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ABSTRACT Fonts are a critical element that determines the perception of any medium. To ensure consistent
and culturally appropriate font selection across diverse language groups, a multilingual font matching system
is currently in development. This research focuses on leveraging the latest advancements in machine learning
and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font
matching. Utilizing the ‘stroke elements’ of fonts is crucial for this matching, building upon the successful
development of a method to calculate similarity between Korean fonts in previous studies. We have applied
this approach to the English alphabet, defining distinctive ‘stroke elements’ and developing a deep learning
model for their automatic extraction. Additionally, we evaluate the performance of this stroke element
extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes
the basis for multilingual font matching and enables the recommendation of similar fonts using the ‘stroke
elements’ of the English alphabet.

INDEX TERMS Artificial neural networks, deep learning, diverse font styles, fonts, object extraction model.

I. INTRODUCTION
The font has a significant impact on the overall impression
of the medium in which it is used. Therefore, it is crucial to
convey the same feeling as the original font when replacing
fonts used in various media with fonts from different
language groups. As a result, research is being conducted
on a multilingual font matching system that recommends
similar-looking fonts that suit different language groups [1],
[2], [3]. The correlation between font aesthetics and cultural
preferences adds another layer of complexity to the font
matching process. Cultural nuances often influence how fonts
are perceived, making the task of recommending suitable
fonts across diverse languages even more intricate.

However, recent advancements in machine learning and
computer vision have paved the way for more sophisticated
font analysis techniques. These techniques enable a deeper
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understanding of the intricate details that contribute to font
similarity, enhancing the accuracy of the multilingual font
matching system.

Multilingual font matching is the task of recognizing
and matching fonts while considering diverse languages
and cultures. This is because fonts in different languages
often have distinct shapes, sharpness, thickness, and other
attributes, which are related to the characteristics of the
respective languages and cultures. For example, Korean
and English have different writing systems, where Korean
characters combine to form syllables, whereas English
consists of individual alphabet characters. These differences
necessitate that multilingual font matching systems are
capable of handling various writing systems and font styles.
Additionally, cultural nuances influence how each language
and culture perceive and use specific fonts. For instance,
in Korean culture, vertically elongated fonts are commonly
used, reflecting cultural preferences. In contrast, horizontally
wider fonts may be more prevalent in English. These cultural
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disparities impact font recognition, and thus, multilingual
font matching systems need to account for such cultural
subtleties to cater to diverse languages and cultures. We have
developed an algorithm in previous research that calculates
the similarity between Korean fonts and recommends fonts
based on this similarity [4]. We also applied this method
to Chinese fonts (Hanja) to conduct research on similar
font mappings between Korean and Chinese characters [5].
The method involved comparing the fonts’ similarity using
distinctive ‘stroke elements’ in characters, and it showed
excellent performance. Stroke elements, which help dis-
tinguish between font groups, possess characteristic visual
appearances, such as the presence or absence of serifs in
serif and sans-serif fonts, aiding in differentiation. In prior
research, these characteristic visual elements were directly
defined and validated to establish stroke elements. A total
of 8 stroke elements were defined, utilized to calculate
the distance between fonts, and determine their similarity.
Building on this success, we defined ‘stroke elements’
specific to the English alphabet and developed a model to
extract these elements from various fonts.

Here are the contributions of this paper: Extracted stroke
elements play a pivotal role as a groundwork for prospective
multilingual font matching. Given the English alphabet’s
distinct morphological characteristics compared to Korean,
defining unique stroke element attributes specific to the
alphabet becomes essential. Our approach employs an image-
based object detection model for the automated extraction
of these defined stroke elements, ensuring a high level
of accuracy. This paper concentrates on delineating the
stroke element features inherent to the English alphabet,
facilitating font recommendations based on these features,
and validating the efficacy of stroke element extraction.
Additionally, we delve into strategies aimed at enhancing
extraction performance. The structure of this paper is as
follows: In Section II, we provide an overview of previous
research and related studies that form the basis of this
research. Section III elaborates on the definition of stroke
elements for the English alphabet and the stroke element
detection model. In Section IV, we explain font classification
based on visual differences among fonts and the performance
of stroke element extraction for extracting stroke elements
from English alphabet fonts. Finally, in the conclusion,
we summarize the results of this research and outline
directions for future studies.

II. RELATED WORKS
In research [4] representative stroke elements, phrases, and
fonts were initially defined for generating training data and
for validation. Regarding fonts, they were categorized into
three types: structured fonts with significant variations in
stroke thickness, semi-structured fonts with similar character-
istic elements to structured fonts but with greater variations
in stroke thickness, and unstructured fonts with many stroke
elements that deviate from the typical stroke shapes. For
each type, character images were extracted and used to

train the model. The stroke element detection performance
was evaluated by comparing the results with ground truth
data. The stroke element detection model exhibited a 99%
detection accuracy when detecting individual characters.
However, in experiments involving character combinations,
it showed a 90% detection accuracy. This variance was
due to changes in character structure and appearance
resulting from the combination of characters. Moreover,
while the detection was robust for structured fonts, there
was a significant drop in performance for semi-structured
and unstructured fonts. Hence, there is a need for the
development of a model with high detection accuracy for
both structured and semi/unstructured fonts. Research on
finding similar typefaces encompasses a wide range of
languages, including English, Chinese, and Korean [6], [7],
[8], [9], [10], [11]. Among them, research on finding similar
typefaces for English fonts often relies on simple image
comparison methods. However, utilizing stroke elements for
comparison offers the advantage of assessing more nuanced
similarities [5]. The research utilizing stroke elements to
recommend similar fonts has been limited to Hangul and
Chinese characters. Currently, there is no study defining
and detecting stroke elements for the English alphabet and
applying them to compare and recommend similar fonts.

Other related study [12] presents a novel method for
recognizing printed English characters from multiple fonts.
The approach utilizes neural networks to achieve accurate
character recognition. This study addresses the challenges
posed by variations in font styles and sizes, aiming to improve
the overall performance of character recognition systems.
Themain differences between our research and the referenced
study lie in their approach and objectives. The referenced
study primarily focuses on recognizing characters printed in
various fonts, aiming for precise character recognition by
utilizing neural networks. Conversely, our study examines
the utilization of stroke elements to compare and recommend
similar fonts. This involves analyzing and recommending
fonts by understanding the distinctive stroke patterns and
structures of each character, providing an advantage in
evaluating more nuanced similarities. Therefore, our research
emphasizes the detailed assessment of similarities between
fonts, with the goal of contributing to the field of multilingual
font matching.

Meanwhile, there is existing research that proposes a deep
learning-based method for identifying fonts from images of
English alphabets [13]. This paper addresses the problem of
recognizing and identifying fonts depicted in images. In other
words, the goal is to automatically determine the type of
font used in a given image. Font identification is closely
related to font recommendation based on similarity, but it
has certain limitations. Fonts used in real-world environments
can often be distorted or altered. Developing a robust model
to handle such font variations can be challenging, and the
paper may have shortcomings in addressing these variations.
Therefore, we believe that utilizing a method that recognizes
fonts and recommends similar fonts based on stroke elements,
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rather than analyzing the entire image, can potentially yield
better performance. The study on Hangul font clustering and
recommendation is conducted by [14]. The study proposes a
methodology that combines Convolutional Neural Networks
(CNN) and font clustering techniques to achieve accurate
and efficient recognition of Hangul characters across a
wide range of fonts. The approach aims to address the
challenges associated with the large diversity of Hangul fonts
by leveraging the power of deep learning and clustering
algorithms. The results demonstrate the effectiveness of the
proposed system in achieving high recognition accuracy
and adaptability for various Hangul font styles and sizes.
Research studies like the ones mentioned above are all
related to recommending similar fonts between different
languages or character recognition tasks. Additionally, most
of these studies involve calculating the similarity between
characters represented as images. However, according to
research conducted by [4] and [5], using stroke elements
in characters enables a more detailed comparison of similar
fonts. This insight has inspired us to develop a stroke element
detection model for matching similar fonts between Korean
and English.

III. EXPERIMENTAL DESIGN AND ANALYSIS
A. EXPERIMENTAL DESIGN
In this experiment, we defined stroke elements specific to
the English alphabet for the purpose of extracting stroke
elements. We also selected the target text and fonts from
which to extract these stroke elements. The definition of
stroke elements for the English alphabet began by listing
the alphabets in order of their highest usage frequency.
We selected the top 9 alphabets [15], which are ‘E’, ‘A’,
‘T’, ‘I’, ‘S’, ‘N’, ‘O’, ‘R’ and ‘L’ as candidates. Then,
we examined the stroke elements that could be extracted from
each of these alphabets.

Furthermore, considering that different alphabets may
have different shapes even with the same stroke element
name, individual stroke elements were given different names
to be used separately. Finally, the selected representa-
tive stroke elements for English were ‘BowlR’, ‘BowlA’,
‘TailR’, ‘TailT’, ‘Serif’, ‘Spur’, ‘Apex’, ‘Spine’, ‘ArmL’,
‘ArmE’, ‘Shoulder’ and ‘Terminal’ totaling 12 elements.
The representative English phrase was chosen as ‘LARGE
trains’, which combines uppercase and lowercase alphabets,
including the representative stroke elements. The illustrations
of each stroke element can be found in Figure 1, and detailed
descriptions for each stroke element are provided in Table 1,
as follows.

Fonts come in various shapes and styles, each with
its own classification system. Typically, English fonts are
classified using the Vox classification method [16]. In this
paper, we reclassified fonts into three categories for stroke
element extraction experiments. These three categories are
‘Structured,’ ‘Semi-Structured,’ and ‘Unstructured’ fonts.
In this paper, we focused on structured and semi-structured

FIGURE 1. Positions of 12 representative stroke elements in the phrase
’LARGE trains’.

TABLE 1. Description of each stroke element.

fonts for stroke element extraction. This decision was made
to exclude the heterogeneous stroke element shapes found in
graphic and script fonts, which belong to the unstructured
font category and could hinder the recommendation of similar
fonts. Unstructured fonts typically include handwritten or
highly embellished fonts, and further research may be needed
to develop additional methods for recommending similar
fonts and defining stroke elements for this category.

We utilized Vox’s classification method, as illustrated in
Table 2, to categorize English structured fonts. Following
this approach, we selected a total of 18 representative fonts,
with 2 fonts from each of the subcategories–Classicals
and Moderns. For semi-structured fonts, these fonts have
higher freedom compared to structured fonts but do not
include embellishments and are not handwritten. We selected
2-3 fonts from each of the subcategories within the ‘fancy’
category of a prominent commercial free English font
website, dafont [17], which includes typewriter, Old School,
Western, Stencil, Groovy, and Retro. In total, we selected
18 representative English semi-structured fonts. These
36 fonts were used to measure the detection performance of
the stroke element detection model.

Based on the aforementioned experimental design, the
experiment was conducted in the following sequence. First,
image files were generated for each alphabet using the
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TABLE 2. 18 representative English structured fonts selected according to
Vox’s classification system.

English representative phrase, ‘LARGE trains’. These image
files were then labeled to create a dataset with a total
of 12 stroke elements. The model was trained using this
dataset. Next, using the trained model, the 12 stroke
elements were detected from the image files created using
the English structured representative fonts and English
semi-structured representative fonts. Performance evaluation
was carried out using the mean Average Precision (mAP)
metric [18]. Figure 2 illustrates the overall process of this
study.

B. DEEP LEARNING MODEL FOR STROKE ELEMENT
EXTRACTION
This section provides an overview of the deep learning
model utilized in our research for the automatic extraction
of eight stroke elements from letter images. We employed
the Faster R-CNN (Region-based Convolutional Neural
Network) among various deep learning models. Determining
the similarity of images can be approached in various ways.
Typically, the full text image is used to assess font similarity.
However, once stroke elements are extracted, a more efficient
method of measuring similarity is to use the stroke element
image [19]. Based on this idea, we aimed to extract and
detect stroke elements for fonts with irregular shapes beyond
the conventional standard fonts. Previously, we attempted
stroke element detection using a Support Vector Machine
(SVM) [20] for character image analysis. However, the accu-
racy significantly decreased during the detection process.
Consequently, we opted for a deep learning-based object
detection model for stroke element detection, as it employs
a deeper neural network. We fine-tuned the Faster R-CNN
Inception-V2 model [21] among deep learning-based object
detection models. Faster R-CNN consistently demonstrated
the highest accuracy compared to other models, especially
excelling in the detection accuracy of small-sized objects.
Furthermore, Faster R-CNN was adopted due to its superior
stroke element detection performance compared to widely
used YOLO [28] and SSD [29] models in image recognition.
The structure of Faster R-CNN is illustrated in Figure 3.

C. TRAINING THE MODEL FOR ENGLISH STROKE
ELEMENT EXTRACTION
For structured fonts, 178 font files were prepared, and for
semi-structured fonts, 175 font files were prepared. The
font data was collected manually and consists of both free

and commercially paid fonts. The Python image processing
library, Pillow [22], was used to convert each alphabet
of the representative phrase ‘LARGE trains’ into separate
image files. Then, the labeling tool, LabelImg [23], was
used to designate the areas with the 12 stroke elements
in each character image as labeled bounding boxes and
annotate them with the stroke element names. The labeled
data was saved in XML format. Through this process,
the structured font group generated 1,958 data, and the
semi-structured font group generated 1,925 data. Each group
was divided into 80% train data and 20% test data. We had
to gather and label the data manually because there was
no existing dataset available for stroke element images.
This allowed us to obtain a stroke element dataset, and
we intend to keep collecting data continuously. The Faster-
RCNN-Inception-V2-COCO model [24] was used in this
study. The TensorFlow Object Detection API [25], a deep
learning framework, was used to fine-tune the pre-trained
model with the newly generated data. Table 3 summarizes
key parameters and hyper-parameters of the employedmodel,
facilitating a deeper understanding of its architecture and
training configurations.

TABLE 3. Fine-tuned object detection model hyperparameters.

Faster-RCNN-Inception-V2-COCO model consists of
Convolutional Layers, a Region Proposal Network, and Fully
Connected Layers. The activation function used throughout
the model is ReLU. The learning rate was set to 0.0002 for
model training. The model was fine-tuned separately for
the structured and semi-structured font groups. Training was
conducted for 49,694 iterations for the structured font group
and 54,034 iterations for the semi-structured font group,
continuing until the loss rate dropped below 0.1. The batch
size used during training was set to 64. The optimization was
performed using the Momentum optimizer. The following
Figure 4 and Figure 5 represent examples of structured and
semi-structured fonts, respectively. These fonts with their
distinctive visual characteristics were collected and used
for training and stroke element extraction. In this study,
images of size 256 × 256 were used for model training, and
True Type Font (ttf) [26]files were converted to JPG format
before use. The model’s output consists of images containing
the detected portions of the 12 predefined stroke elements.
Other detailed parameters of the model were set the same
as the original Faster-RCNN-Inception-V2-COCO model’s
parameters.
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FIGURE 2. Overview of research progress.

FIGURE 3. The structure of faster R-CNN.

FIGURE 4. Examples of structured fonts.

D. STROKE ELEMENT DETECTION PERFORMANCE
EVALUATION AND IMPROVEMENT
The performance of the stroke element automatic detection
model was evaluated by comparing it with the Ground Truth.

FIGURE 5. Examples of semi-structured fonts.

Ground Truth was prepared by labeling the representative
stroke elements in the ‘L’, ‘A’, ‘R’, ‘G’, ‘E’, ‘t’, ‘r’, ‘a’, ‘i’,
‘n’, ‘s’ character image files generated with untrained English
representative fonts. The model was then used to detect the
stroke elements in the same images. The results detected
by the model and the Ground Truth were both indicated
by bounding boxes on the character images. If the overlap
area between the two bounding boxes measured by IoU
(Intersection over Union) [27] was above 0.5, the prediction
result was considered as a correct detection (True Positive).
The detection performance of each stroke element in the
model was quantitatively evaluated based on precision and
recall, using the AP (Average Precision) metric. The overall
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performance of themodel in extracting the 12 stroke elements
was evaluated using the mAP (mean Average Precision)
value, which is the average AP of each stroke element.
The reason for using mAP (Mean Average Precision) as an
evaluation metric in object detection models is to quantita-
tively measure and compare the accuracy and performance
of the models. Here are the main reasons for using mAP.
Object detection models perform the task of predicting the
location and class of objects in images. mAP is a critical
metric to assess how accurately the model detects objects
and estimates their positions, providing a reliable measure of
model performance. Also, Object detectionmodels can detect
multiple objects simultaneously. mAP is useful for evaluating
such multi-object detection tasks, reflecting the model’s
ability to accurately detect and distinguish multiple objects.
In the object detection models, commonly used performance
metrics include the Precision-Recall Curve, F1-Score, and
mAP (Mean Average Precision) [30], [31]. This paper utilizes
mAP as its chosen metric due to the fact that mAP considers
both the accuracy of object localization and individual object-
level performance. By employing this metric, it becomes
possible to simultaneously evaluate the model’s ability to
estimate the positions of multiple objects. Furthermore,
mAP is widely recognized as a standard evaluation metric
for comparing the performance of various object detection
models, enabling a fair and consistent comparison among
different models. The formula for Mean Average Precision
(mAP), which is the performance evaluation metric for the
stroke element detection model, is as follows:

mAP =
1
N

N∑
i=1

APi (1)

N : The total number of classes or categories.
APi: The Average Precision for each individual class or

category.
The stroke element detection was conducted for both

English regular fonts and English semi-regular fonts, and
Table 4 provides the AP values for each stroke element
and the mAP value of the model. The mAP value of the
stroke element automatic extraction model trained on English
regular fonts was 95.88%, while the model trained on English
semi-regular fonts yielded a relatively lower mAP value of
75.01%.

In Figure 6, it can be observed that the model trained
on English regular fonts successfully detected all stroke
elements except for ‘TailT’ and ‘Serif’. However, when
examining Figure 7, it can be seen that the model trained on
English semi-regular fonts had incorrect detection for most
of the stroke elements.

Upon analyzing the incorrectly detected results, three types
of errors, as presented in Figure 8, were identified. The most
common type, Type 1, involved the incorrect detection of
stroke elements that should not be present in the respective
characters. Additionally, Type 2 and Type 3 errors occurred,
where the same stroke element was detected multiple times.

TABLE 4. mAP and AP value of stroke element detection model for
structured and semi-structured fonts.

FIGURE 6. Detection accuracy of stroke element detection models for
English structured fonts.

FIGURE 7. Detection accuracy of stroke element detection models for
English semi-structured fonts.

To improve the performance of the stroke element
extraction model for semi-regular fonts, the types of incorrect
detection identified in Table 4 were taken into account.
To reduce Type 1 detection errors, the character image file
names were utilized to restrict the detection to only the
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FIGURE 8. Performance improvement results of the stroke element
detection model for English semi-structured fonts, including AP and mAP
scores.

FIGURE 9. Performance improvement results of the stroke element
detection model for English semi-structured fonts, including AP and mAP
scores.

FIGURE 10. Detection accuracy improvement of the stroke element
detection model for English semi-structured fonts.

stroke elements originally present in the respective alphabet.
For Type 2 and Type 3 errors, where multiple instances of the
same stroke element were detected, the model was modified

to only retain the more accurate detection. Subsequently, the
performance of the model was evaluated again.

Upon reviewing Figure 9 and Figure 10, it can be
observed that the mAP value of the model trained on
English semi-regular fonts increased from 75.01% to approx-
imately 85.75%, indicating an improvement of around 10%.
Additionally, the visibly noticeable incorrect detection were
significantly reduced.

IV. CONCLUSION
In this paper, we implement a multilingual similar font
matching system, preliminary experiments were conducted to
extract stroke elements from English fonts. When conducted
on regular fonts, the majority of stroke elements were
successfully detected. However, when applied to semi-regular
fonts, the model exhibited a high frequency of incorrect
detection. Two additional measures were taken to improve
the performance of the model trained on semi-regular fonts.
However, these methods are only applicable when the font
file is provided as input by the user, which corresponds to the
first input method in the multilingual similar font matching
system.When the input data is in the form of an image, it may
require a complex process to recognize the alphabets within
the image. Therefore, further consideration is needed on how
to improve the performance in such cases. Additionally, the
results of the performance improvement are still insufficient,
requiring further exploration for enhancing the performance.
In future research, stroke element extractionwill be attempted
on irregular fonts to assess the overall performance across all
three types of English fonts. Furthermore, it is anticipated
that the methods employed to improve the performance of
the model on semi-regular fonts will also aid in enhancing
the performance of the model on irregular fonts. To further
advance the multilingual similar font matching system,
preliminary experiments were conducted to extract stroke
elements from English fonts. While most stroke elements
were successfully detected when applied to regular fonts,
issues arose with the model’s performance when dealing
with semi-regular fonts, resulting in a notable frequency of
incorrect detection. In order to address these challenges, two
additional measures were taken to enhance the performance
of the model trained on semi-regular fonts. However, it’s
worth noting that these methods are only applicable when
users provide the font file as input, corresponding to the
first input method in the multilingual similar font matching
system. In cases where input data is in the form of images,
intricate processes may be required to recognize the alphabets
within the image. Thus, careful consideration is required in
devising strategies to improve performance in such image-
based scenarios. Furthermore, despite progress in enhancing
performance, the results remain insufficient, indicating the
need for further exploration to achieve substantial perfor-
mance improvement. In future research endeavors, attempts
will be made to extend stroke element extraction to irregular
fonts to comprehensively assess overall performance across
all three types of English fonts. Additionally, it’s anticipated
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that the methods employed to bolster the model’s perfor-
mance on semi-regular fonts will also contribute to enhancing
the model’s proficiency with irregular fonts.
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