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ABSTRACT The efficiency of routing algorithms employed plays a crucial role in determining the energy-
saving potential of wireless sensor networks (WSNs). The challenge lies in developing distributed clustering
algorithms that can efficiently form clusters without relying on centralized information gathering, balancing
the need for cost-effectiveness, computational complexity, and flexibility within the constraints of limited
resources. This study presents a novel hierarchical and distributed approach, integrating the low energy
adaptive clustering hierarchy (LEACH) algorithm with the analytic hierarchy process (AHP). This approach
involves maintaining a matrix within nodes, incorporating potential threshold values representing the
probability of a node serving as the cluster head (CH). These values, determined through the analytic
hierarchy process (AHP), consider both energy and distance conditions relative to the Sink as criteria,
assigning importance levels from 1 to 9. The AHP computation, weighted with factors of 3, 5, and 7 to
express preference for the energy criterion, results in threshold values that minimize energy consumption
and maximize packet transmission to the Sink. This method empowers the nodes to autonomously determine
their probability of becoming the CH based on their energy status and distance to the Sink, eliminating the
need for centralized control. In comparison to algorithms like particle swarm optimization (PSO) and genetic
algorithm (GA), the proposed method has minimal computational requirements and can be implemented in a
distributed manner. The proposed approach is benchmarked against the well-established clustering algorithm
LEACH. The results demonstrate that the proposed method can extend the network lifetime by up to two
times and increase the number of packets sent to the Sink by approximately 50%.

INDEX TERMS AHP, leach, routing, WSN, wireless sensor networks.

NOMENCLATURE
CH Cluster Head.
nCH Not Cluster Head.
N Total number of the nodes in the network.
n The number of energy and distance states.
E The array that contains superiority values of

CH to nCH according to the energy criterion.
U The array that contains superiority values

of CH to nCH according to the distance
criterion.

C The array that contains superiority values of
energy (E) to distance (U ).

The associate editor coordinating the review of this manuscript and
approving it for publication was Abderrezak Rachedi.

E(k) The k th element of the E array.
k Index numbers for the elements of theE array.
U (m) The mth element of the U array.
m Index numbers for the elements of theU array.
C(q) The qth element of the C array.
q Index numbers for the elements of theC array.
D The matrix that contains threshold values.
D(e, u) An element ofDmatrix indexed with e and u.
e Row index (e) signifies the ratio of nodes with

lower energy than a specific node to the total
remaining nodes.

u Column index (u) denotes the ratio of remain-
ing nodes that are closer to the base station
than a specific node in the network.

P The sequence that contains cluster head
selection periods.
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pg The gth element of P sequence.
D(g,q) One of the D matrices that are computed for

pg and C(q).
H Trial number for each state of n2.
h Index number for H .

I. INTRODUCTION
Wireless sensor networks (WSNs) encompass a multitude
of sensor nodes strategically deployed for the purpose
of tracking, measuring, or monitoring various physical
phenomena. These sensor nodes typically operate under
constrained hardware and limited energy resources. There-
fore, the development of algorithms emphasizing low
power consumption and minimal processing demands is
paramount for the efficient functioning of WSNs [1]. The
significance of energy-efficient routing is underscored by
the fact that a substantial portion of energy consumption
in WSNs occurs during the communication phase [2].
As a response to this challenge, employing energy-
efficient routing protocols becomes imperative, contributing
to reduced energy consumption and prolonged network
lifespan [3].
A considerable body of literature has introduced various

routing protocols designed to alleviate energy consumption
in WSNs [4], [5]. These routing algorithms can be broadly
categorized into flat protocols and hierarchical protocols
based on their network structures [6], [7]. Hierarchical
routing protocols, characterized by their scalability and
resistance to overload, have demonstrated advantages in
WSNs [5], [8], [9]. Clustering, a fundamental technique
for hierarchical routing protocols, involves partitioning the
network into clusters, thereby enhancing scalability and
energy efficiency. Each cluster is overseen by a designated
Cluster Head (CH), selected from the nodes through specified
methods to enhance network longevity and throughput. CHs
manage intra-cluster communication, with non-CH nodes
transmitting data to their respective CHs. The CHs aggregate
the data from their clusters and forward it to the Sink.
Cluster based algorithms can be implemented in two modes:
centralized and distributed [10]. The centralized clustering
algorithms collect information such as node location and
energy at a central point to determine optimal clusters
and then report it to the nodes. In contrast, distributed
clustering algorithms, executed by nodes with limited energy
and computing resources, form clusters without collecting
location and energy information. While distributed clustering
algorithms offer cost and flexibility advantages, they must
have the ability to operate within the constraints of limited
resources effectively.

The low energy adaptive clustering hierarchy (LEACH)
algorithm, introduced by Heinzelman et al. in [11], stands as
one of the best-known and influential distributed clustering
algorithms. In accordance with LEACH, CHs are selected in
an alternating fashion from among the sensor nodes, strate-
gically aiming to equitably distribute energy consumption

within the network. The operational framework of LEACH
unfolds in discrete rounds, each encompassing installation
and steady-state phases. The installation phase encompasses
pivotal processes such as CH selection, cluster formation,
and the assignment of time division multiple access (TDMA)
schedules for the respective cluster members.

Within the installation phase, nodes actively partake in
the CH selection process. This involves the generation of a
uniform random number within the range of 0 to 1 by each
node. Nodes whose generated random number falls below
a predefined threshold (T (n)) declare themselves as CHs.
The threshold value, denoted as T , is computed based on the
expression:

T =


P

1 − P
(
r mod

(
1
P

)) , if n ∈ G

0, otherwise

, (1)

where P signifies the percentage of CHs among the total
nodes, r denotes the round number, and G represents the
set of nodes not designated as CHs in the last 1/P rounds.
Subsequently, nodes designated as CHs broadcast messages
to their neighboring nodes, thereby signaling their CH
status. Nodes not chosen as CHs intercept and process these
broadcast messages, ultimately associating themselves with
the CH exhibiting the highest received signal strength.

The threshold values in the LEACH algorithm undergo
modification through the incorporation of a remaining energy
factor, thereby presenting a novel deterministic approach
aimed at extending the operational lifespan of the network,
as proposed in [12]. Initially, the threshold value selection
method expressed as

T =
P

1 − P
(
r mod

(
1
P

)) ( Ecn
Emn

)
, (2)

where Ecn denotes the current energy level of the node,
Emn represents the maximum energy (initial energy) of the
node, P signifies the desired percentage of CHs, and r
signifies the current round. However, a substantial decrease
in node CH selections was observed as the energy level
diminished, leading to network congestion. Consequently, the
deterministic cluster-head selection method was introduced,
denoted as LEACH-DCHS, by modifying the formula as

Tnew =
P

1 − P
(
r mod

(
1
P

)) ×

[
Ecn
Emn

+ α

(
1 −

Ecn
Emn

)]
(3)

where

α = rs div(1/P) =

 1, if rs reaches
1
P

0, otherwise
(4)

where rs denotes consecutive rounds in which a node has
not become a CH. This adjustment notably increased the
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probability of selecting a CH in the last 1/P rounds, effec-
tively resolving the congestion issue. While LEACH-DCHS
demonstrates a commendable 30% improvement in network
lifetime compared to LEACH, it is not without drawbacks,
including challenges such as the precise determination of
the number of inactive nodes and uncontrolled overhead,
as highlighted in [5].

An alternative variant integrating the genetic algorithm
(GA) into the LEACH algorithm is presented in [13]. Beyond
the fundamental LEACH protocol, this GA-based algorithm
integrates a preparatory phase preceding the initial round.
In this phase, all nodes initially perform the CH selection
process, transmitting messages to the base station containing
their candidate cluster, node IDs, and geographic locations.
Upon receiving messages from all nodes, the base station
employs a genetic algorithm tominimize the total energy con-
sumption required for a round and explores the potential for
nodes to become CHs. Subsequently, the base station dissem-
inates an advertisement message containing the optimal T
value to all nodes, facilitating the formation of clusters in the
ensuing setup phase. The preparatory phase transpires only
once before the setup phase in the first round, with subsequent
rounds adhering to the setup and steady-state phases akin to
LEACH. Despite enhancing network lifetime in comparison
to LEACH across diverse base station locations, this approach
exhibits limitations concerning scalability and message
overhead.

Moreover, the improved LEACH (I–LEACH) algorithm
incorporates considerations for remaining energy, the number
of neighboring nodes, and the node’s distance to the base
station in the CH selection process [14]. I-LEACH demon-
strates a notable enhancement, offering a 55% improvement
in network lifetime compared to the baseline LEACH
and a concurrent reduction in energy consumption by
59%. However, it is essential to note that this protocol,
while achieving these improvements, does not account for
transmission costs and exhibits heightened complexity due to
increased computational load [5], [15]. Also, Vice-LEACH
(V-LEACH) introduces a mechanism to prevent premature
CH depletion caused by elevated energy consumption relative
to other nodes [16]. In accordance with V-LEACH, when
a specific node reaches the lowest energy level, the CH
selects an auxiliary CH (Vice CH or VCH), transmitting
the VCH ID to all other nodes within the cluster. Subse-
quently, normal nodes redirect their data transmission to
the VCH instead of the previous CH, which assumes the
role of a standard node. V–LEACH significantly extends
network lifetime through the strategic selection of an
auxiliary CH, conserving energy across the entire network
and enhancing data transmission efficiency to the base
station. Significantly, V-LEACH demonstrates a remarkable
capability to ensure reliable packet delivery to the base
station. However, it is noteworthy that this achievement
is attained without explicit consideration for transmission
costs [15].

Since most LEACH variants adopt dynamic, probabilistic,
and distributed clustering approaches, ensuring an optimal
number of clusters remains uncertain. In response to this
challenge, the LEACH-MAC protocol is introduced with
the specific aim of mitigating randomness by restricting
the number of CH advertisements [17]. Demonstrating
superior performance throughout its operational lifespan
compared to both LEACH and LEACH-DCHS, LEACH-
MAC nevertheless grapples with complexity concerns arising
from energy calculations and an additional message load [5].
Beyond these variants, certain LEACH adaptations deviate by
employing centralized approaches [10].

The study presented in [18] proposes a methodology
leveraging the Analytic Hierarchy Process (AHP) to compute
weights for three distinct factors: remaining energy, number
of neighboring nodes, and distance to the Sink. Subse-
quently, these weights are incorporated into the modified
PROMETHEE-II method to rank sensor nodes, with the
highest-ranked node assuming the role of the cluster head.
Notably, the proposed approach introduces Gateways with
significantly higher energy levels—six times that of other
nodes—that are also eligible to serve as CHs.

In addition, the ESO-LEACH algorithm, as proposed
in [19], employs a hybrid approach combining particle
swarm optimization (HPSO) and K-means to identify
optimal cluster heads. However, it is noteworthy that this
algorithm necessitates advanced nodes endowed with higher
energy capacities. In the collaborative framework presented
in [20], HPSO and the improved LEACH (HPSO-I-LEACH)
are synergistically employed. HPSO is leveraged for CH
selection, while I-LEACH is utilized for subsequent cluster
formation. The FMCB-ER algorithm, introduced in [21],
integrates fuzzy multi-criteria clustering and bio-inspired
energy-efficient routing. This algorithm combines Fuzzy-
AHP and the technique for order performance by similarity
to ideal solution (TOPSIS) techniques to determine cluster
heads. Additionally, the emperor penguin optimization (EPO)
algorithm is incorporated to identify the most efficient routes
from the CHs to the Sink. In [22], the cluster-based energy
efficient routing protocol (CEER) is introduced, featuring
a network comprising five distinct types of nodes with
varying energy levels. The Fuzzy-AHP method is employed
to ascertain threshold values (represented by parameters α,
β, and σ ). The proposed protocol offers five threshold-
determining equations, each tailored to a specific node type,
taking into account factors such as residual energy, distance
to the base station, and reliability.

In this study, the primary aim was to formulate a matrix
containing threshold values for diverse scenarios, predicated
on the ratio of neighboring nodes’ energy to their individual
energy levels and their proximity to the Sink relative to
a specified percentage of their neighbors. It is assumed
that nodes are equipped with knowledge pertaining to the
energy and distance statuses of their neighboring nodes,
necessitating the selection of a threshold value commensurate
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with their current circumstances. The selected threshold value
corresponds to the probability of a node assuming the role of
a CH. To establish these threshold values in an offline setting,
the AHP methodology was applied. The entire spectrum
of possible values between 1 and 9 with a step size of 1,
was systematically tested to assess the superiority of energy
and distance criteria. For each superiority scenario, random
network topologies were generated, resulting in multiple
networks characterized by identical energy and distance
configurations. From the multitude of obtained threshold
values, those optimizing either the remaining energy or the
total number of packets reaching the Sink were identified.
The proposed method offers following notable advantages:

1) The proposedmethod adheres to a distributed structure.
2) The computational complexity of the proposed method

is significantly lower in comparison to methods
employing PSO, GA, or Neural Networks (NNs).

3) It is recommended to perform CH selection after
a predetermined number of rounds, as opposed to
repeating the process at the conclusion of each round.

4) In light of the achieved outcomes, the proposed method
recommends an optimal threshold value.

II. PROPOSED METHOD
The proposed method comprises two key components: first,
the offline determination of threshold values through the
AHP, and second, the practical utilization of these determined
threshold values. This study introduces a novel distributed
clustering algorithm wherein each node within a network
autonomously determines its candidacy as a CH utilizing the
AHP method. The decision-making process is grounded in
the respective energy levels of the nodes and their distances
from the base station. To validate this conceptual framework,
multiple networks are generated by randomly deploying a
substantial number of nodes under identical energy and
distance conditions.

The AHP method is deployed to determine the probability
of a node becoming a CH, denoted as the threshold value,
in each network. This determination involved an exhaus-
tive consideration of all potential superiority relationships
between the energy and distance criteria. For a given energy
and distance scenario, two distinct threshold values are
derived based on various superiority values between the cri-
teria. One threshold value aimed to maximize the remaining
energy in the network, while the other sought to maximize
both the total number of packets and remaining energy.
The study assumes an examination of N nodes randomly
distributed within a M × M network area, considering a
combination of n distinct energy and n distance states.
n2 threshold values obtained with AHP stored in the threshold
values matrixD. In each CH selection period pg, the elements
in the matrix D are computed for a specific superiority
value C(q) referred to as Dg,q. To ensure robustness, the
procedure involves iteratively generating network topologies
and evaluating performances a total of H times, examining

n2 × H distinct network topologies. The final step involved
calculating the average of the multiple threshold values to
yield two comprehensive threshold values for a particular
scenario, wherein a percentage of nodes exhibited higher
energy levels than others, and another percentage of nodes
were closer to the Sink.

The proposed algorithm stores an array of threshold values
within the nodes, tailored for specific scenarios. Upon a
node assuming the role of a CH, it continues to function as
such for a predetermined number of rounds. This innovative
approach aims to optimize the clustering process and enhance
the overall network performance.

A. USING AHP TO DETERMINE THRESHOLD VALUES
The AHP [23] is a systematic decision-making method
designed for scenarios with multiple criteria. It involves
identifying crucial decision-making criteria, assessing alter-
natives based on these criteria, and making comparative
evaluations. AHP aims to analytically choose the most
suitable alternative by using predetermined criteria and
their assigned importance [24]. The method employs a
hierarchical structure, followed by the construction of dual
comparison matrices [25], [26], [27]. Saaty’s vector method
is then utilized to calculate the relative importance, and the
consistency of the matrices is checked through a consistency
rate determination [28], [29]. If the consistency rate is
deemed acceptable, the prioritization of alternatives ensues,
ultimately leading to the selection of the alternative with the
highest value. Table 1 outlines the assessment scale employed
in this study within the framework of the AHP method.

TABLE 1. Scale of Relative Importance.

In the proposed approach, we used the AHP to determine
the threshold values that will be used in the cluster
selection phase. CHs continue to serve as cluster heads for
a predetermined number of rounds. The proposed method
compares two alternatives: Becoming a cluster head (CH) or
not (nCH). The criteria for comparison are the percentage of
neighbors that are closer to the Sink (U ) and the percentage
of neighbors that have less energy (E). In Table 2, the

TABLE 2. Distance and remaining energy level comparison.

comparison between distance and remaining energy level is
given. C ∈ R3

= {C(q) : q = 1, 2, 3} where C(q) denotes
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qth element of the C array, containing the superiority values
of E over U . The C array, given in (5), indicates that E is
considered superior over U in all conditions.

C =
[
3 5 7

]
(5)

The preference is made with the help of the comparison in
Table 3 and Table 4 according to E and U criteria among the
alternatives CH or nCH.

TABLE 3. Comparison table according to remaining energy level criteria.

As in (6), E array contains the superiority values of CH to
nCH in accordance with the energy criterion.

E =
[
1 2 . . . 9 1

2
1
3 . . .

1
9

]
(6)

E ∈ R17
= {E(k) : k = 1, 2, 3, . . . , 17} where E(k)

is k th element of the E array. Similarly, the alternatives
are compared to each other based on the percentage of
neighboring nodes that are closer to the Sink.U array contains
superiority values of CH to nCH according to the distance
criterion as given in (7). U ∈ R17

= {U (m) : k =

1, 2, 3, . . . , 17} where U (m) is mth element of the U array.

U =
[
1 2 . . . 9 1

2
1
3 . . .

1
9

]
(7)

TABLE 4. Comparison table according to distance to Sink criteria.

The inputs for the AHP algorithm are the values of E(k)
and U (m). To select cluster heads, it is necessary to know
the energy levels of neighboring nodes and their distance
from the Sink. Nodes should share their energy information
at certain time intervals. Distance information only needs
to be published once by the Sink. However, sharing energy
information with other nodes will increase overall energy
consumption. In the simulations, necessary energy reduction
was made to send and receive energy information in cluster
updates.

It is assumed that there are n2 states representing possible
energy and distance states. Threshold values obtained with
AHP for the n2 considered cases are stored in the threshold
values matrix D, as shown in (8). D = [D(e, u)]1≤e,u≤n
where D(e, u) is the (e, u)th element of D ∈ Rn×n, with rows
associated with energy and columns associated with distance.

D =

D(1, 1) . . . D(1, n)...
. . .

...

D(n, 1) . . . D(n, n)

 (8)

The value D(e, u) serves as the threshold value for a node
under the following two conditions:
Condition 1: The node possesses energy levels greater

than a range of (e−1)×100
n % to e×100

n % in comparison to its
neighboring nodes,
Condition 2: The node is situated at a greater distance from

the base station (BS) than a range of (u−1)×100
n % to u×100

n %
in relation to its neighboring nodes.
For instance, given n = 10, D(1, 9) signifies the threshold
value for scenarios where 0% to 10% of neighboring nodes
have lower energy and 80% to 90% of them are closer to the
base station.

In the proposed method, a node that becomes a CH will
retain that role for a specific number of rounds, defined as
the CH selection period. After completing this designated
number of rounds, the process initiates the selection of a new
cluster head. The values for CH selection period, denoted as
pg, are stored in the P ∈ Rν = {pg : g = 1, 2, . . . , ν} as

P =
[
p1 p2 · · · pi

]
. (9)

For each pg, the D(e, u) values in the matrix D are
computed for a specificC(q) value. These calculatedmatrices
are referred to asDg,q, and all are created for each pg andC(q)
pair. Given eachDg,q ∈ Rn×n, the process involves randomly
generating n2 distinct network topologies, ensuring that each
topology possesses the requisite properties for Dg,q (e, u).
To assess the performance of a specific Dg,q matrix, the

procedure involves iteratively generating network topologies
and evaluating performances a total of H times. In other
words, n2 × H distinct network topologies that satisfy the
prescribed properties forDg,q (e, u) are examined. Uniformly
distributed energy values in the range [0, emax] are generated
and assigned to

(
ηe =

e×N
n

)
nodes as in (10) where emax

indicates the maximum energy of the nodes in the network.

ξ = emax × rand (1, ηe) (10)

The energy values in the ξ ∈ Rηe ∼ U(0, emax) are
assigned to randomly selected ηe nodes in the network. The
remaining (N − ηe) nodes are assumed to have energy equal
to emax.

Moreover, ψ ∈ Rηu ∼ U(0,R/2) is generated according
to (11), with the distance values to the Sink for

(
ηu =

u×N
n

)
nodes in the network. R represents the potential maximum
distance to the Sink when the Sink is placed at the center of
an M ×M area (i.e., half of the diagonal line (M/

√
2)).

ψ = (R/2)× rand (1, ηu) (11)

Assuming the Sink coordinates as (xs, ys), y coordinates for
ηu nodes are uniformly distributed between (ys − R/2) and
(ys + R/2) using (12). The (xr, yr) coordinates are computed
with (12) and (13), where ⊙ denotes the Hadamard product.
These coordinates are assigned to ηu nodes from a pool of N .
The remaining (N − ηu) nodes are randomly placedwithin an
area of dimensions M × M such that their distance from the
Sink exceeds R/2. Consequently, all nodes are created based
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on the values of e and u.

yr = (ys − (R/2))+ (R× rand (1, ηu)) (12)

xr = |xs −
√
(ψ ⊙ ψ) − (yr − ys) ⊙ (yr − ys)| (13)

The threshold values, computed using the AHP, are derived
for all combinations of E(k), U (m), and C(q) values, stored
in arrays E ∈ R17, U ∈ R17, and C ∈ R3. Then, all possible
threshold values are denoted as T (k,m, q) and are calculated
as

T (k,m, q) = µe ·W + µu · (1−W ) (14)

where µe ∀k ∈ {1, 2, . . . , 17}, µu ∀m ∈ {m = 1, 2, . . . , 17},
and W ∀q ∈ {q = 1, 2, 3} are calculated as given (15), (16),
and (17), respectively.

µe =
1
2

(
1

1 +
1

E(k)

+
E(k)

1 + E(k)

)
(15)

µu =
1
2

(
1

1 +
1

U (m)

+
U (m)

1 + U (m)

)
(16)

W =
1
2

(
1

1 +
1

C(q)

+
C(q)

1 + C(q)

)
(17)

After obtaining all possible threshold values, the threshold
values are tried one by one using the CH selection periods
specified in (9) in a network where the nodes are randomly
located in accordance with the desired energy and distance
characteristics. The threshold value T (k,m, q) is used by
the nodes to decide to become a CH. Each node makes its
decision as follows:

a = rand;

{
become cluster head, if a ≤ T (k,m, q)
do not become cluster head, if a > T (k,m, q)

(18)

where a ∼ U(0, 1).
The nodes that decide not to become CH assign themselves

to the clusters with the closest CH. After clusters are created,
normal nodes send their packets to their CHs, and the CHs
send their packets and the packets of their members to the
Sink during pg rounds. After completing pg rounds, the CH
selection period starts again.

The threshold values, stored as Dg,q(e, u) in Dg,q matrices,
are calculated by the proposed method as follows: For each
of the (e, u) pairs, H different networks are created. The
energy and location of the nodes in the created networks are
determined as in (10), (12), and (13). All possible threshold
values T (k,m, q) are used in the created networks. The
sum of the remaining energy of the nodes, 0g,q,e,u,h(k,m),
and the total number of packets that reached the Sink,
3g,q,e,u,h(k,m), after pg loops are calculated for each of
the H networks. Eg,q,e,u,h(k,m) and Pg,q,e,u,h(k,m) are the
normalized values of remaining energy and total packets that
reached the Sink.

Eg,q,e,u,h(k,m) =
0g,q,e,u,h(k,m)

max1≤h≤H
(
0g,q,e,u,h(k,m)

) (19)

Pg,q,e,u,h(k,m) =
3g,q,e,u,h(k,m)

max1≤h≤H
(
3g,q,e,u,h(k,m)

) (20)

For each of the H trials, the index numbers of (k†h ) ∈

{1, 2, . . . , 17} and (m†
h) ∈ {1, 2, . . . , 17} are determined

using (21) or (22).

(k†h ,m
†
h) = max

(k,m)

(
Eg,q,e,u,h(k,m)

)
(21)

(k†h ,m
†
h) = max

(k,m)

(
Eg,q,e,u,h(k,m) + Pg,q,e,u,h(k,m)

)
(22)

The mean value of the total H threshold values
T (k†h ,m

†
h, q) corresponding to k†h and m†

h is stored as
Dg,q(e, u) in the Dg,q matrix.

D(g,q)(e, u) =
1
H

H∑
h=1

T (k†h ,m
†
h, q) (23)

The Dg,q matrices are calculated offline and stored in the
memory of the nodes. The nodes can use the threshold value
Dg,q(e, u) to become CH according to g, q, e and u values
without any centralized control. The Algorithm 1 shows
determining all possible threshold values by the proposed
method.

Algorithm 1 Threshold Value Calculation Algorithm
Input: H , C (5), E (6), U (7), D (8), and P (9)
Output: Dg,q
Use AHP to calculate possible threshold values for C, E,
and U
Store the threshold values T (k,m, q) in T (14)
for e = 1 to n do

for u = 1 to n do
for g = 1 to ν do

for q = 1 to 3 do
for h = 1 to H do

Create a network according to (e, u)
Use T (k,m, q) threshold values.
Obtain 0g,q,e,u,h(k,m) and

3g,q,e,u,h(k,m)
Obtain Eg,q,e,u,h(k,m) and

Pg,q,e,u,h(k,m)
Find k†h and m†

h using ((21) or (22))
Store T (k†h ,m

†
h, q) value.

end for
Calculate and store Dg,q(e, u) using (23)

end for
end for

end for
end for

B. USING DETERMINED THRESHOLD VALUES AND
SIMULATION SCENARIO
The nodes are required to acquire information regarding the
energy levels and distances from the Sink of their neighboring
nodes after the CH selection period pg. According to energy
and distance information of the neighbors, the nodes can
determine e and u index numbers of Dg,q(e, u). It is assumed
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FIGURE 1. The flowchart for the simulation of the proposed method.

that g and q values are fixed and determined before the
network installation.

The nodes declare themselves as CH if the uniformly
distributed number they produce between (0, 1] is less than
Dg,q(e, u) in the CH selection phase. The CH selection
phase starts after each pg rounds. The nodes broadcast their
energy and distance from the Sink in the CH selection phase.
The nodes choose the appropriate threshold value Dg,q(e, u)
stored in their memory. After the CH selection phase finishes,
the normal nodes transmit their data to CHs which are the
closest to them. CHs transmit the data that reached them to
the Sink. The normal nodes and CHs stay as normal and CH
during pg rounds.

The simulation flowchart is depicted in Fig. 1. Energy cal-
culations were conducted using a first-order radiomodel [11].
The energy required for transmitting B bits over a distance of
d meters, denoted as ETx(B, d), and the energy required for
receiving B bits, denoted as ERx(B), are expressed by (24)
and (25), respectively, where Eelec represents the energy

required for the receiver and transmitter circuits to process
one bit, and ϵamp represents the energy coefficient for the
amplifier.

ETx(B, d) = Eelec × B+ ϵamp × B× d2 (24)

ERx(B) = Eelec × B (25)

Assuming the energy requirement of 50 nJ/bit for receiver
and transmitter electronic circuits (Eelec = 50 nJ/bit)
and the amplifier energy coefficient of 100 pJ/bit/m2

(ϵamp = 100 pJ/bit/m2), simulations consider a packet size
of 250 bytes. As a practical scenario, consider an application
employed for monitoring and surveillance within a battery-
powered WSN system, where the positions of the nodes are
fixed.

III. NUMERICAL RESULTS
The numerical studies are conducted in two phases: initially,
Algorithm 1 is utilized to acquire Dg,q(e, u) values, and sub-
sequently, the performance of a certain network is assessed
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FIGURE 2. Variation of threshold values which are obtained by (21) with the Sink located at the coordinates (50, 50)
(i.e. center of 100 × 100 network area).

FIGURE 3. Variation of threshold values obtained through (21) with the Sink located at the coordinates (200, 200) (i.e.
far from 100 × 100 network area).

using these threshold values. The parameters employed in this
study are detailed in Table 5, and a total of 9 (i.e., size(C) ×

size(P)) simulation cases given in Table 6, are examined.
According to the results obtained with Algorithm 1, the
number of occurrences of threshold values stored in Dg,q
matrices is shown in Fig. 2 and Fig. 3.

TABLE 5. Parameters Used for Numerical Results.

Fig. 2 shows variations in D(g,q)(e, u) values when
considering the total energy of the network as per (21).

According to the results presented in Fig. 2, if the Sink is
located at the center of a 100×100 area, the threshold values
range from 0.66 to 0.80. On the other hand, with an increase
in the importance of energy to the distance of the base station
(q), the threshold values also increase. The variation in the
cluster head selection period (pg) does not lead to a significant
change in threshold values.

Fig. 3 shows the variation in threshold values when
the Sink is located at (200, 200). As depicted in Fig. 3,
the threshold values obtained from (21) slightly increase
and range between 0.69 and 0.82. Higher threshold values
indicate that a greater number of nodes are willing to become
cluster heads. Having a higher number of cluster heads offers
other nodes the opportunity to find a nearer cluster head.
However, cluster heads are expected to consume more energy
than the other nodes. For instance, in Fig. 2, the mean
threshold value for pg = 100 and C(q) = 7 is 0.766,
signifying that 76.6% of the nodes are willing to become
cluster heads. Consequently, each node may become a cluster
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FIGURE 4. Variation of threshold values which are obtained by (22) with the Sink located at the coordinates (50, 50)
(i.e. center of 100 × 100 network area).

FIGURE 5. Variation of threshold values obtained through (22) with the Sink located at the coordinates (200, 200) (i.e.
far from 100 × 100 network area).

head about 8 times and a normal node 2 times over the course
of 10 cluster head selection periods. A node may consume
more energy during the eight cluster head selection periods
and less energy during the other two cluster head selection
periods. Even when the Sink is located far from the nodes,
as shown in Fig. 3, there is no significant change in the mean
value of the thresholds. For pg = 100 andC(q) = 7, the mean
value of the thresholds in Fig. 3 is found to be 0.796.
Based on the results illustrated in Fig. 2 and Fig. 3,

it is evident that the threshold values exhibit only slight
variation within a limited range. The mean threshold value,
as determined from these results, can effectively serve
as a single threshold value. This single threshold value
can be employed to mitigate the communication overhead
necessitated for acquiring information about the status of
neighboring nodes at the conclusion of each cluster selection
period.

Fig. 4 and Fig. 5 illustrate the variation in Dg,q(e, u)
values, considering the summation of energy and total packets

delivered to the Sink, as per (22). The threshold values
depicted range from 0.18 to 0.39 in Fig. 4 and from 0.19 to
0.5 in Fig. 5. As illustrated in Fig. 4, the results indicate a
decrease in threshold values as the superiority (q) of energy
over distance from the base station increases. This is in
contrast to the observed increase in threshold values under
the same circumstances, as shown in Fig. 2 and Fig. 3. The
threshold values observed in Fig. 4 and Fig. 5 are lower
than those in Fig. 2 and Fig. 3. Lower threshold values
imply a reduced number of CHs, leading to larger clusters
with a greater number of member nodes. Larger clusters can
accumulate more packets for transmission to the Sink. The
increased transmission of packets by CHs results in higher
energy consumption, potentially causing CHs to be situated at
a greater distance from their members in subsequent rounds.

In this study, a comparative analysis is conducted between
the CH selection process utilizing the K-means and HPSO
algorithm (KMHPSO) and the proposed method. The KMH-
PSO algorithm operates as a centralized approach, employing
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FIGURE 6. Variation of the total energy with the Sink located at the coordinates (50, 50) (i.e. center of
100 × 100 network area).

FIGURE 7. Variation of the total energy with the Sink located at the coordinates (200, 200) (i.e. far from
100 × 100 network area).

the K-Means algorithm for spatial clustering and the HPSO
algorithm for CH selection. This approach utilizes the Sink as
a central entity to determine the CHs after a specific number
of rounds. Once the Sink identifies the CHs, it announces
the selected nodes to the network. The CH selection period
and CH ratio are set to 100 and 0.05, respectively. The
results indicate that KMHPSO outperforms in terms of
the total number of packets reaching the Sink. However,
it is noteworthy that the proposed method, which does not
necessitate centralized control, demonstrates a substantially
lower computational cost compared to KMHPSO, which
involves 50 iterations of the Hybrid PSO and K-Means
algorithm in our simulations. Specifically, the mean number
of total packets reaching the Sink is observed to be
132920 and 31414 when the Sink is located at the center and
at coordinates (200, 200) with KMHPSO. Furthermore, the
maximum lifetimes are determined to be 3444 and 2504when
the Sink is located at the center and at coordinates (200, 200),
respectively.

Fig. 6 displays the variation in the total energy of the
network with the Sink located at the center. All simulation
results pertaining to the performance of the network are
based on the average outcomes from 100 simulation runs.
Comprehensive results, incorporating all possible values of
g and q, are presented in Tables 7 and 8, with select
outcomes visualized in figures. The findings from Fig. 6
indicate that lower threshold values contribute to maintaining
the total energy slightly higher, attributed to the reduced
number of CHs with elevated energy consumption. However,
as the energy consumption of CHs exerts a more pronounced
influence on the overall network energy at lower energy
levels, the lifetime of the network exhibits negligible
variations compared to the utilization of lower or higher
threshold levels.

Fig. 7 illustrates the variation in the total energy of
the network when the Sink is positioned at a considerable
distance from the network. Notably, the threshold values
determined through (22) contribute to an extended network
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TABLE 6. The simulation cases.

TABLE 7. Corresponding Network Lifetimes and Packets Reaching Sink Located at (50, 50).

lifetime, as depicted in Fig. 7. On the other hand, utilizing a
single threshold value yields comparable results to employing
the threshold values derived from the AHPmethod, as seen in
Fig. 7. It becomes conceivable to consider thismean threshold
value as an optimal threshold for the network. To further
explore the optimal threshold, derived by averaging the
threshold values obtained through the AHP method based on
conceivable energy and location information, a comparison
is conducted with potential threshold values ranging in
increments of 0.1 between 0.1 and 0.9. The results of this
comparative analysis are presented in Tables 7 and 8.
In the scenario where the BS is situated at the center of the

network, the utilization of (21) in simulation reveals a slightly
higher average network lifetime compared to the usage
of (22). However, there is a notable increase in the average
number of packets reaching the BS when employing (21).
On the other hand, for the LEACH with P = 0.05, the mean
network lifetime is found to be 1778, and the total number of
packets reaching the Sink is 50321. According to the results
depicted in Table 7, the proposed methodology attains an
approximately twofold improvement in both network lifetime
and packets reached to the Sink when compared with the
LEACH protocol.

Utilizing (21) results in higher threshold values, leading to
an increased number of CHs. In this scenario, member nodes
are more likely to find CHs in close proximity. Additionally,
some CHs are situated relatively close to the Sink, preventing
premature depletion of their battery and conserving energy.
This conservation, in turn, enables member nodes to transmit
more packets through these CHs. In contrast, the use of (22)
generates lower threshold values, resulting in a decreased
count of CHs. As a consequence, some member nodes
associated with CHs find themselves positioned at greater
distances. This spatial separation contributes to premature

depletion of energy resources, leading to a reduction in the
quantity of transmitted packets.

Positioning the Sink far from the network results in an
elevated number of CHs when (21) is employed. However,
these CHs are relatively distant from the Sink, leading to
their early depletion. Conversely, employing (22) yields a
reduced number of CHs, thereby contributing to the extension
of the network’s lifetime. Despite the shorter network lifetime
observed for (21) compared to (22), the latter results in fewer
CHs positioned away from member nodes. Consequently,
member nodes deplete rapidly, resulting in a lower total
number of packets sent to the BS. For the LEACH with
P = 0.05, the mean network lifetime and packets sent to
the Sink are calculated as 711.43 and 4166.6, respectively.
As indicated in Table 8, the proposed methodology attains
approximately 50% more network lifetime and a 25%
increase in packets sent to the Sink compared to LEACH.

When the Sink is positioned at the center of the network,
and (21) is used, Case 7 with a CH selection period (pg) of
200, a level of importance (C(q)) of 7, and a mean threshold
value of 0.7795 emerges as the optimal configuration as
given in Table 6. This case delivers the best network lifetime
of 3821 rounds and achieves the maximum number of
packets reaching the Sink at 107523.29 as given in Table 7.
In contrast, the least favorable outcome is observed in Case 3,
characterized by pg of 100, C(q) of 3, and a mean threshold
value of 0.7178 as given in Table 6. This case provides a
network lifetime of only 3000 rounds and a number of packets
reaching the Sink at 88228.63 as given in Table 7. When
utilizing (22) with the Sink at the center of the network, Case
8, featuring pg of 200 and C(q) of 5, and a mean threshold
value of 0.2638 yields the longest network lifetime as in
Table 6, allowing the network to operate for 3785 rounds as
in Table 7.
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TABLE 8. Corresponding Network Lifetimes and Number of Packets Sink Located at (200, 200).

For the same Sink location, when the fixed threshold is
used, the best network lifetime is achieved with a threshold
value of 0.3, allowing the network to operate for 4771 rounds.
However, with a fixed threshold value of 0.9, the maximum
number of packets reaching the BS is observed (136264.65).

In the scenario where the Sink is positioned away from
the network, the impact of parameters pg and C(q) on the
network lifetime is found to be insignificant when utilizing
threshold values obtained from (21). Nevertheless, Cases 6
(pg = 150,C(q) = 3) and Case 9 (pg = 200,C(q) =

3) outperform other configurations, in terms of the number
of packets reaching the Sink. When employing threshold
values derived from (22) under the same conditions, a notable
improvement is observed compared to both fixed threshold
values and those obtained via (21). Specifically, Case 8 (pg =

200,C(q) = 5) stands out, showcasing improved network
lifetime. Additionally, Case 8 demonstrates a commendable
level of packets reaching the Sink.

When the energy consumption of CHs is considerably
high, it is seen that the use of the threshold values matrix
obtained by the AHP method has a better mean network
lifetime. In addition, in cases where the energy consumption
of CHs is high, it is seen that the performance obtained
with (22) is better than the performance obtained with (21).
Based on the obtained results, the implementation of a

hierarchical WSN following the outlined procedure yields
enhanced performance in terms of both packet number and
network lifetime compared to LEACH. The network operates
according to the following principles:

• Nodes within the network autonomously declare them-
selves as CHs based on a predetermined threshold value,
maintaining this threshold value until the subsequent CH
selection period.

• A node assuming the role of a CH retains this designa-
tion for a specified number of consecutive periods.

Notably, when the Sink is centrally located within the net-
work, employing a fixed threshold leads to an improved net-
work lifetime. Furthermore, a direct correlation is observed
between the threshold level and the number of packets
reaching the Sink, with higher thresholds corresponding to
increased packet delivery. The fixed threshold consistently
outperforms both (21) and (22). Conversely, in scenarios

where the Sink is distant from the network and CHs exhibit
heightened energy consumption, a lower threshold level is
associated with a prolonged network lifetime.

Table 8 highlights the favourable performance achieved
when the Sink is distanced from the network, particularly
with a fixed threshold value of 0.1. Subsequently, an in-depth
analysis of the case with a fixed threshold of 0.1 is conducted,
providing mean results for one hundred distinct networks
with randomly located nodes, as presented in Table 9. This
comparison involved assessing values above and below 0.1 in
relation to the 0.1 threshold. Although a higher threshold
value of 0.15 results in more packets reaching the Sink,
the network lifetime is 673 for this threshold compared
to 815 for a threshold value of 0.1, when rounds that are
unable to communicate with the Sink are disregarded due
to the CH being inactive. Consequently, it is evident that a
fixed threshold of 0.1 yields commendable outcomes for the
location of Sink at coordinates (200, 200).

TABLE 9. Network lifetime and packet numbers comparison of fixed
thresholds (BS away: 200, 200).

IV. CONCLUSION
In this study, a distributed hierarchical clustering algorithm
is introduced, aiming to determine optimal threshold values
based on energy and distance levels to the Sink for
nodes through the application of the AHP method. The
determination of the probability for a node to become a CH
involves the consideration of energy and distance as criteria
with assigned specific importance levels.

The primary objective is to pre-calculate threshold values
(i.e., the probability of nodes becoming CHs) for various
scenarios offline and subsequently apply these values in
corresponding situations. The proposed algorithm is assessed
against thewell-established LEACH algorithm to ascertain its
effectiveness. The results reveal a significant outperformance
of the proposed algorithm, surpassing LEACHwith a network
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lifetime exceeding two times and an additional 50% increase
in packets sent to the Sink. Additionally, a comparative
analysis is conducted between the proposed algorithm and
the centralized KMHPSO algorithm, known for its higher
processing power. The findings suggest that superior CHs can
be selected in a distributed manner through the integration of
artificial intelligence.

The proposed method aims to leverage a threshold values
matrix obtained offline through the AHP method, resulting
in a computationally efficient algorithm. However, potential
avenues for future research may explore the determination
of threshold values using an artificial NN in a distributed
manner, albeit with an associated increase in computational
load.
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