextra
for each prosumer after the addition of new consumers. The
allocation of auxiliary energy unit exports and corresponding
rewards demonstrates the effectiveness of the optimisation
model. Prosumers 1 and 2 reduce consumption, increasing
Rextra. Prosumers 3 and 5 distribute exports between con-
sumption reduction and remaining battery, resulting in similar
Rextra. The simulation confirms that the optimisation model
efficiently allocates auxiliary energy units without burdening
the microgrid, maintaining the total export from prosumers
in line with consumer demand of 3227 units after the power
outage condition.
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FIGURE 11. Rewards at (t-1) and rewards for the auxiliary energy units
contribution after power outage with new consumers.

TABLE 7. Rewards to prosumers and energy units contribution from
battery and consumption to auxiliary energy units to meet the demand
after a power outage with new consumers.

B. SMART CONTRACT BENCHMARK USING
HYPERLEDGER CALIPER
Hyperledger Caliper (HC) is a benchmarking tool to evaluate
the performance of blockchain platforms such as Hyperledger
Fabric, Ethereum, Hyperledger Besu, and FISCO BCOS.
HC benchmarks a smart contract based on the parameters
such as transaction throughput, latency, and CPU utilisation
and RAM usage. We used HC to evaluate the performance
of the smart contract deployed on the Ethereum test
network. The performance test help us evaluate the reliability
and robustness of the smart contracts under different test
conditions.

To initiate the benchmark test, it is necessary to con-
figure the benchmark configuration files and the bench-
mark scenarios. Figure 12 provides an overview of the
configuration utilised for the smart contract performance
test, showcasing the settings and parameters chosen for the
benchmarking.

The configuration file consists of three main modules.
The first module, labelled ‘‘test’’ in the figure, includes
essential details such as the name and description of the
benchmark. The second module, ‘‘worker’’, defines the type
and number of working nodes employed in the benchmark.
By default, the worker type is set to ‘‘local’’, indicating that a
local node operates within the test environment. The worker

FIGURE 12. Benchmark configuration file for hyperledger caliper.

number signifies the total number of workers processing the
benchmark.

The subsequent module, titled ‘‘rounds’’, is an array that
encompasses various parameters essential for benchmarking.
These parameters include the label and description, which
serve as brief identifiers and workload descriptions. The
‘‘txNumber’’ denotes the total number of transactions
submitted during each round, while ‘‘txDuration’’ repre-
sents the duration, in seconds, for each transaction. The
‘‘rateControl’’ parameter, also an array, specifies the rate at
which transactions are entered into the blockchain network.
In this particular benchmark, a fixed-rate control strategy is
employedwith a rate of 20 transactions per second (TPS). The
‘‘workload’’ module, an array within the ‘‘rounds’’ module,
contains specific information on the smart contract and the
corresponding test inputs.

Additionally, the ‘‘monitor’’ module captures crucial
resource utilisation parameters, such as CPU utilisation (in
percentage) and RAM usage (in GB). These parameters
enable monitoring of resource consumption during the
benchmark, providing insights into the smart contract’s
performance characteristics and resource requirements. Our
benchmark test consists of five functions. Figure 13 shows
the benchmark results by showcasing a graph of performance
metrics obtained fromHyperledger Caliper. The figure shows
four key parameters: CPU, RAM, latency, and throughput.
The benchmark was conducted over 60 seconds, capturing
the performance metrics at regular intervals of 5 seconds.

The first parameter, CPU, represents the CPU utilisation
expressed as a percentage, which indicates the amount of
computational resources consumed during the benchmark.
We can understand how efficiently the smart contract
utilises the available processing power by monitoring CPU
utilisation. The second parameter, RAM, denotes the usage
of Random Access Memory (RAM) measured in gigabytes
(GB). RAM usage reflects the memory consumption of the
smart contract during the benchmark. The third parameter,
latency, represents the response time or the time taken for
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FIGURE 13. Performance metrics from hyperledger caliper.

a transaction to be processed by the smart contract. It mea-
sures the delay or lag experienced by transactions during
execution. Lower latency values indicate faster transaction
processing.

The fourth parameter, throughput, signifies the number
of transactions processed per unit of time, expressed as
transactions per second (TPS). Throughput measures the
smart contract’s processing capacity, indicating how many
transactions it can handle within a given timeframe. Higher
throughput values indicate greater transaction processing
capabilities. Table 8 summarises the benchmark results under

various test conditions. It presents the average values for CPU
utilisation, RAM usage, latency, and throughput.

The results of the benchmarking tests indicate that our
smart contract is highly robust, with minimal resource usage
in terms of CPU, memory, and data. The total average CPU
utilisation is 0.05% and RAMusage is 2.03 GB. Additionally,
the Hyperledger Caliper tool rigorously assessed the reliabil-
ity and robustness of the smart contract by subjecting it to
rigorous stress tests, significantly increasing the load through
dynamic variations in input parameters and a diverse range of
worker scenarios. Despite the increased load, the latency and
throughput of the smart contract were found to be minimal,
indicating that it can handle a large number of transactions
in a short period. The total average latency is 2.38 seconds,
and throughput is 14.52 TPS. These findings suggest that
our smart contract is well-suited for power restoration and
P2P energy sharing applications, where reliable and secure
transactions are essential.

C. MEAN TIME TO RECOVERY (MTTR) ANALYSIS FOR THE
PROPOSED MICROGRID-CENTRIC POWER RESTORATION
SYSTEM
Ensuring the resilience and reliability of the power dis-
tribution systems depends on effectively restoring power.
The Mean Time to Recovery (MTTR) is a crucial mea-
sure for evaluating the effectiveness of power restoration
procedures [50]. This section analyses the MTTR for our
proposed power restoration system. The MTTR evaluation
offers insights into the system’s responsiveness and capacity
to minimise downtime during power outages. The MTTR
analysis was conducted using the campus-level smart distri-
bution network data.

• Pre-Outage (t-2): In this phase, the microgrid is in
the normal operation. It includes system monitoring,
load forecasting, tariff and optimisation processes. The
optimisation algorithm operates every 5-minute time
window in this phase to optimise power allocation,
distribution and energy balance.

• Outage (t-1): The outage phase indicates the presence
of a power interruption. During this phase, the system
undergoes an induced power supply outage. The main
power grid is disconnected. The outage duration is
recorded as it directly impacts the overall MTTR. In our
approach, the RTDCCU system can detect the outage in
under 5 seconds.

• Recovery (t): The recovery phase focuses on restoring
power supply to consumers affected by the outage,
utilising the energy available from prosumers within
the isolated area. Our approach employs the microgrid-
centric optimisation strategy to analyse the energy
requirement in the microgrid. The optimisation algo-
rithm requires less than 1 second to process the energy
requirements from the consumers (

∑n
j=1 Pcj), energy

that a prosumer can share (δ) and the incentives for
the additional power the prosumer shares (Rδ). However
in different test scenarios with large scale power grid,
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TABLE 8. Performance metrics and resource utilisation for smart contracts benchmarked using hyperledger caliper.

the optimisation algorithm may take maximum of
2 seconds to estimate the parameters. The smart contract
and P2P energy-sharing mechanisms handle the tariff
management and energy distribution during this phase
to expedite power restoration. The smart contract takes
3 seconds, and P2P energy-sharing mechanisms take
60 seconds to control the power flow and restore the
power supply to affected consumers.

MTTR is calculated from the time of outage to full
recovery. Equation 15 [51] shows the formula to calculate the
MTTR for the proposed system, where N is the number of
outages.

MTTR =

∑N
i=1

[
Outage(t−1)i + Recovery(t)i

]
N

(15)

The calculated MTTR value for our proposed microgrid-
centric power restoration strategy in the simulated environ-
ment is determined based on the individual time components
mentioned above. This analysis yields an understanding
of our system’s resilience in power outages. By solving
equation 15 for one outage instance, the proposed power
restoration system, with an MTTR of 19 seconds, exhibits
remarkable responsiveness in addressing the resiliency of
power outages. However, real-world MTTR may vary due
to the complexities inherent in operational power grids.
Factors such as system complexity, the number of prosumers
and consumers, geographical considerations, and external
contingencies can introduce variability in outage response
times.

D. CHALLENGES AND LIMITATIONS
Despite the potential benefits, the proposed strategy has
challenges and limitations. One of the main challenges
is the scalability of blockchain technology. The Ethereum
blockchain platform used in this paper can only handle a
limited number of transactions per second. This could be a
problem for a large-scale microgrid with more prosumers
and consumers with high electricity demand [52]. The
Ethereum platform also has limitations for data storage.
Implementing the proposed approach on a large scale would
require addressing scalability concerns. This could involve
exploring alternative blockchain platforms or layer-2 scaling
solutions like sidechains or state channels that can handle
a higher throughput of transactions [53]. The feasibility of

such solutions depends on the available infrastructure and
the willingness of stakeholders to adopt them. Interplanetary
File System (IPFS) is a distributed ledger technology that
can be integrated with the blockchain platform for better
data storage [54]. IPFS-based databases such as Orbitdb
can be used for real-time data from various entities [55].
Integrating IPFS or IPFS-based databases like Orbitdb can be
technically feasible for the proposed system. If data storage
and accessibility are critical for monitoring and managing
the microgrid effectively, then IPFS integration could be a
practical solution. Similarly, P2P data exchange has some
limitations regarding the type and size of the data. When
a node needs to exchange large chunks of data, it can
be used using the IPFS Pubsub protocol [56]. The IPFS
Pubsub protocol provides a decentralised and efficient way to
distribute data across a network, making it a suitable solution
for overcoming data type and size limitations. Enhancing
P2P data exchange with IPFS Pubsub could be practical
and beneficial if the microgrid regularly deals with large
datasets. This integration leads to better real-time monitoring
and decision-making within the microgrid.

E. PRACTICALITY OF IMPLEMENTING THE PROPOSED
APPROACH IN REAL-WORLD SCENARIOS
While our research outlines a theoretical approach to
address a specific problem, we recognise that real-world
implementation often involves additional complexities and
considerations. Here are some key points to consider
regarding the feasibility and practicality of our proposed
approach:

1) Our research presents a foundational framework that
offers adaptability and customisation capabilities.
When implementing our proposed approach in real-
world scenarios, it is essential to tailor themethodology
to align with the targeted microgrid or energy system’s
specific requirements, infrastructure, and regulatory
frameworks. This customisation ensures that the
approach effectively addresses each context’s unique
challenges and objectives.

2) Implementing advanced technologies, such as IoT,
blockchain, and smart meters, may require significant
investments in infrastructure and technology. The
readiness of these technologies in a given region or
context would impact feasibility.
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3) Successful implementation of our proposed method
often necessitates collaboration and engagement with
diverse stakeholders, including energy providers, reg-
ulatory bodies, prosumers, and consumers. The active
involvement of these stakeholders is vital to address
their concerns, align interests, and ensure the seamless
integration of our approach into existing energy
systems.

4) Although the MTTR for the proposed system is
19 seconds in the simulated environment, it could
be slightly more in the real-world system due to the
complex nature of the power grid. The distribution
line losses and power system synchronisations must
be counted during energy exchange between multiple
consumers and prosumers in the isolated area.

IX. CONCLUSION
The microgrid-centric power restoration strategy proposed in
this paper utilises the Internet of Things (IoT), blockchain,
smart contracts, and optimisation strategies for peer-to-peer
energy exchange during power outages. The paper presents
the mathematical modelling of the microgrid, discussing
optimisation strategies to manage energy balance during
outages. The proposed microgrid-centric power restoration
strategy provides a robust solution to address the challenges
commonly faced in an isolated microgrid, such as resource
allocation disparities, prosumer integration, and demand
management. The proposed strategy ensures continuous
operation even during grid disruptions by using locally
available power sources to manage energy demands. This
enhanced resilience minimises the inconvenience and losses
experienced during power outages. Restoration strategies
employ a microgrid-centric cost-optimal model, ensuring
fair allocation of auxiliary units from prosumers without
burdening the microgrid. This approach prevents dispropor-
tionate energy burdens on individual prosumers and ensures
equitable distribution, fostering a sense of community and
cooperation.

Blockchain-based smart contracts for peer-to-peer energy
exchange include an incentive mechanism. Prosumers are
motivated to contribute their energy resources during
outages, knowing they will receive fair compensation.
These incentives encourage active participation and help
maintain energy balance. The proposed approach addresses
the technical aspects of power outage management and
introduces a promising business model for prosumers within
the microgrid. Prosumers, previously passive electricity
consumers, can now become active participants in the energy
marketplace. They can contribute excess energy during
outages, turning their surplus electricity into a valuable asset.
During power outages, they can offer excess energy to the
grid, earning compensation through blockchain-based smart
contracts. This opens a new revenue stream for individuals,
small businesses, and even larger communities.

Evaluation using the hyperledger caliper benchmark tool
validates the efficiency of the approach in peer-to-peer energy

exchange during outages. The smart contract consumes
minimal resources and has better latency and transactions per
second. The average CPU utilisation is 0.05%, and RAM
usage is 2.03GB. The latency and transaction per second
are 2.38s and 14.52 TPS. Our Mean Time To Recovery
(MTTR) analysis indicates that in a simulated environment,
the proposed approach could restore power to consumers
within 19 seconds following an induced outage. These results
reinforce the system’s efficiency inminimising downtime and
enhancing resilience in power restoration.

A. FUTURE SCOPE
Our ongoing work focuses on developing a user interface
with real-time visualisation and integrating a Non-Fungible
token-based reward mechanism. These enhancements aim to
enhance user engagement and incentivise sustainable energy
practices. In future, we plan to extend our system to include
other utilities and category-wise energy exchange allocation,
fostering a more comprehensive and sustainable microgrid
ecosystem. We are actively exploring load optimisation
algorithms that dynamically adjust load allocations based
on real-time demand patterns. This approach aims to reduce
conservativeness while maintaining the required reliability
levels. We are also investigating resource efficiency measures
that can help maximise the utilisation of available resources
without compromising system stability. These measures aim
to strike a balance between conservativeness and efficiency.
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