IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 22 January 2024, accepted 23 January 2024, date of publication 30 January 2024, date of current version 12 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3359991

== RESEARCH ARTICLE

RIFD-Net: A Robust Image Forgery

Detection Network

WUYANG SHAN", (Member, IEEE), DENG ZOU ", (Member, IEEE), PENGBO WANG ",
JINGCHUAN YUE™, AOLING LIU ", AND JUN LI, (Member, IEEE)

College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China

Corresponding author: Wuyang Shan (shanwuyang @cdut.edu.cn)

ABSTRACT Image splicing forensic technologies reveal manipulations that add or remove objects from
images. However, the performance of existing splicing forensic methods is fatally degraded when detecting
noisy images, as they often ignore the influence of image noise. In this paper, we propose a new forgery
detection network called the robust image forgery detection network (RIFD-Net) based on convolutional
neural networks (CNNs). With the help of multi-classifiers and a denoising network, RIFD-Net can
effectively filter out multiple types of image noise before forgery detection. To determine the extent of
tampering, we follow the Siamese network to calculate the similarity between two image patches, without
prior knowledge of forensic traces. Results from extensive experiments on benchmark datasets indicate that
our method outperforms existing image splicing forensic methods, achieving a substantial improvement of
over 20% in the mean average precision (mAP) for forgery detection. Furthermore, RIFD-Net accurately

locates splice areas, even in the presence of noise.

INDEX TERMS Splicing forensics, forgery detection, image denoising, convolutional neural networks.

I. INTRODUCTION
Image authenticity comes into focus when encountering
deepfakes on social media [1]. Image authenticity identifica-
tion specifically refers to the scientific judgment of whether
an image has undergone post-processing (or tampering) using
technical means. Digital image splicing refers to a method for
tampering in which two or more digital images are cropped
and merged to produce a new composite image [2]. Image
splicing is a commonly used technique used to modify crucial
data. Spliced images can tamper with faces, alter billing
information, and change official reports to deceive individ-
uals. To validate the authenticity of spliced images, forensic
researchers have developed several identification methods,
including traditional [3], [4], [5], [6], [71, [8], [9], [10],
[11], [12], [13], [14], [15] and deep learning-based [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27]
techniques.

Traditional tamper detection methods for splicing identify
discrepancies between forensic traces in the original and
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tampered regions. Inconsistencies include, but are not limited
to, inconsistent edges [3], [4], double JPEG compression
effects [5], [6], [7], [8], [9], inconsistent lighting [10], and
variances in the camera imaging process [11], [12], [13],
[14], [15]. Splicing tamper detection methods must meet all
required prerequisites.

Recently, deep learning-based methods, particularly
CNNs, have been effectively utilized for detecting image tam-
pering via splicing. CNN-based forgery detection techniques
are distinct from conventional methods, as they employ mul-
tiple series or parallel neural networks to pre-process, extract,
and classify images; thus, using a stochastic gradient descent
algorithm to optimize the network model. Most CNN-based
splicing detection networks operate on either pixel-level [16],
[17] or patch-level detection [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27]. Wu et al. [17] proposed a CNN-based
blind forensics technique for image splicing that, deploys a
high-pass filter to preprocess images and reduce the influ-
ence of image content on splicing detection. This approach
enables the classification of authentic and tampered images.
Patch-level detection techniques have been developed over
time. Bondi et al. [18] determined if there were two or
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more instances of camera model image patches within an
image, to identify tampering by training image patches from
a significant number of camera models. Ding et al. [19]
introduced a novel image tamper localization method based
on a dual-channel U-Net architecture. The detection frame-
work consists of an encoder, feature fusion, and a decoder,
where high-pass filters extract tampered image residuals, and
a dual-channel encoding network processes and fuses deep
features for precise localization. You et al. [20] proposed
the SGICD-CF, which relies on sample guidance and CNN
features specific to individual camera devices. The method
involves partitioning the test image into 64 x 64 pixel patches,
extracting camera-related features and model information
using the proposed source camera identification network
(SCI-Net), and determining tampering by assessing classifi-
cation confidence and identifying foreign pixels. Typically,
the Siamese network [21], wherein weights are conjoined
and shared, is employed to extract features concurrently
from two image patches. Huh and Liu et al [22] trained a
Siamese network to select two random patches from separate
images and identify if they have consistent metadata [23].
Consequently, the problem of image splicing detection is for-
mulated as a binary classification task. Cozzolino et al. [24]
introduced the “noiseprint” approach that extracts residual
noise from two image patch sequences, i.e., noiseprint. In this
method, the Siamese network optimizes the extraction of
noise fingerprints by continuously updating distance weights
in reverse. Mayer and Stamm [25], [26] developed a model
based on training a considerable number of image patches
from various camera models. The model can compute the
similarity of the forensic traces between two image patches.
By utilizing a Siamese network, the model extracts features
from both image patches in parallel, eliminating the need for
prior knowledge in determining forensic similarity.

Nevertheless, these CNN-based methods are effective only
in the absence of image noise. During image acquisition,
various noises are introduced due to the sensor material
properties, working environment, electronic components, and
circuit structure. The imperfections in the transmission media
and recording equipment further pollute digital images during
signal transmission. Image processing may also introduce
noise when the input object deviates from expectations [28].
Salt and pepper noise (S&P noise) may occur during sudden
interference, analog-to-digital conversion, or bit transmis-
sion errors. Gaussian noise is generated in insufficiently
bright and unevenly illuminated image sensor fields, circuit
component noise, and prolonged high-temperature sensor
operation [29]. Gamma noise, uniform noise, and Pois-
son noise have origins similar to Gaussian noise. Random
noise results from the accumulation of randomly generated
fluctuations over time, making its value unpredictable at a
given instant [28]. Image noise can significantly hinder cor-
rect feature extraction, and its impact varies depending on
the noise type. Noise introduction during image acquisition
and transmission severely impairs the accuracy of forgery
detection.
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Image denoising has emerged as a potential solution to
mitigate the impact of image noise interference. Contem-
porary denoising techniques predominantly leverage deep
networks, gaining popularity for their superior accuracy
compared with traditional filter-based methods [30], [31],
[32], [33]. DnCNN [31] focuses on learning residuals from
clean and noisy images, primarily addressing Gaussian
noise. FFDnet [32] extends DnCNN’s capabilities by training
the model with noisy images of varying intensities, mak-
ing it more adept at eliminating complex Gaussian noise.
CBDnet [33] enhances generalization by combining syn-
thetic and real noisy images during model training. However,
existing techniques, including CBDnet, face limitations in
effectively removing multiple types of noise. The generaliza-
tion ability of current denoising methods remains constrained
by the diversity of noise types.

We propose a novel denoising model aimed at removing
various types of noise, which features a noise prediction
module and a denoising module. The precision of noise
identification is crucial for the noise prediction module, and
to enhance accuracy, we integrated an improved classifier
utilizing 9 Inception modules [34]. In the denoising module,
we leverage the attention mechanism [35] to train models
tailored to different types of noise, thereby aiding CNN
models in selecting effective features for diverse learning
tasks. In addition, the use of sparse block achieves a balance
between denoising and retaining essential features.

Following the denoising model, we designed a forensic
module to determine the authenticity of an image. Because
the “Forensic Similarity”” method (which does not require
prior knowledge of forensic traces) is applicable [25], we uti-
lize a Siamese network to calculate the similarity between
two image patches, thereby determining the extent of tam-
pering. Due to the denoising model’s ability to produce clean
images, the forensic module can acquire precise forensic
traces, which significantly enhances the accuracy of detecting
forgeries.

Our proposed method, RIFD-Net, comprises three mod-
ules: the noise prediction module, denoising module, and
forensic module. The noise prediction and denoising modules
remove the interference caused by various image noises and
generate clean images. The forensic module extracts possible
forensic traces from the images, enabling accurate detection
of spliced images.

Our paper makes the following significant contributions:

(1) The proposed RIFD-Net significantly enhances the
mAP value of forgery detection by over 20% in noisy
scenarios compared with existing methods.

(2) The proposed RIFD-Net can remove different types of
noise, distinguishing itself from traditional denoising meth-
ods characterized by restricted generalization capabilities,
which may not be effective in various noisy scenarios.

(3) The proposed RIFD-Net can maintain a certain balance
in the denoising process to ensure that the low-level image
features required for forgery detection are erased as little as
possible.
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In brief: The input of RIFD-Net is an image. The noise prediction module determines whether the image contains
noise and, if so, the type of noise present. The prediction results are then passed to the denoising module. The basic
structure of the denoising module is ADNet. ADNet, based on the predicted noise type, selects the corresponding
denoising model to generate a clean image. The forensic module divides the clean image into patches, computes the
similarity (S) between two image patches at a time, and ultimately generates a forensic similarity matrix for the
entire image. The result of the forgery detection is determined by the final output forensic similarity matrix.

FIGURE 1. RIFD-Net architecture.

The rest of this paper is organized as follows: Section II
proposes the RIFD-Net architecture, which is composed of a
noise prediction module, a denoising module, and a forensic
module, and introduces the selection and role of each of
these three modules in detail. The experiments in Section III
verify the effectiveness of this combination in forgery detec-
tion and its robustness against noise. Finally, Section IV
draws the conclusion, and Section V proposes future research
possibilities for the area of image forensics.

Il. PROPOSED RIFD-NET FOR FORGERY DETECTION

This section provides a detailed description of the proposed
RIFD-Net architecture. The RIFD-Net model comprises a
noise prediction module, a denoising module, and a forensic
module.

A. NETWORK ARCHITECTURE

Fig. 1 presents the RIFD-Net architecture proposed in this
paper. To effectively remove various noises, we propose a
new denoising model that comprises noise prediction and
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denoising modules. We trained six dedicated denoising mod-
els for four common noise types, a clean environment, and a
blind noise type in the denoising module.

The running process of RIFD-Net is described in the brief
of the graphical abstract in Fig. 1. An example of the sim-
ilarity matrix is shown in Fig. 4. For blind noise, if the
predicted probabilities for the four known noises and clean
situations are exceedingly low, it is classified as blind noise.
Detailed insights into each module are provided in subsequent
sections.

B. NOISE PREDICTION MODULE

This section describes our noise classifier design for predict-
ing noise types. Many deep neural networks utilize multiple
convolutional kernels to extract image features, enabling
effective computation and classification based on distinct
features—a simple yet powerful technique for image clas-
sification. However, increasing network depth within deep
networks leads to a significant parameter increase, result-
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FIGURE 2. Naive Inception and Inception-v1 structure.

ing in an excessively large network size, prolonged training
times, and gradient vanishing issues.

To efficiently predict noise types, we adopt the GoogleNet
architecture [34], with a pivotal component being the Incep-
tion V1 structure, as shown in Fig. 2(b). The initial concept
behind GoogleNet involved stacking various convolution
kernels (1 x 1,3 x 3,5 x 5,3 x 3 Pool) instead of a single
3 x 3 convolution kernel. This aims to maintain consistent
dimension post-convolution and pooling while summing the
channels. This approach diversifies the extracted features,
mitigating significant inter-feature correlations. Ultimately,
feature maps are concatenated to widen the network, and the
Inception module is stacked to increase the network depth.
However, a simplistic implementation leads to an explosive
increase in computational complexity for each layer. In the
native inception (depicted in Fig. 2(a)), all convolution ker-
nels operate on the entire output of the preceding layer, and
the computational demand of the 5 x 5 convolution kernel
is notably high, resulting in a substantial thickness of the
feature maps. To address this issue, 1 x 1 convolution ker-
nels were added before the 3 x 3, before the 5 x 5, and
after the max pooling operations, respectively. This addi-
tion effectively reduces the thickness of the feature maps,
resulting in the network structure of Inception V1 (depicted
in Fig. 2(b)).

Assuming that the input feature map size is 28 x 28 x256,
and the output feature map size is 28 x 28 x480, the compu-
tational load of the native Inception Module is 854 million.
In contrast, Inception V1 reduces the computational load to
358 million, as illustrated in Table 1. In addition, Inception
V1 achieves multi-scale feature extraction by stacking mul-
tiple convolution kernels of different sizes, which helps the
network capture and utilize image features at different scales.
As a result, GoogleNet with Inception V1 performs well in
noise prediction. We chose a clean environment and four
types of noise—S &P, Gaussian, gamma, and random noise as
labels for denoising models. Five models were trained to cor-

VOLUME 12, 2024

28x28x(128+192+96+64)=28x28x480

Filter
concentration
28x28x128 26x2/54 V%xgs 28%28%64
1x1 conv, 3x3 conv, 5=5 conv, 1*1 conv,
128 192 96 64
h A 7
28x%28K64 28x28%64 28xP8x256
i ;:nv' i) ;:"v' 3x3 max pooling

Module input:
28x28x256

Previous layer

(b) Inception V1

TABLE 1. Comparison of parameters and calculation amount between
naive Inception and Inception V1.

Naive Inception Inception V1
Conv Ops Conv Ops
[1x1 [1x1
conv,128] 28x28x128x1x1%256 conv,64] 28x28x64x1x1%x256
[3x3 [1x1
conv,192] 28%28x192x3%3x256 conv,64] 28x28%64x1x1x256
[5%5 [1x1
conv,96] 28%28%96x5%x5%256 conv,128] 28x28x128x1x1x256
[3x3
conv,192] 28x%28x192x3%3%x256
[5%5 28x28x96x5x5%256
conv,96]
[1x1
conv,64] 28x28x64x1x1%x256

Total: 854M ops Total: 358M ops

respond to five labels, and all of them achieved a prediction
accuracy of more than 90% on three datasets.

C. DENOISING MODEL

Mainstream denoising networks concentrate on certain types
of noise, whereas the attention mechanism extracts different
noise information from complex backgrounds. Therefore,
we opted to use attention-guided CNN (ADNet) [36] for
image denoising. The denoising module utilizes a sparse
block (SB), feature enhancement block (FEB), attention
block (AB), and reconstruction block (RB). These blocks
work together to improve denoising. Fig. 5 illustrates the
structure of the 17-layer ADNet denoising module.

Osp = fsg(IN) (D
Orgep = fres(In, Osp) 2
r = faB(OFEB) 3)

Ipc = In — Ir = In — faB (freB (IN, fsB (IN)))
= IN — faDNer(IN) “

20329



IEEE Access

W. Shan et al.: RIFD-Net: A Robust Image Forgery Detection Network

(@) clean
FIGURE 3. An example before and after denoising.
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FIGURE 4. An example of a similarity matrix before and after denoising. Figs. (a)-(c) depict spliced areas, with the woman on the
far-right representing them and the numbers indicating the patch index. Correspondingly, Figs. (d)-(f) are confusion matrices
displaying the similarity scores of Figs. (a)-(c), in which blue indicates high similarity, and white indicates low similarity.

N . 2
16) = % > Waower (1) = Gy =101 )
i=

Formulas (1)-(4) represent the input and output of the four
blocks. Iy and I represent the input noisy image and the
predicted residual image, respectively. f represents the func-
tions of each of the four blocks. The brackets represent the
input for each block, and the O represents the corresponding
output. Finally, we calculate the difference between the noisy
image and the clean image as the true residual, and subtract
the predicted residual fapye; (Iy) from the true residual as
the loss function, as shown in formula (5), where 6 stands for
parameters in training the denoising model.

In this paper, forensic traces provide important informa-
tion to reveal splicing inconsistencies. The splicing parts of
a spliced image may come from different cameras, which
will produce inconsistent images. We combined the ste-
ganalysis rich model (SRM) filter [37] and the constrained
convolution layer [38] to visualize this splicing inconsistency
before and after denoising, as shown in Fig. 6 below. SRM
uses image-based statistical features and frequency domain
analysis to identify abnormal patterns or inconsistencies in
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statistical features in images. Ordinary CNNs tend to learn
the content of images, and are not suitable for learning
content-independent tampering traces. Constrained CNN can
learn low-level operational features. In Fig. 6, the first col-
umn displays spliced images, including a pristine image and
the images with various types of added noise. The second
column represents the low-level features of the tampered
images obtained using SRM and constrained CNN (to rep-
resent forensic traces). The remaining columns depict the
forensic traces obtained after processing the noisy images
using different denoising methods. It is evident that images
with noise exhibit hardly any useful features for forgery
detection. After denoising with RIFD-Net, the forensic traces
are partially restored, particularly in the case of S&P noise
and random noise. Furthermore, RIFD-Net outperforms other
denoising methods in preserving low-level image features,
which is attributed to the SB in the denoising module.

To capture more contextual information, it is common
to enlarge the receptive field during the convolution pro-
cess. However, expanding the receptive field by increasing
the depth and width of the network often results in exces-
sive denoising strength and a rise in the complexity of the
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FIGURE 5. Network architecture of ADNet.

denoising model. Therefore, we opt to augment the receptive
field through dilated convolutions [36], enabling an increase
in size without the need to escalate the depth and width of the
network. In SB, the sparse mechanism combining dilated con-
volution and normal convolution achieves a balance between
denoising and preserving low-level features [40], [41]. The
12-layer SB includes two types: dilated Conv+BN-+ReLU
and Conv+BN+ReLU. Dilated Conv+BN+ReLU denotes
dilated convolution with a dilation factor of 2, followed by
batch normalization (BN) and Rectified Linear Unit (ReLU)
activation. Another type is normal convolution with BN and
ReLU. Dilated Conv+BN+ReLU is placed in the second,
fifth, ninth, and twelfth layers of ADNet. It is noteworthy
that dilated convolution can capture more contextual infor-
mation [39]. On the basis of this idea, these layers can be
considered as high-energy points. Conv+BN+ReLU is set
in the first, third, fourth, sixth, seventh, eighth, tenth, and
eleventh layers of ADNet and can be viewed as low-energy
points. The combination of several high and low-energy
points forms the sparse mechanism [36]. The sparse mech-
anism employs fewer high-energy points to capture more
useful information while reducing the complexity of denois-
ing, allowing the preservation of as many low-level features
as possible. For the coefficients obtained from sparse coding,
denoising can be achieved by filtering out high-frequency
or unimportant components. This is because, for sparse
representation, noise often manifests as high-frequency or
irregular components, whereas the signal exhibits smoother
and more regular components.

FEB makes full use of global and local features through a
long path to mine more robust features and concatenates noisy
images with deeper outputs at the deeper layers, moderating
the weakening effect of the shallow layers on the deeper
layers in a deeper network. Specifically, 4-layer FEB consists
of three types: Conv+BN+ReLU, Conv, and Tanh, where
Tanh is the activation function. Conv+BN-+ReLU fits layers
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13-15 of ADNet with a filter size of 64 x 3x3 x 64. Conv is
used for layer 16 in ADNet. Finally, the input noisy image
is fused with the output of the 16th layer to enhance the
representation ability of the denoising model.

AB uses a convolution of size 1 x 1 from the 17th layer
to compress the obtained features into vectors as weights for
the previous stage, which can also improve the efficiency of
denoising. Next, AB uses the obtained weights to multiply
the output of the 16th layer to extract more significant noise
features. These two steps can be expressed in formulas (6)
and (7), where Q; is the output of the convolution from the
17th layer in ADNet.

0O = C(Ofgp) (6)
Ir = O X OFgsB @)

The attention mechanism can extract hidden features in com-
plex backgrounds, which is beneficial for blind denoising.
RB predicts the residual image. The noisy image and the
predicted residual image are differenced to obtain a clean
image. We used ADNet to train four denoising models. Fig. 3
shows an example before and after denoising, and more
denoising results can be seen in Section III-E. To further
prove that our denoising module is effective for a wide range
of noise, we trained on Poisson noise, uniform noise, blind
noise with the same way as other noises. We then tested them
on the forensic algorithm, where the blind noise contains
unknown noises of different intensities. The generalization
performance of the denoising module is demonstrated in
Section III-G.

D. FORENSIC MODULE

The purpose of the forensic module is to detect evidence
of potential local tampering within the image. To calcu-
late the similarity between image patches, we adopt the
Siamese and similarity networks introduced in [25]. From
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FIGURE 6. Forensic traces of Fig. a (adding different noises) before and after denoising.

an image, we select two small patches X; and X,. These
patches are then converted into forensic feature vectors f(X1)
and f(X;) by the feature extractor. The feature vectors are
individually mapped to formula (8), which represents a new
N-dimensional feature space. The new feature space is capa-
ble of recording high-level image information of the pair of
patches, X.

f:X—>RY (8)
S:RY xRN = [0, 1] 9)

The Similarity network, with two fully connected layers
and activation functions, compares features of X; and Xj.
Formula (9) yields a similarity score between O and 1, indi-
cating dissimilarity or high similarity in forensic traces. The
confusion matrix is generated by computing the patch simi-
larities. Our tampering detection strategy involves calculating
the average similarity score of the image patches and estab-
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lishing a threshold to discern both average and high similarity
as indicators of tampering.

Fig. 4 displays the similarity confusion matrices for tam-
pered images in three scenarios. In Fig. 4(e), the similarity
between the spliced region and other regions reaches 1, indi-
cating that the method of calculating forensic similarity is
ineffective when noise is present, which highlights the impor-
tance of high-quality images in the forensic identification
process. Observably, RIFD-Net effectively mitigates noise
interference on forensic traces, as evidenced by the similarity
between Fig. 4(d) and Fig. 4(f).

Ill. EXPERIMENTS

A. DATASETS

For the noise prediction module, we selected 1000 color
images from the Berkeley Segmentation Dataset (BSD) [42]
and LIVE]1, which are popular sources for image classifica-
tion. To diversify the data and capture fine noise features,
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TABLE 2. Configuration of the training datasets.

DataSets(Quantity) Description
ri\ilc;::st;n BSD. LIVEI1(1000) 2000. per noise
P Dresden(1000) model
module
Denoising BSD. LIVEI(1000) 1000. per denoising
module model

Columbia(363) |50  spliced  TIF
images
Forensic DSO-1(200) .100 spliced PNG
module images
Korus(440) 220 spliced  TIF
images

we also selected 1000 images from the Dresden Image
Database [43]. Furthermore, the transformer’s random crop
function was utilized to generate five unique images cut from
each original image. Ultimately, a training set of 7000 images
was used for the noise prediction module. For the denoising
module, the same dataset of 1000 color images from BSD
and LIVE1 was used as that in the noise prediction module.
Specifically, 1000 pictures were included in each of the four
noise datasets, with a total of 4000 pictures used for denoising
training. The same test set of 1000 images was used for both
modules. Table 2 displays the configuration of datasets in the
three modules. Fig. 7 displays an image from the BSD dataset
and the local details upon the addition of different types of
noise. S&P noise and random noise pollution can affect pixel
values, whereas Gaussian noise and gamma noise are two
types of noise with probability densities following Gaussian
and gamma distributions, respectively.

In the forensic module, we utilized Mayer and Stamm’s
pre-trained model, acquired through the training of tens of
thousands of images captured from 95 different cameras. The
model carries the parameters and weights of various camera
models. The performance of RIFD-Net’s forgery detection
was then assessed using three publicly accessible datasets.
These datasets consisted of the following: 1) the “Columbia
Uncompressed Splicing Database” [44], which contained
180 spliced TIF images; 2) the “Carvalho DSO-1 Database”
[45], which comprised 100 spliced PNG images; and 3) the
“Korus Database” [46], which included 220 spliced TIF
images. Fig. 8 shows examples of spliced images from each
dataset.

During forgery detection, different images in a dataset may
have varying noise types or the absence of noise. Therefore,
we created confusion noise datasets based on the original
datasets (Table 3 shows the configurations).

B. TRAINING DETAILS

The noise prediction module is utilized to classify noise in
images, particularly in color images, where the input contains
3 image channels. The learning rate is set at 0.01 and is
reduced exponentially. We employed CrossEntropyLoss as
the loss function and Adam optimizer, which can accom-
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(d) random (e) Gaussian
FIGURE 7. An example from the BSD and local details after adding
different noises.

modate large-scale data and parameters. The number of
iterations and batch size is 100 and 8, respectively. In the
denoising module, the depth of the convolutional layers is
17, and the initial parameters are the learning rate of le-3,
epsilon of le-8, betal of 0.9, and beta2 of 0.99, which are
the BN parameters. The number of iterations and batch size
is 10 and 24, respectively.

We applied Pytorch 1.2.0 and Python 3.6 to train and
test the RIFD-Net. Specifically, all experiments in this
section were performed on Centos 7.6 server, which con-
tains an UniServer R5300 G3 6248R CPU, 12%16G RAMs,
and 4x32G NVIDIA Tesla V100S GPUs. Finally, we used
CUDA10’s CUDNN to accelerate the calculation speed of
the GPU.

C. PERFORMANCE OF THE FORENSIC METHODS ON
BENCHMARK DATASETS

RIFD-Net has shown high accuracy in detecting image
forgery in both clean and noisy environments. In this section,
we compare the forensic performance of RIFD-Net with other
splicing detection methods in both clean and noisy environ-
ments, as presented in Table 4. The evaluation metric used to
determine whether an image has been tampered is mAP [22],
with higher mAP values indicating better forgery detection
performance.

Table 4 verifies that RIFD-Net outperforms other forgery
detection methods, both in clean and noisy environments. In a
noisy environment, the mAP of RIFD-Net drops within 10%,
while the performances of most other methods are greatly
weakened. RRU-Net performs well on the Columbia dataset
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(a) Columbia

FIGURE 8. Examples of forgery in benchmark datasets. The top row contains spliced images, and the bottom row displays the
corresponding ground truth images.

TABLE 3. Configuration of confusion noise datasets.

Number of images

Datasets :

(confusion) clean S&P Gaussian gamma random total
mor v s ow @ aow
1C<erluﬁslsm_ 270 33 30 35 220

because RRU-Net’s training set consists of simple and small
splicing datasets (including Columbia), and thus RRU-Net
performs best on simple spliced images with small resolution.
Compared with “Forensic Similarity” method, RIFD-Net
improves the mAP of forgery detection by more than 20%
on three benchmark datasets.

D. PERFORMANCE OF THE NOISE PREDICTION MODULE
This section shows the excellent performance of noise pre-
diction. We applied different types of noise to the benchmark
datasets to produce the confusion noise datasets (configura-
tion in Table 3) and evaluated the accuracy of the prediction.
Table 5 displays the prediction of our RIFD-Net for noise
types, with almost 100% accuracy in clean images, S&P
noise, and random noise. There is a slight decline in the
discrimination accuracy between gamma noise and Gaussian
noise. Nonetheless, the prediction results are impressively
accurate, providing a viable foundation for the subsequent
denoising module.

E. PERFORMANCE OF THE DENOISING MODULE

The following section provides quantitative and qualitative
analysis of the denoising module’s performance, comparing
it to other mainstream denoising algorithms.
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(b) Carvalho

(c) Korus

Our quantitative analysis assessed image quality using
PSNR (Peak Signal-to-Noise Ratio), where higher values
indicate cleaner images. PSNR measures the ratio between
the maximum possible power of a signal and the power of
corrupting noise that affects the quality of its representation,
providing a numerical scale to evaluate the fidelity of images.
Fig. 9 illustrates an example of an image before and after
denoising.

To quantitatively evaluate our denoising performance,
we compared our method with other denoising methods using
four DSO-1 datasets with various types of added noise,
as detailed in Table 6. Our denoising module achieved aver-
age PSNR values of up to 53.0 for S&P noise and random
noise. For gamma noise, our method also achieved higher
PSNR values. For Gaussian noise, our method is slightly
weaker than IRCNN, but within acceptable limits. IRCNN is
specialized in removing Gaussian noise and does not perform
well in removing other noises, whereas our denoising method
is dedicated to removing many different noises. Overall, our
proposed method outperforms other denoising methods for
different types of noise.

F. PERFORMANCE OF FORGERY DETECTION IN
DIFFERENT NOISY ENVIRONMENTS
Table 7 showcases the forensic module’s performance across
various noisy environments, both before and after the appli-
cation of our noise prediction and denoising modules. Each
dataset is subjected to a single type of noise, denoted by its
intensity in brackets. The mAP values for forgery detection
accuracy are presented, with the first column depicting the
results without using our modules and the second column
showing the results post-application. In addition, three other
confusion noise datasets were detected.

To assess the effectiveness of RIFD-Net under diverse
noise intensities, we retrained denoising models using a train-
ing set consisting of images with varying noise intensities
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TABLE 4. mAP, performance of forgery detection on benchmark datasets.

clean noisy

Confusion_  Confusion  Confusion

DSO-1 Columbia  Korus DSO-1 Columbia Korus

Forensic Similarity [25]  0.96 0.92 0.63 0.65 0.67 0.35
EXIF [22] 0.74 0.95 0.54 0.55 0.80 0.44
E2E-RGB [27] 0.71 0.80 0.56 0.58 0.64 0.55
RRU-Net [47] 0.72 0.96 0.62 0.70 0.90 0.58
RIFD-Net 0.96 0.92 0.63 0.86 0.85 0.62

TABLE 5. Noise prediction results.

clean S&P gamma Gaussian random
Dataset Number (correct predictions)/ Number (total)
Confusion_DSO-1 1717 35/35 11/12 19/20 15/15
Confusion_Columbia  44/44 51/51 24/25 19/20 40/40
Confusion_Korus 52/52 70/70 33/33 28/30 35/35

TABLE 6. Average PSNR values (dB) for different denoising methods under four noise conditions on the DSO-1 dataset.

S&P noise Gaussian noise gamma noise random noise
Noisy 21.6 Noisy 25.0 Noisy 20.0 Noisy 23.6

Median filter 34.5  Gaussian filter  31.8  Median filter 204  Median filter =~ 38.7
Adpative median

40.7 DnCNN [31] 30.0 DnCNN 29.7 DnCNN 25.1

filter [48]
SRNI [49] 26.6 IRCNN [50] 34.8 IRCNN 20.4 IRCNN 25.5
Proposed 53.1 Proposed 34.0 Proposed 34.1 Proposed 53.0

pristine image S&P noise Gaussian noise gamma noise random noise
PSNR = 22.1 dB PSNR = 24.7 dB PSNR = 19.8 dB PSNR = 24.6 dB

(@) An example before and after adding four types of noise.

PSNR = 53.5 dB PSNR = 35.1 dB PSNR = 39.2 dB PSNR = 53.7 dB
(b) Results after applying the denoising module to Fig. (a).

FIGURE 9. An evaluation of denoising. The proposed method effectively enhances the image quality with a notably high

PSNR.
(1000 images per intensity). Table 8, different from Table 7, of intensities. The noise intensity in Table 7’s test dataset is
illustrates the selection of denoising models for specific fixed, while Table 8’s test dataset spans the noise range of the

noise intensities versus retrained models covering a range retrained denoising model.
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TABLE 7. mAP values across various noise types and specific intensity environments.

Gaussian gamma random Poisson uniform
clean S&P (0.01 blind confusion
( ) (15) (10) (0.01) (0.03) (10)
dataset our our our our our our our our
DSO-1 0.96 0.56 0.96 0.63 090 061 0.65 066 097 0.65 0.78 0.68 0.80 0.64 0.75 0.65 0.86
Columbia 0.92 0.62 0.92 062 073 0.61 068 0.62 094 0.64 0.73 0.66 0.79 0.70 0.78 0.67 0.85
Korus 0.63 0.50 0.65 050 0.69 050 0.79 0.55 0.65 0.60 0.74 0.62 0.83 0.62 069 039 0.62
TABLE 8. mAP values across various noise types and diverse intensity environments.
S&P Gaussian gamma random Poisson uniform .
clean confusion
(0.01~0.05) (10~20) (5~15) (0.01~0.05)  (0.02~0.05) (5~15)
dataset our our our our our our our
DSO-1 0.96 0.43 086 058 080 053 059 052 0.87 0.58 0.75 065 0.75 052 0.74
Columbia 0.92 0.51 0.80 052 0.67 052 0.62 0.54 0.83 0.60 0.71 0.59 076 050 0.72
Korus 0.63 0.45 0.56 046 0.62 045 0.72 0.44 0.58 0.54 0.69 0.60 0.79 037 0.61
TABLE 9. Performance of other forensic methods under different conditions.
. . Denoising with RIFD-
clean confusion noise
Net
DSO-1 Columbia Korus DSO-1 Columbia Korus DSO-1 Columbia Korus
NoisePrint (MCC) [24] 0.79 0.78 0.34 0.39 0.52 0.23 0.56 0.66 0.29
EXIF(AP) [22] 0.74 0.95 0.54 0.55 0.80 0.44 0.75 0.94 0.59
E2E-RGB (AUC) [27] 0.63 0.78 0.50 0.50 0.60 0.44 0.59 0.65 0.48
RRU-Net (mAP) [47] 0.72 0.96 0.62 0.70 0.90 0.58 0.72 0.95 0.62

Tables 7 and 8 highlight the significant performance
improvement of the proposed method in the presence of
noise, particularly excelling in handling S&P and random
noise to achieve performance levels comparable to noiseless
conditions. However, RIFD-Net exhibits suboptimal results
in scenarios with other types of noise. This could be attributed
to the inherent challenge of balancing denoising effectiveness
with the potential loss of image detail, especially with linear
noise. In addition, the suboptimal results may be associated
with varying image resolutions, as demonstrated by the
notably high mAP values (0.9) on the DSO-1 dataset under
Gaussian noise conditions, where images have dimensions
of 2048 x 1536 pixels. In contrast, the lower resolution of
Columbia images results in substantial degradation during the
denoising process. Overall, the experimental results indicate
that RIFD-Net enhances the mAP of forgery detection by
almost 20% in noisy environments compared to scenarios
without the preceding two modules. The denoising module
demonstrates exceptional generalization performance, effec-
tively removing various types of noise, including blind noise,
while striving to retain forensic traces during the denoising
process.

G. GENERALIZATION PERFORMANCE OF THE DENOISING
MODULE

To assess the effectiveness of denoising module in RIFD-Net,
we integrated it into other forensic methods and evalu-
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ated their performance in three case studies—utilizing clean
datasets, datasets with confusion noise, and datasets denoised
using RIFD-Net’s denoising module. Table 9 summarizes the
outcomes, indicating that our approach consistently yields
positive results when applied to various forensic methods,
even in the presence of noise. This resilience can be attributed
to RIFD-Net’s capability to eliminate noise while preserving
essential forensic traces as much as possible.

H. FORGERY LOCALIZATION

This section presents forgery localization results using a
chunk-based approach. The image is segmented based on
varying resolutions, and each image patch is numbered.
We then computed the similarity matrix, identified image
patch indices corresponding to white, and applied them
to highlight regions of possible tampering. Different types
of noise may affect the localization accuracy of tampered
regions because of interference with the similarity matrix
calculation. In Fig. 10, the forgery localization results for
examples (1) and (2) in a noisy environment are compared to
those of “Forensic Similarity” algorithm. Fig. 10(a) shows
similarity matrices for clean examples, whereas Fig. 10(b)
illustrates forgery localization results and similarity matrices
for the “Forensic Similarity” algorithm after adding four
different noises. Fig. 10(c) displays the forgery localization
results and similarity matrices of our RIFD-Net in four noisy
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Example (2)
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S&P Gaussian gamma random
Example (2)

(b) localization results (first line) and the corresponding similarity matrices of Forensic Similarity [25] (second line).

FIGURE 10. Two examples of localization in four noisy environments.
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(c) localization results (first line) and the corresponding similarity matrices of RIFD-Net (second line).

FIGURE 10. (Continued.) Two examples of localization in four noisy environments.

environments. Despite the serious impact of noise on forensic
traces, RIFD-Net preserves these traces to a greater extent
during denoising, resulting in improved forgery localization,
particularly for S&P noise and random noise.

IV. CONCLUSION

In this paper, we introduce RIFD-Net, a novel method for
detecting image splicing. Our approach is robust, particu-
larly in challenging scenarios with image noise. RIFD-Net
incorporates multiple classifiers and a denoising network to
effectively eliminate various forms of image noise, thereby
improving the mAP of forgery detection. The forensic
module, employing a Siamese network, calculates the sim-
ilarity between image patches. The denoising capabilities of
RIFD-Net play a crucial role in noise elimination, contribut-
ing significantly to enhanced the robustness of forensics.
In addition, we evaluate and validate the effectiveness of our
denoising model in conjunction with other forensic methods.

V. DISCUSSION

In this section, we present a comprehensive discussion of
the aforementioned experimental results and limitations, and
propose future research directions. The experiments indicate
that the current mainstream methods for detecting digital
image forgeries perform well only on forged images with
high image quality. Once the images are contaminated with
noise, the forensic performance significantly deteriorates.
RIFD-Net exhibits robust forgery detection performance,
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whether applied to datasets with high image quality or to
datasets subjected to various noise contaminations.

From both subjective and objective evaluations, our pro-
posed RIFD-Net demonstrates favorable outcomes. Subjec-
tively, for a forged image containing noise, the denoising
module significantly reduces the noise, resulting in a notice-
able improvement compared with the image before denois-
ing. In the forensic module, the difference between the
forensic similarity matrices before and after using RIFD-Net
is substantial. Virtually no forensic traces were discernible
before using RIFD-Net, whereas after application, partial
restoration of forensic traces was achieved. The results
of forgery localization further validate these observations.
Objectively, both the noise prediction module and the denois-
ing module achieve commendable performance according
to their respective evaluation metrics. The forensic module
exhibits a substantial improvement in the mAP values before
and after using RIFD-Net. In addition, RIFD-Net demon-
strates high robustness in differentiating various types and
intensities of noise environments.

However, RIFD-Net also presents specific limitations and
areas that require improvement. Notably, its efficacy in mit-
igating Gaussian noise and gamma noise is less conspicuous
compared with several other types of noise. This deficiency
is particularly apparent in the preservation of forensic traces.
In instances of high intensity for both Gaussian and gamma
noise, despite the denoising module effectively eliminating
the noise, forensic traces undergo substantial obliteration.
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This is likely because both Gaussian noise and gamma
noise adhere to normal and gamma distributions, respectively,
exhibiting a certain level of continuity. Throughout the train-
ing process, the network endeavors to capture the statistical
characteristics of the noise, inadvertently smoothing image
details during denoising. This smoothing effect leads to the
loss of forensic traces.

This paper highlights the effectiveness of the sparse mech-
anism, which combines dilated and normal convolution,
in achieving a balance between denoising and preserving
low-level features. However, the balance of this combination
is relative and is only optimal within a limited range of
noise intensity. Furthermore, the current strategy of training
distinct denoising models for different noise types increases
algorithm processing time and complexity. In future work,
our objective is to enhance the algorithm by consolidating
it into a single denoising model capable of handling vari-
ous types of noise. This modification severs the dependence
on the noise prediction module, resulting in a significant
improvement in algorithm efficiency.
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