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ABSTRACT Foveated rendering (FR)—in which the central foveal layer (the area around the eye gaze) of
a virtual reality (VR) image is rendered at the highest resolution and the peripheral layers are rendered
at progressively lower resolutions—is an advanced VR technique that controls the balance between
computational load and visual quality by adjusting the foveal layer sizes. We consider an edge computing-
assisted VR computation offloading system incorporating FR and develop a deep reinforcement learning
(DRL)-based solution to maximize a unified objective combining the visual quality and the overheads of
energy consumption and delay for multiple VR users by optimizing the foveal layer size determination,
offloading decisions and radio resource allocation of wireless links with non-orthogonal multiple access
(NOMA). To formulate the unified objective, the user-perceived visual quality of a VR image rendered via
FR is modeled with the sizes of the foveal layers as variables. The proposed solution consists of three main
modules: per-user FR and offloading modules, which determine the sizes of the foveal layers and make
offloading decisions, including subband allocation, and a central transmit-power allocation module. The
actions of these three modules determine the reward that is in turn fed back to each module. Evaluation
results reveal that the proposed framework can better adapt the operations of FR, offloading and wireless
transmission to the environmental conditions than other FR and offloading benchmarks in terms of overall
reward, visual quality, energy consumption and delay.

INDEX TERMS Virtual reality, foveated rendering, edge computing, offloading, deep reinforcement
learning.

I. INTRODUCTION
Immersive virtual reality (VR) is a rapidly growing media
paradigm that offers users omnidirectional experiences in
a three-dimensional (3D) environment through specialized
headset hardware equipment. Such a headset captures
the user’s head pose and input triggers through sensory
devices, allowing real-time generation of synthetic scenes [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Hosam El-Ocla .

To create an interactive VR environment that fully immerses
users, it is essential to provide a high-quality visual experi-
ence and seamless navigation within the virtual world [2].
Conventional VR systems achieve these requirements by
utilizing high-end local computers with dedicated graphics
cards that boast abundant GPU cores for rendering graphics.
However, the high costs associated with computing and
graphics processing hardware for each end user have
presented significant obstacles to the widespread adoption
of VR [3]. Moreover, conventional VR systems often require
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cumbersome wire harnesses connecting the headset to a local
computer, thereby restricting user mobility. Additionally,
the need for content download and installation time can
impede immediate playability, further limiting the user
experience.

Offloading heavy VR computations to a network edge
computing entity [3], [4], [5], [6], [7] possessing sufficient
computational power, which we call edge VR in this paper,
is rapidly emerging as a promising solution. The abundant
processing and storage resources found at the edge can
make high-quality and pay-as-you-go VR services available
anytime and anywhere across the globe to a large group
of online VR users with affordable thin client VR headsets
wirelessly connected to the Internet [8], [9], [10]. With
the edge providing the necessary resources to execute and
render scenes, the client headsets are left only with the task
of displaying the content streamed over wireless networks.
Higher user mobility is facilitated, and the headsets’ battery
life is also expected to be prolonged due to their light
operations [3].
To reduce the rendering load, which is the most significant

load among the computational operations for VR, foveated
rendering (FR) has recently gained much attention. With
increasing eccentricity (angular distance) from the foveation
point, the density of the receptors and ganglion cells in the
retina decreases, causing visual acuity to fall off radically
toward the periphery [11]. Therefore, instead of uniformly
rendering a full-resolution image over the whole display, only
the foveal layer (the area around the eye gaze) at is rendered at
the highest resolution (high quality) in FR, while the periph-
eral layers are rendered at progressively lower resolutions
(i.e., with lower quality). As illustrated in Fig. 1, for example,
inner, middle and outer progressive layers with decreasing
preset resolutions can be constructed, where the inner layer
has the smallest angular diameter and the remaining layers
cover increasingly larger diameters. Consequently, FR will
result in fewer pixels to be processed without significantly
compromising the visual quality perceived by the user. Since
identifying the eye gaze would require the VR headset to be
equipped with an eye tracking hardware device, which is not
available in most current headsets, fixed FR assuming that
the eye gaze lies at the center of the rendered image is widely
adopted [12].
Applying FR in edge VR is still effective in reduc-

ing the collective computational load of the edge, thus
enabling the edge to support VR users at a large scale.
To minimize the computational load, the edge should mini-
mize the foveal layer while expanding the peripheral layers,
but this would come at the expense of a decreased perceived
quality of the user experience. In contrast, expanding the
foveal layer would increase the frame size to be streamed
to a user, thus increasing the energy consumption of the
user for processing this larger frame and also increasing the
latency. Allocating more wireless resources or switching to
local computing will reduce/eliminate the communication
latency, while the energy consumption can be reduced by

reducing the foveal layer (at the cost of decreasing the
perceived quality). In summary, FR operations, wireless
resource management, and offloading decisions have a
mutual relationship determining the costs of edge VR (in
terms of perceived quality, energy consumption and delay),
thus necessitating that they be optimized in a unified and
balanced manner.

Several recent studies have focused on the optimization
of offloading decisions and radio resource allocation for VR
offloading. The problem of allocating resources to balance
the trade-off among communication, computing, and caching
has been studied both under a fixed delay constraint [13]
and with the objective of delay minimization [2], [14].
Lin et al. [15] solved a similar problem of resource
allocation optimization for minimization of the energy
consumption of VR headsets. Reinforcement learning (RL)
has demonstrated its effectiveness in solving mixed-integer
nonlinear problems, across diverse applications and dynamic
environments, including systems involving multiple agents
[16], [17]. Guo et al. [18] solved the problem using a
distributed RL approach consisting of an offline training
phase and an online running phase. In a similar context, Trinh
andMuntean [19] developed an RL-based offloading scheme
tailored for extended reality (XR) devices, considering
energy consumption and execution delay. Other studies have
investigated an edge-assisted 360-degree VR video streaming
problem for optimization of the quality of experience (QoE)
and resource allocation [14], [20], [21]. However, no existing
works have considered the optimization of FR in combination
with offloading and radio resource allocation.

In this paper, we formulate and develop a solution for
the problem of jointly optimizing the foveal layer sizes in
FR, offloading decisions, and radio resource allocation for
multicarrier non-orthogonal multiple access (MC-NOMA) in
an edgeVR offloading system servingmultiple VR users. The
proposed solution minimizes a combined objective function
of user-perceived visual quality, energy consumption and
delay to provide an acceptable visual experience in VR at low
latency and a minimal expenditure of energy. To formulate
the unified objective, the user-perceived visual quality of a
VR image rendered via FR is modeled with the sizes of the
foveal layers as variables. The per-user deep RL (DRL) agent
of the proposed solution is composed of FR and offloading
modules that determine the sizes of the foveal layers and
perform offloading decision-making and subband allocation,
respectively. The action determined by the FR module is
passed to the offloading module to obtain the payload
information, and the action determined by the offloading
module is passed to a central transmit-power allocation
module. The actions of these three modules determine the
reward that is in turn fed back to each module. Each per-user
DRL agent makes actions based on the local observations of
the corresponding user, without complete knowledge of the
system dynamics and parametric details of other users, and
reports only its determined actions to the central transmit-
power allocation module. Therefore, the agent processes can
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be distributed among local computing entities or user devices
to achieve decentralized and load-distributed operation. For
the specific algorithm of the DRL agent, we provide a model
design incorporating double and dueling deep Q-network
(DQN) techniques tailored for the FR, offloading, and power
allocation modules of the agent.

Evaluation results reveal that the proposed solution better
adapts the operations of FR, offloading and wireless trans-
mission to the environmental conditions than other FR and
offloading benchmarks in terms of overall reward, visual
quality, energy consumption and delay.

The main contributions of our work are summarized as
follows:
• Formulation of a unified optimization problem for
the foveal layer sizes, offloading decisions, and radio
resource (subband and transmit power) allocation for
MC-NOMA in an edge VR offloading system serving
multiple VR users.

• Modeling the user-perceived visual quality of a VR
image rendered via FR, considering the characteristics
of the human visual system (HVS).

• Design of an optimization framework consisting of
per-user DRL agents consisting of FR and offloading
modules, which determine the sizes of the foveal layers,
offloading decisions and subband allocation, and a
centralized power allocation module.

• Design of DRL agent algorithms incorporating double
and dueling DQN techniques tailored for the FR,
offloading, and power allocation modules of the agent.

• Comprehensive simulations illustrating the performance
gain of the proposed solution over other options under
different network and VR content conditions.

The organization of the rest of this paper is as follows.
First, recent studies related to edge-assisted offloading for
VR and other applications are presented in Section II. The
system models and problem formulation are then described
in Section III. In Section IV, the visual quality of a VR
image rendered via FR is derived. In Section V, the proposed
solution is detailed as the transformation of the problem into
an RL task, and the associated algorithms are described. In-
depth evaluations and discussions of the results are provided
in Section VI. Finally, Section VII concludes the paper with
potential future directions of study.
Notations: The subscriptsm and j of a variable indicate that

it belongs to user m and subband j, respectively. x(t) denotes
the variable x for a specific VR frame index t .

II. RELATED WORKS
In this section, we review and discuss related works.
In particular, a comparative summary of related research
on edge VR, including our work, is presented in Table 1.
Despite the abundance of studies covering various aspects
of edge resource management, no existing works have
explored the adaptation of FR in conjunction with the
management of other resources for edge VR. Thus, this study
represents the first attempt to develop a holistic DRL-based

solution for optimizing the foveal layer sizes, offloading
decisions, andNOMA radio resource allocation in the context
of edge VR.

There have been several recent studies on optimizing
offloading decisions and radio resource allocation for edge
VR. Mehrabi et al. [2] aimed to strike a balance between
video quality and latency by formulating the problem as a
mixed-integer nonlinear problem. Yang et al. [13] leveraged
computation and caching resources at the VR headset to min-
imize communication resource consumption. They employed
task modularization, in which a VR device constructs a task
using a combination of components cached in its memory
and others delivered from the edge. Chen et al. [22] proposed
an edge VR framework that supports player interaction.
They optimized the allocation of computing resources at the
edge, wireless bandwidth allocation, and the postprocessing
decision policy to minimize the average interplayer delay.
Guo et al. [18] addressed the VR offloading problem by
employing a distributed learning approach based on RL.
Their approach consisted of an offline training phase and an
online running phase.

Some studies have specifically focused on the edge-
assisted delivery of 360-degree VR video. Gupta et al. [20]
investigated a multiuser 360-degree VR video streaming
system that leverages multilayer video tiling, edge comput-
ing, and wireless multiconnectivity, incorporating sub-6 GHz
and millimeter wave links. Dang and Peng [14] presented
a VR delivery framework that precaches portions of VR
videos. They formulated a joint decision problem for resource
allocation at both mobile VR devices and access points,
aiming to maximize the average delay tolerance. Zhang
and Chakareski [21] proposed an edge computing network
assisted by unmanned aerial vehicles (UAVs) to enable
high-quality mobile 360-degree VR video applications.
They formulated a joint problem involving UAV placement,
computation and radio resource allocation as well as 360-
degree video content layer assignment with the objective of
maximizing the delivered QoE.

Employingmachine learning (ML) to address optimization
in edge-assisted systems has gained tremendous popular-
ity [5], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32]. An intelligent offloading framework was formulated
in [25] that jointly utilizes licensed and unlicensed spectra
for vehicular networks. An offloading algorithm enabling
vehicles to use RL and multiarmed bandit theory to learn
from their neighbors how to minimize delays was studied by
Sun et al. [24]. A distributed cognitive network was investi-
gated in [23] that utilizes ML to balance resource allocation
and optimize spectrum utilization. ML can also be used by
energy-harvesting Internet of Things (IoT) devices [31] to
select edge nodes and learn optimal offloading policies, in VR
to guide user movements by influencing their behaviors based
on past movements [28], and to jointly optimize computation
and network resource allocation to minimize service time
in dynamic edge environments [30]. It has been further
exploited in blockchain-based edge environments to address

17310 VOLUME 12, 2024



B. W. Nyamtiga et al.: Adaptive FR and Offloading in an Edge-Assisted VR System

TABLE 1. Summary of related works on edge VR.

complexity in offloading the mining and data processing
tasks [5], [33]. Other variations of learning algorithms using
echo state networks were discussed in [26] and [34] in
relation to enhancing resource management. Multistage DRL
approaches have also been explored by [16] and [35] to
maximize the computation rate of an edge server and regulate
inverter-based energy resources, respectively. The dueling
DQN DRL architecture [36] has been shown to improve the
estimation of long-term rewards and to support fast training
and reliable predictions with less complexity. This architec-
ture has been deployed in [37] for task offloading, in [38]
to optimize market making, and in [39] by UAVs providing

uninterrupted acquisition of sensing data to IoT terminals.
Qiong et al. [40] developed a DQN-based algorithm that
predicts the optimalminimum contentionwindow for channel
access in vehicle-to-infrastructure communication networks
to improve data freshness.

Many research works on edge offloading have considered
NOMA as the multiple access scheme for users’ wireless
links. One study [41] addressed the joint optimization of task
offloading decisions, NOMA transmission, and resource allo-
cation for computation-intensive and delay-sensitive services
in the industrial IoT. The objective was to minimize energy
consumption while meeting specified latency constraints

VOLUME 12, 2024 17311



B. W. Nyamtiga et al.: Adaptive FR and Offloading in an Edge-Assisted VR System

TABLE 2. Summary of notations.

using an online DRL-based algorithm. In another work [42],
the focus was on minimizing the energy consumption of
IoT devices in wireless-powered backscatter communication
networks. The authors formulated a joint offloading and
radio resource allocation problem and optimized user asso-
ciation, task computation offloading coefficients, reflection
coefficients of backscatter devices, transmit power, and
transmission time of wireless devices. Ding et al. [43]
investigated NOMA in mobile offloading scenarios to reduce
latency and energy consumption. The use of NOMA to
conserve energy for edge users has also been explored in other
studies [44], [45], [46]. The authors of [46] investigated the
weighted sum-energy consumption minimization problem in
an eavesdropping scenario, subject to constraints regarding
the secrecy offloading rate, computation latency and secrecy
outage probability. Nduwayezu et al. [47] proposed the use
of NOMA to maximize the computation rate of an edge
server by optimizing computation offloading and subband
allocation. NOMA has also been studied in relation to
the Internet of Video Things [48], coupled with multiple
edge servers to improve throughput and enhance devices’
computation capabilities.

FIGURE 1. Illustration of VR images without and with FR.

FIGURE 2. Edge-assisted VR offloading system.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
The system model is illustrated in Fig. 2. We consider a
typical radio access network (RAN) scenario composed of a
base station (BS) and a setM of VR user headsets associated
with an edge of the RAN. Each VR user headset, which we
alternatively refer to as the user equipment (UE), tracks the
user’s head pose and displays the streamed content to the user.
Each VR headset operates in either local or offloading mode.
In the local mode, viewport rendering is performed by the
headset itself. If the headset is operating in the offloading
mode, it periodically sends head pose information to the edge
over a wireless link, and viewport rendering is performed by
the edge based on the received pose information. Afterward,
the rendered image data are streamed through the RAN,
which has a spectral bandwidth W consisting of a set of
subbands S = {1, 2, . . . , S} that can be non-orthogonally
shared by multiple UEs in accordance with the principle of
NOMA. The notation α ∈ {0, 1} is used to define the selected
offloading strategy in a particular decision step, where α(t) =
0 means that rendering is done locally for VR frame t ∈ T ;
otherwise, the rendering task will be offloaded to the edge.
Table 2 lists the notations that are frequently used in this
paper.

B. FR MODEL
In the considered system model, we assume that a VR
image is rendered using FR with K circular layers based
on individual layer configurations for different users. The
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circular form of each foveal layer is derived from the circular
symmetry of the HVS [11]. Specifically, we define the kth
foveal layer (k = 1, 2, . . . ,K − 1) as the area outside
the (k − 1)th layer and bounded by its radius Rk from
the foveal point, where Rk−1 < Rk . The outermost (K th)
layer represents the remaining area outside the (K − 1)th
layer. This design enables us to allocate more resources
(i.e., higher resolutions) to regions closer to the foveal point,
where human vision is most acute, while gradually reducing
resource allocation in areas farther from the foveal point,
where visual acuity decreases. Referring to the variable rate
shading (VRS) feature of NVIDIA [49], [50], the resolution
of the kth layer (k = 1, . . . ,K ), which we denote by rk ,
is determined by a factor of 1

n2k
of the native resolution (r1),

i.e.,

rk =
r1
n2k

, (1)

where nk is an even number. Accordingly, an nk × nk
pixel region is represented by one rendered pixel in the kth
layer. For example, if nk = 4, a 4 × 4-pixel region will
be represented by one pixel of information, resulting in a
resolution that is 1

16 of the native resolution. Consequently,
as the value of nk increases, the resolution of the kth layer
progressively decreases. We assume that the innermost layer
(k = 1) is rendered at full resolution, i.e., every pixel in
this region is shaded individually, denoted by nk = 1, and
the successive layers (k = 2, 3, . . . ) will have one-step
decrements in resolution. Hence, the resolution-determining
factors {nk |k = 1, . . . ,K } for the respective foveal layers
are given as {1, 1

4 ,
1
16 , . . .}. With this configuration, the

optimization problem for FR is now reduced to finding the
optimal radii of the foveal layers, denoted by Rk , k =
1, . . . ,K , for a given K .
We define Npx as the total number of pixels in a per-eye

frame at full (native) resolution, with NW pixels in width and
NH pixels in height. Let ak be the fractional area covered by
layer k relative to the entire viewport area (0 ≤ ak ≤ 1,∑K

k=1 ak = 1). We assume that the number of bits for a pixel
is given as PixelDepth across all pixels in the frame. Then,
a frame has the following number of bits:

Dfov = Npx · PixelDepth
K∑
k=1

ak
n2k

. (2)

C. LATENCY AND ENERGY MODELS
1) OFFLOADING MODE
The process of rendering a VR image at the edge involves a
chain of multiple subtasks, with each subtask contributing to
the overall latency. The execution time for each subtask is as
follows:

a) Pose data transmission (T ps): The process begins with
the transmission of pose data, of size d , from the VR
headset to the edge. This step requires T ps = d

Ru
seconds, where Ru represents the uplink (UL) data rate.

b) Rendering (T rne ): The VR image rendering process
depends on the computing capabilityCe assigned by the
edge. Under the assumption that a data size of Ze can
be processed per computing cycle, the time to render a
VR image is given by T rne =

Dfov
Ce·Ze

.
c) Compression (T ec): To reduce network bandwidth

consumption, the rendered VR image is compressed
before transmission. Compression takes T ec = Dfov

V ece
,

where V ec
e denotes the edge’s video encoding speed.

If we define ζ as the encoding efficiency, representing
the ratio of the output data size of the compression
codec to the input data size, the encoder outputs Dec =
ζ · Dfov.

d) Frame transmission (T tx): The transmission of the
compressed frame takes T tx =

Dec
Rd , where Rd

represents the downlink (DL) data rate.
e) Decoding (T dc): Upon receiving the compressed VR

frame, the headset decodes it to obtain the raw data.
This decoding process takes T dc = Dec

V dcl
, where V dc

l

represents the headset’s video decoding speed.
Upon summing all the latency components, the end-to-end
latency for edge-assisted rendering of a VR frame is given by

Te = T ps + T rne + T
ec
+ T tx + T dc, (3)

and the corresponding energy consumption of the headset
during this process is computed as

Ee = T psPsnd + (T rne + T
ec)Pidle + T txPrcv + T dcPdc, (4)

where Psnd , Pidle, Prcv and Pdc represent the power consumed
by the headset during UL transmission, in the idle state,
during DL reception and during decoding, respectively.

2) LOCAL MODE
In the local mode, the headset encounters latency and
consumes energy only during rendering. Thus, the total
latency of the local mode for a VR frame is

Tl = T rnl =
Dfov
Cl · Zl

, (5)

whereCl and Zl are the computing capability and the data size
processed per computing cycle, respectively, of the headset.
The corresponding energy consumption of the headset is

El = T rnl Prn, (6)

where Prn is the power consumed by the headset for
rendering.

D. WIRELESS TRANSMISSION MODEL
In the offloading mode, users’ pose data are transmitted to the
edge via UL communication, while the rendered VR frames
are transmitted to the UEs via DL communication. Since
the size of the pose data (d) is expected to be significantly
smaller than that of the VR frame data, our primary focus in
this section is on DL communication. Following the principle
of NOMA, the BS superimposes the DL data waveforms of
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multiple UEswith an appropriate power allocation, allocating
higher transmit power levels to UEs with weaker channel
gains [51].

Upon reception, each UE decodes the strongest signal first
and then subtracts it from the received signal. During the
decoding process for a particular UE’s target signal, signals
for other UEs are treated as interference. The same decoding
process continues for the remaining signals until the UE with
the weakest received power has its signal decoded. Let Nj
be the set of UEs allocated to subband j, and let Nj,<m be
the subset of Nj consisting of the UEs with lower received
powers than UE m. gm,j denotes the channel gain of UE m in
subband j. The signal-to-interference-plus-noise ratio (SINR)
for UE m in subband j is given by

SINRm,j =
gm,jpm,j

N0Bs +
∑

i∈Nj,<m
gi,jpi,j

, (7)

whereN0 represents the noise power spectral density andBs is
the transmission bandwidth in a subband. We use βm,j = 1 to
indicate that UE m is assigned to subband j, i.e., ∀m ∈ Nj,
and βm,j = 0 otherwise. Accordingly, the DL throughput of
UE m is calculated as follows:

Rdm =
∑
j∈S

βm,jBs log2(1+ SINRm,j). (8)

It is known that the multiplexing gain of NOMA significantly
decreases, even under ideal conditions, when more than two
UEs are allocated to a subband [52]. Therefore, we limit the
number of UEs allocated to a subband to two.

E. PROBLEM FORMULATION
With the models described above, our objective is to provide
a VR experience that strikes a balance between the quality
of user perception, denoted by 0 and modeled in the
next section, and the energy and delay costs for the UEs.
To achieve this, we formulate a target problem that involves
the joint optimization of FR, offloading decisions, and radio
resource allocation across the frames t ∈ T of a VR content
application. The target problem, which we denote by P ,
is expressed as follows:

P : max
R,α,β,p

∑
t∈T

∑
m∈M

[ω(1− αm(t))(φTl,m(t)+ El,m(t))

+ ωαm(t)(φTe,m(t)+ Ee,m(t))+ 0m(t)],

subject to C1 : 0 ≤ R1(t) ≤ · · · ≤ RK−1(t)

≤ min{NW ,NH }, t ∈ T ,

C2 : αm(t) ∈ {0, 1}; m ∈M, t ∈ T ,

C3 : βm,j(t)∈{0, 1}; m ∈M, j∈S, t ∈ T ,

C4 :
∑
j∈S

∑
m∈Nj

pm,j(t) ≤ P; t ∈ T ,

C5 : pm,j(t) = 0 if βm,j(t) = 0; m ∈M,

j ∈ S, t ∈ T , (9)

where R, α, β, and p are the vectors of Rk (t), αm(t), βm,j(t),
and pm,j(t), respectively, with k = 1, 2, . . . ,K − 1, m ∈M,

j ∈ S and t ∈ T . Because of the different scales of the
different reward terms, we introduce adjustable coefficients
ω and φ to control the relative weights between the overhead
and quality terms and between the energy and delay terms,
respectively, in the overall reward. Constraint C1 limits the
radius of the inner layer to be the smallest and that of the
outer layer to be the largest. C2 dictates that only one of two
offloading policies can be carried out by a particular UE in
each time frame: either local rendering or remote rendering.
C3 confines the allocation of a UE to a specific subband to be
binary. Constraint C4 indicates that the total transmit power
allocated to the UEs cannot exceed the power budget P of
the BS. Constraint C5 guarantees that a UE is assigned zero
transmit power in a subband unless the UE is allocated to that
subband.

To simplify problem P , we impose a limitation that each
UE can be allocated to only one subband.With this constraint,
we can extend the definition of the offloading indicator αm
to also indicate the index of the subband to which UE m is
allocated when αm > 0. If αm = 0, this means that UE m
operates in the local mode. Consequently, we can eliminate
the problem variable β. Additionally, we assume that the
power budget P is evenly distributed among the subbands,
i.e., the power available in each subband is P/S, while
optimizing the power allocation within each subband. The
modified problem, denoted by P ′, is expressed as follows:

P ′ : max
R,α,p

∑
t∈T

∑
m∈M

[ω(1− αm(t))(φTl,m(t)+ El,m(t))

+ ωαm(t)(φTe,m(t)+ Ee,m(t))+ 0m(t)],

subject to C1,C4,

C2′ : αm(t) ∈ {0, 1, 2, . . . , S};m ∈M,

C4′ :
∑
m∈Nj

pm,j(t) ≤ P/S, j ∈ S, t ∈ T ,

C5′ : pm,j(t) = 0 if αm(t) ̸= j;m ∈M,

j ∈ S, t ∈ T , (10)

where C2′, C4′ and C5′ are the modified versions of
constraints C2, C4 and C5, respectively.

IV. VISUAL QUALITY MODEL FOR FR
We model the user-perceived image quality by jointly
considering the resolution of the image and the nature of
the HVS. Let us consider a point in a VR image located at
coordinates (a, b). Let the normalized perceived quality be
denoted by 0, let the resolution-dependent factor be 0r , and
let the factor that depends on the position in the visual system
be 0p; then, it follows that

0(a, b) = 0r (a, b)× 0p(a, b). (11)

The total perceived quality of a VR image is then given by

0 =

NW∑
a=1

NH∑
b=1

0r (a, b)× 0p(a, b). (12)
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The distance x (measured in pixels) from the foveation
point (af , bf ) to the point (a, b) is computed as x =√
(a− af )2 + (b− bf )2. As stated in Section III.B, due to

the assumed circular symmetry of the foveal layers, the
resolution r at this specified point is a function of x, and thus,
0r also varies as a function of x. Research in [53] has shown
that the perceived quality of an image follows a logarithmic
relationship with the image resolution. Based on this finding,
we model 0r for a point at a distance x from the foveation
point as

0r (x) =
log r(x)+ a0
log r1 + a0

, (13)

where a0 is an adjustable constant.
For 0p, we use the critical/cutoff frequency fc beyond

which any higher frequency is imperceptible for a certain
eccentricity e (in degrees). Higher perceived quality is thus
attained with higher fc, as the visual sensitivity is at its
maximum at the foveation point and rapidly declines at
positions farther from the foveation point. In [11], fc is
formulated for a given eccentricity e by fitting experimental
data as follows:

fc(e) =
e2 ln( 1

CT0
)

κ(e+ e2)

(
cycles
degree

)
, (14)

which can be simplified to fc(e) = 1
a1e+a2

by adopting the
notations a1 = κ/(e2 ln(1/CT0)) and a2 = a1e2. Here,
κ denotes the spatial frequency decay constant, CT0 is the
minimal contrast threshold, and e2 is the half-resolution
eccentricity constant. In [54], the best-fit parameters are given
values of CT0 = 1/64, κ = 0.106 and e2 = 2.3.
To adopt this approach into our model, we assume that

the line from the fovea to the foveation point in the image
is perpendicular to the image plane. v is the viewing distance
from the eye to the image plane, and D is the display size;
both are fixed for a particular headset. For our simulations,
we set v = 5 cm and D = 3.5 inches, which are common
parameters for many VR headsets. We then calculate e for a
pixel at position x that is viewed from a distance v as

e(v, x) = tan−1
(
Dx
NW v

)
≈

π

4
b1x, (15)

for which we employ the arctangent methods provided in [55]
to obtain the approximation tan−1(b1x) ≈ π

4 b1x, where
b1 = D

NW v
. At distance x, 0p is therefore computed as the

normalized cutoff frequency, the maximum value of which is
always assumed to be one, at e = 0. 0p now becomes

0p(x) =
fc(e)
fc(0)

=

(
1

a1e+ a2

)
/

(
1

a1(0)+ a2

)
=

a2
a1e+ a2

=
a2

(a2/e2)e+ a2

=
1

(1/e2)(π
4 b1x)+ 1

=
1

b2x + 1
, (16)

where b2 = πb1
4e2

and a1 is substituted with a2/e2 as stated
earlier.

FIGURE 3. DRL-based solution framework.

The user-perceived VR quality 0 can now be obtained
as the sum of the foveation-based cutoff frequencies over
the image. For simplicity of exposition, we assume that
the outermost layer, i.e., the K th layer, is approximated as
circular with a radius RK = max{NW ,NH }/2. If we treat
the discrete pixels as continuous and replace the sum with
an integral, Eq. (12) becomes

0 =

K∑
k=1

∫ Rk

Rk−1
2πx0r (x)0p(x) dx, (17)

whose solution can be derived as

=
2π
b2

K∑
k=1

log rk + a0
log r1 + a0

((Rk − Rk−1)

− (log(b2Rk + 1)− log(b2Rk−1 + 1))),

from which it is observed that 0 is mainly a function of the
resolutions rk and radii Rk of the foveal layers. ak in Eq. (2)
is expressed in terms of Rk as

ak =
π (R2k − R

2
k−1)

Npx
. (18)

V. EDGE VR OFFLOADING SOLUTION
To tackle the mixed-integer nonlinear optimization problem
(MINLP) presented in Eq. (10), which involves the inter-
action between multiple tasks (FR adaptation, offloading
decision, subband allocation and transmit power allocation),
we propose a DRL-based VR offloading solution that
integrates multiple cooperative RL agents.

A. OVERALL ARCHITECTURE
The proposed solution framework is depicted in Fig. 3.
Problem (10) is decomposed into per-UE RL processes, with
the foveal layer sizes and offloading decisions (along with
subband allocation) as the user actions to be determined by
the individual processes. The proposed solution framework
uses two iterative per-UE modules running in sequence: an
FR module and an offloading module. The FR module’s
role is to learn the optimal sizes of the foveal layers,
while the offloading module is responsible for deciding the
optimal offloading strategy along with subband allocation.
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FIGURE 4. Network structures and data flow for training of the proposed solution framework using the double and dueling DQN approaches.

TABLE 3. Summary of the state space, action space and reward of the proposed solution.

The purpose of using two separate modules to determine
these actions rather than using a single module to determine
all of them is to reduce the action space size handled by
each module. The FR module runs first and determines the
foveal layer sizes as its output. Its results are subsequently
used to calculate the payload size of a VR frame, which is
combined with other input features to form the input state
provided to the offloading module. The offloading decisions
and subband allocation decisions made for all UEs by their
individual offloading modules are then collected by a central
transmit-power allocation module (referred to as the power
module) to perform power allocation for the offloading UEs.
Afterward, the reward is calculated and distributed to theUEs.
The solution is obtained after the three modules are iteratively
run until the system reaches convergence. In what follows,
we describe the details of each module.

The state provided to the FR module of UE m comprises
only the resolution of the first foveal layer in the VR stream,
i.e., r1,m. The action of the FR module constitutes a set of
normalized radii µk = Rk/min{NW ,NH } for each foveal
layer k , k = 1, . . . ,K − 1. The remaining area outside of the
(K − 1)th layer is the K th layer; thus, µK is excluded from

the action. According to the definition of the foveal layers, the
action of the FR module must satisfy µ1 < · · · < µK−1 ≤

1. To ensure that the DRL agent outputs an action that
satisfies these inequalities between the µk without additional
processing, we introduce new variables γk (0 ≤ γk ≤ 1) such
that µk+1 = γk (1−µk ). Consequently, the action associated
with FR for UE m is given by {µ1, γk | k = 1, . . . ,K − 1}.
On the other hand, the state information provided to the

offloading module of UE m includes the payload data size
Dm (in bits), the motion data size dm (in bits) and a set of
channel gains defined as Hm = {gm,j|j ∈ S}, where gm,j
is the channel gain of UE m in subband j. Thus, the state is
given as {Hm,Dm, dm}. The action taken for each decision
step in the offloading module is αm ∈ {0, 1, 2, 3, . . . , S},
where S represents the number of subbands; αm = 0 means
that viewport rendering for UE m is performed locally, while
αm > 0 means that the viewport rendering task of UE m is
offloaded to the edge using subband αm. The set of subband
allocations for all UEs, {αm | m ∈M}, is used for the power
allocation process described below.

Once the UEs whose rendering tasks are to be offloaded
have been determined along with their subband allocations,
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this information is reported to the power module. The power
module then utilizes this information to determine theNOMA
power allocation using Algorithm 1. The state information
provided to the power module includes a set of channel gains
Hm. At each decision step within the power module, the
action taken is denoted as ρ∗ ∈ (0, 1], which represents
the base power allocation coefficient (PwC) and is used in
the subsequent power allocation process described below.We
adopt the power allocation process of [56]. Let nj represent
the number of UEs allocated to subband j. Without loss of
generality, we assume that forNj = 1, 2, . . . , nj, UE 1 has the
weakest channel gain, while UE nj has the strongest channel
gain, i.e., g1,j ≤ g2,j ≤ · · · ≤ gnj,j. We introduce the variables
ρ1,j, ρ2,j, . . . , ρnj,j as the power allocation coefficients for the
respective UEs. In this setup, UE m is assigned power in
subband j in accordance with the formula ρm,j × P/S. The
power allocation must satisfy the following conditions [51]:
• ρ1,j ≥ ρ2,j ≥ · · · ≥ ρnj,j,
• ρi,j ≥ ρi+1,j+ρi+2,j+· · ·+ρnj,j, i = {1, 2, . . . , nj−1},
• ρ1,j + ρ2,j + · · · + ρnj,j = 1.

As outlined in Algorithm 1, we initiate the power allocation
process by selecting the UE with the weakest channel gain
and assigning it the base power coefficient ρ∗ determined
by the DRL agent of the power module, i.e., ρ1,j = ρ∗.
Subsequently, we generate a power allocation scheme that
satisfies all the conditions mentioned above.

Algorithm 1 Power Allocation Module Process
1: pm,j: Power assigned to UE m in subband j
2: ρm,j: Fractional power for UE m in subband j
3: for subband j ∈ S do
4: The DRL agent deterimnes the base power coefficient

ρ∗

5: Sort the UEs inNj in ascending order of their channel
gains

6: Set ρ1,j← ρ∗

7: for UE m ∈ Nj do
8: if UE m is the last then
9: Assign ρm,j← 1− (ρ1,j + ρ2,j . . .+ ρm−1,j)

10: else
11: Assign ρm,j = ρ1,j × (1 − (ρ1,j + ρ2,j + . . . +

ρm−1,j))
12: end if
13: end for
14: Set pm,j← ρm,j × P/S
15: end for

As illustrated in Fig. 3, the outcomes of the FR, offloading,
and power allocation modules are integrated to evaluate the
respective rewards for their actions, which are subsequently
shared among the UE agents. To minimize the objective
function in problem (10), we use the per-UE objective value
to construct a reward expression for each UE agent within the
FR and offloading modules. Meanwhile, we employ the total
objective value to construct a reward expression for the agent
operating within the power module. For UE m, the reward

expression is given below:

Rm(t) = −[ω(1− αm(t))(φTl,m(t)+ El,m(t))

+ ωαm(t)(φTe,m(t)+ Ee,m(t))+ 0m(t)], (19)

and the total reward sum is given as

R(t) =
∑
m∈M

Rm(t). (20)

With this reward structure, each agent is encouraged to
find a good balance between overhead and visual quality.
The agents are continuously trained to take actions that
will maximize their future expected rewards as they utilize
computation and spectrum resources more efficiently.

B. NEURAL NETWORK STRUCTURE AND TRAINING
PROCEDURE
We present the overall network structures, employing a
combination of the double DQN [57] and dueling DQN [36]
approaches, as illustrated for UE m in Fig. 4. The associated
training steps are also depicted in this figure. In this
subsection, we primarily discuss the structure of the FR
module, which shares an identical network structure with the
offloading module, differing only in their input states and
output actions. For brevity, we omit a detailed description of
the offloading module here. We differentiate the components
and parameters of the FR and offloading modules by using
superscripts f and o, respectively.

Each module employs the double DQN approach, in which
an agent maintains a pair of neural networks with similar
structures— for the FR module of UE m specifically,
an evaluation network (vNet)with parameters θ

f
m and a target

network (gNet) with parameters ϑ
f
m. The agent’s objective in

the proposed solution framework is to determine the mapping
from each state to a set of Q-values for all possible actions.
The vNet approximates this mapping, based on which the
agent chooses an action that produces amaximumQ-value for
a given state in order to maximize its corresponding expected
long-term reward. On the other hand, the gNet characterizes
the desired Q-value, which is used to backpropagate through
and train the vNet. The parameters of the vNet are updated
to minimize the difference between the Q-values from the
two networks. The FR module of UE m selects action
{µ1, γk} using vNetfm, the offloading module selects action
αm using vNetom, and the power module selects action ρ∗

using vNetp, all based on an ϵ-greedy strategy whereby the
action decision is made so as to obtain the largest Q-value
of the corresponding vNet for a given state. The determined
action is then reported to the central power allocationmodule.

Once an action decision is made by the vNet of
each module and executed along with power allocation,
the agent receives a reward and the next state, which
serves as the input for the next decision step. Tuples
of the forms (r1,m(t), {µ1(t), γk (t)},Rm(t), r1,m(t + 1)),
({Hm(t),Dm(t), dm(t)}, αm(t),Rm(t), {Hm(t + 1),Dm(t +
1), dm(t + 1)}), and ({Hm(t)}, ρ∗(t),R(t), {Hm(t + 1)}) for
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VR frame t are stored in the replay memories η
f
m, ηom, and

ηp of the FR, offloading, and power modules, respectively.
During the training episodes, batches of random experiences
E fm, Eom, Ep are sampled from η

f
m for vNetfm, ηom for vNetom,

and ηp for vNetp, respectively, and used to compute the
corresponding targetQ-valuesQgm,n using gNet

f
m, gNetom, and

gNetp for each experience n ∈ E fm, Eom, Ep. In each training
step, the aim is to minimize the gap between the Q-values of
the vNet and the target Q-values of the gNet. Thus, the loss
function L f (θ fm) of the FR module is defined as the difference
between Qm—the Q-value from the vNet—and Qgm,n—the
target Q-value from the gNet—for the sampled batch of
experiences:

L f (θ fm) =
1

|E fm|

∑
n∈E fm

(
Qm(r

(n)
1,m, {µ1, γk}

(n)
; θ fm)− Q

g
m,n

)2
,

(21)

where (r (n)1,m, {µ1, γk}
(n)) is the state–action pair correspond-

ing to experience n. Qgm,n is obtained as

Qgm,n = R(n)
m + γQm

(
r (n)+1,m , {µ1, γk}

(n)+⋆
;ϑ f

m

)
, (22)

whereR(n)
m is the per-UE reward for experience n, r (n)+1,m is the

next state, and {µ1, γk}
(n)+⋆ corresponds to an action bearing

the maximum Q-value for the next state under vNetfm:

{µ1, γk}
(n)+⋆
= argmax
{µ1,γk }∈Af

Qm(r
(n)+
1,m , {µ1, γk}; θ

f
m), (23)

where Af is the action space of the FR module. We per-
form backpropagation on vNetfm using gradient descent
to minimize L f (θ fm) and update θ

f
m. After training for a

specified number of iterations, the parameters ϑ
f
m of the

gNet are updated by replacing them with θ
f
m. This serves

the purpose of keeping the parameters ϑ
f
m synchronized with

those of vNetfm to better approximate the expected reward
when computing the targets. The loss functions for both
the offloading and power modules are defined in a similar
manner.

The structure of both the vNet and gNet is a dueling DQN
consisting of serially linked fully connected (FC), advantage
and value (A+V), and output layers. All the FR, offloading,
and power modules share an identical network structure, and
we describe the details based on the FR module case in
the following. The input layer of each network provides an
interface through which the state information is fed into the
network to be passed to the first FC layer. The FC layers
learn the mapping from the input states to the corresponding
Q-values of the possible actions. Then, the Q-value from the
FC layers is first decomposed into two parts:

Qm(r1,m, {µ1, γk}) = Vm(r1,m)+ Am(r1,m, {µ1, γk}), (24)

where Vm(r1,m) and Am(r1,m, {µ1, γk}) are the state and
action-advantage values, respectively, for the FR module,
and they are learned separately. This decoupling technique

TABLE 4. Simulation parameters (default values are underlined).

of dueling DQNs facilitates better approximation of the
Q-values by allowing the expected returns resulting from
a state and an action to be individually evaluated. The
value stream passes through an FC network to estimate
Vm(r1,m), which allows the agent to discover the Q-value
of state r1,m and the states for which it is not worthwhile
to explore each action. The action-advantage stream passes
through another FC network to estimate Am(r1,m, {µ1, γk}),
through which the agent learns the advantage of executing
an action {µ1, γk} for FR in state r1,m. With θ

f
m assumed to

be the network parameter set for both streams, the action-
advantage value for UE m in VR frame t is obtained as
Am(r1,m(t), {µ1(t), γk (t)}; θ

f
m) for action {µ1(t), γk (t)}, and

the corresponding state value is obtained as Vm(r1,m(t); θ
f
m).

Finally, the output layer aggregates the two streams into
Qm, which is computed relative to the average action-
advantage value over all actions for the state under
consideration:

Qm(r1,m(t), {µ1(t), γk (t)}; θ fm)

= Vm(r1,m(t); θ fm)+ [Am(r1,m(t), {µ1(t), γk (t)}; θ fm)

−
1
|Af |

∑
{µ1,γk }∈Af

Am(r1,m(t), {µ1, γk}; θ
f
m)]. (25)

VI. PERFORMANCE EVALUATION
In this section, we evaluate the reward, user-perceived quality,
energy consumption and system delay performance of the
proposed solution for varying system factors in comparison
with other benchmarks and provide in-depth analyses.
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TABLE 5. Specification of each module of the schemes evaluated in Section VI.

FIGURE 5. Comparison of reward evolution across episodes for various
RL algorithms.

A. SIMULATION PARAMETERS AND ENVIRONMENT
The simulation parameters are listed in Table 4. In this table,
the default value of a parameter is underlined if a set of values
is considered for it.

We consider three foveal layers (K = 3), as suggested
in [58]. Additionally, we investigate a two-layer scenario
(K = 2) for the proposed solution to assess the impact
of the number of layers on performance. We denote the
three-layer and two-layer cases of the proposed solution
by ‘‘DRL FR 3’’ and ‘‘DRL FR 2,’’, respectively, in the
following result graphs. We set 0.05 ≤ µ1 ≤ 0.95. For
simplicity of simulation, discrete action spaces are assumed
for µ1 and a1, with an increment of 0.01 between one action
value and another. The full resolution (r1) of each frame is
randomly selected from the set of considered values. The
scenario considered in most simulations, unless otherwise
stated, consists of five UEs and three subbands. To configure
the computation and power-related parameters, we refer
to the works of [18], [37], [59], and [60].

The average channel gain of each UE is given by the path
loss model: gm,j = Ad ( 3×108

4πFcdm
)de , ∀j ∈ S, with path loss

exponent de = 3. Ad = 3 and Fc = 915 MHz denote the
antenna gain and the carrier frequency, respectively, while
dm is the distance measured in meters between the BS and
UE m. We distribute the UEs with dm = 120 + (m − 1)i,

where i is an adjustable parameter determining the spacing
between adjacent UEs, which is set to 15 meters in these
simulations. The time-varying channel gain is generated
from the Rician fading model with a factor of 0.3 and is
assumed to be i.i.d. across time slots and subbands. The
system bandwidths for DL and UL are 8 and 2 MHz,
respectively. The subband bandwidth Bs is given as W

S , where
W is the system bandwidth and S denotes the number of
subbands. The noise power for a subband is N0Bs, where
N0 = −174 dBm/Hz is the noise power spectral density.
The proposed solution is implemented using the Ten-

sorFlow 1.14.0 platform with Python version 3.7.11. The
hyperparameters of the neural networks are set following
rigorous simulations performed with a range of values. The
learning rate is set to 0.01, the batch size is 128, the memory
size is 1024, and the discount factor is γ = 0.9. The epsilon
value for exploration gradually decays in probability from
100% to 1%. Moreover, RMSProp is used as the optimizer,
and the rectified linear unit (ReLU) function is used as the
activation function for the two FC layers, which contain
20 and 15 neurons. The total number of episodes is 2000, and
training is performed for the first 80% of the episodes. Every
data point in the plots is an average of values from the last
20% of the episodes.

B. BENCHMARKS
Because no previous works in the literature have explored
the offloading avenue in the context of FR-enabled VR,
we evaluate the performance of our proposed DRL FR
solution in comparison with the following schemes as
benchmarks (the offloading and power allocation modules
of the proposed solution are still used with the following
benchmarks):

• Fixed FR: Constant values are maintained for the
FR factors µ1 and µ2. Three pairs of (µ1, µ2) are
considered: Fixed FR-1 with (0.49, 0.51), representing
the case in which the sizes of the inner and middle
layers are nearly the same; Fixed FR-2 with (0.25,
0.75), representing a moderately small inner layer and
a moderately large middle layer; and Fixed FR-3 with
(0.05, 0.95), representing a combination of a very small
inner layer and a very large middle layer.
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FIGURE 6. Performance comparison of various schemes for FR adaptation and offloading with varying numbers of UEs.

• Random FR: Random FR factors are generated for the
inner and middle layer sizes for each decision step in an
episode.

• No FR: As a baseline, we also implement the No FR
strategy, in which a traditional rendering technique is
used to render the VR image uniformly at full resolution
across all layers.

The action space constraints described earlier for the FR
module are also applied to the FR factors in the benchmark
schemes.

To evaluate the gains of adaptive offloading, we introduce
the following non-DRL offloading strategies to serve as
benchmarks for comparison (the FR module of the proposed
solution is still used with the following benchmarks):
• Edge rendering: This approach involves offloading the
VR computation tasks of 2S UEs in ascending order of

their channel gains, i.e., αm(t) > 0 for these UEs, while
the remaining UEs operate in local mode. When this
strategy is integrated with the DRL-based FR module,
we refer to it as ‘‘DRL FR-Edge.’’

• Local rendering: In this strategy, all UEs operate in local
mode, meaning that αm(t) = 0 for all m ∈ M and
t ∈ T . Each UE acts independently and uses its own
local resources to execute its VR computation tasks.
When combined with the DRL-based FR module, this
strategy is referred to as ‘‘DRL FR-Local.’’

Fig. 5 illustrates the training progress of our proposed
solution framework under various DRL methods, including
basic DQN and double DQN. The results demonstrate that
all DRL methods achieve good convergence under similar
parameter settings. Particularly, the dueling double DQN,
as depicted in its network structure in Fig. 4, consistently
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FIGURE 7. Performance comparison of various schemes for FR adaptation and offloading with varying numbers of subbands.

outperforms the other two methods throughout the training
episodes, while the double DQN also shows significant
improvement compared to the basic DQN. Thus, we employ
the dueling double DQN for the proposed solution in the
subsequent simulation.

C. IMPACT OF THE NUMBERS OF UEs AND SUBBANDS
The performance results for varying numbers of UEs are
illustrated in Fig. 6. The DRL FR approach consistently
demonstrates the best performance in terms of the total
reward (objective). In Fig. 6(a), the FR schemes exhibit
a notable advantage over the No FR scheme. However,
the reward diminishes as the number of UEs increases
because each UE receives a progressively smaller share
of the subband resources on average, leading to higher

energy consumption and delays. The gap between the DRL
FR and No FR schemes is smallest when there are few
UEs (e.g., 2 UEs) and becomes more pronounced with an
increasing number of UEs. The rapidly decreasing reward
of No FR with an increasing number of UEs is due to the
high data volume it produces, as shown in Fig. 6(b). DRL
FR consistently outperforms the other FR schemes across
all numbers of UEs. While No FR may perform better than
some fixed schemes when the number of UEs is small, all
FR schemes achieve superior performance as the number of
UEs increases. DRL FR 3 achieves a slightly higher reward
than DRL FR 2, primarily due to the higher flexibility of its
FR configuration. The gap between DRL FR and DRL FR-
Edge widens as the number of UEs increases since fewer
wireless resources (less bandwidth and power) are allocated
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FIGURE 8. Performance comparison of various schemes for FR adaptation and offloading with varying balance coefficients ω.

per UE, resulting in rapidly increasing delays and energy
consumption. Fig. 6(c) and (d) display the corresponding
patterns of average energy consumption and latency, respec-
tively, per VR frame. The energy consumption and delay
under DRL FR remain relatively constant compared to those
under most other schemes. This is because DRL FR strives
to maintain both metrics at the expense of experiencing
decreasing visual quality under the current setting of the
balance weight between the overhead and quality terms. The
DRL FR approach thus achieves an effective trade-off for
the VR system with a varying number of UEs, enabling it
to achieve the highest overall reward.

In Fig. 7, we present the overall performance of all
schemes with an increasing number of subbands. The system
reward for the FR schemes shows a consistent upward

trend with a growing number of subbands, allowing more
UEs to offload their VR computation tasks simultaneously.
Notably, the performance gap between the best FR scheme
(DRL FR) and the worst one (Fixed FR-3) ranges from
12.8% (with one subband) to 15.8% (with six subbands).
However, this increase in the number of subbands introduces
a trade-off. Because the spectrum is evenly distributed among
all subbands, UEs that choose to offload experience a
reduction in the available bandwidth, along with a reduction
in the available power. Consequently, more UEs may opt
for local operation, especially when the costs associated
with offloading exceed the benefits. This trend is most
apparent in DRL FR-Edge. As the number of subbands
increases from four to six, the reward of DRL FR-Edge
significantly decreases, becoming nearly equivalent to that
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FIGURE 9. Performance comparison of various schemes for FR adaptation and offloading under varying local CPU speeds.

of DRL FR-Local. This observation implies that offloading
the tasks of all UEs may not always be beneficial in practical
scenarios where wireless resources are limited.

D. PERFORMANCE VS. OVERHEAD COEFFICIENT
Fig. 8 shows the performance results for a range of values of
the balance coefficient ω between the overhead and quality
terms of the reward function. In Fig. 8(a), we observe that No
FR achieves a slightly higher reward than DRL FR at ω =

0.05. This can be attributed to the fact that for small ω values,
visual quality takes precedence over the overhead terms, and
the performance of DRL FR is constrained by the upper
bound of the first layer in our simulation setup. As shown
in Fig. 8(b), No FR always utilizes the highest quality
setting, prioritizing visual quality above all else. However,
as ω increases, DRL FR consistently outperforms the other

schemes, and the performance of No FR progressively
deteriorates. Fig. 8(b) shows the gradual quality adjustment
of the DRL-based FR schemes, achieving a balance between
visual quality and energy/delay overheads. When ω assigns
a higher weight to quality (ω = 0.05), these DRL-
based schemes maximize visual quality. As the dominance
of quality decreases (with increasing ω), they gradually
sacrifice visual quality to minimize the overheads. This
trade-off between visual quality and overhead is reflected
in the energy consumption and delays, as demonstrated in
Fig. 8(c) and (d). The DRL-based FR schemes exhibit high
overheads at ω = 0.05, while the overheads reach their
lowest levels at ω = 0.5. Consequently, the adaptive FR
configuration outperforms fixed configurations, including
No FR, for which the quality remains the same across all
values of ω.
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FIGURE 10. Comparison of reward evolution across episodes for various
power allocation schemes.

E. PERFORMANCE VS. LOCAL CPU SPEED
In Fig. 9, we present the performance results for varying local
CPU speeds of the UEs. As the UE CPU speed increases,
the local rendering time (T rnl ) decreases, as evident from
Eq. (5). We assume that the power consumption for local
rendering remains constant, which leads to a reduction in
local energy consumption with increasing UE CPU speed,
as shown in Eq. (6). Fig. 9(a) shows that DRL FR consistently
achieves the highest reward among all the compared schemes.
The DRL-based offloading schemes, including DRL FR, are
generally not heavily affected by the changing UE CPU
speed, as they optimally exploit offloading opportunities.
However, the performance improvement of two schemes—
No FR and DRL FR-Local—is notable. As shown in
Fig. 9(c) and (d), they experience significant energy and
delay overheads due to their dominant usage of the local
mode. With increasing UE CPU speed, the energy and delay
costs of the local mode significantly decrease, making local
operation more attractive under such settings. Consequently,
the rewards of both No FR and DRL FR-Local increase
rapidly as the UE CPU speed rises. This indicates that higher
UE CPU speeds, or, more accurately, higher UE CPU power
efficiency, can enhance the benefits of local processing,
making it an affordable option in certain scenarios.

F. PERFORMANCE IMPACT OF POWER ALLOCATION
Fig. 10 presents a comparison between fixed power allocation
under various fixed base power coefficients (PwC) and DRL-
based power allocation (referred to as DRL Allocation).
It is evident that low power coefficients (0.5), representing
a fraction of the power budget allocated to the farthest UE
and subsequent UEs, result in lower rewards. Conversely,
excessively large coefficients (0.9), indicating an over-
allocation of power to the farthest UE, are also less desirable.
Intermediate coefficients (0.75) yield comparatively higher
rewards. However, the DRL-determined power coefficient
consistently achieves the best reward performance across

FIGURE 11. Comparison of average rewards for various schemes with
varying BS transmit power budget.

training episodes, implying the importance of using the
optimal base power coefficient.

Fig. 11 shows the performance of the schemes under
varying transmit power budgets at the BS. In general, as more
power budget is allocated to transmission, the average reward
increases for all schemes, as it leads to an expansion of
wireless link capacity. However, DRL FR-Local does not
benefit from the increased power budget. Among all the
schemes, DRL FR 3 consistently achieves the highest reward,
with DRL FR 2 following closely across different power
budgets.

G. PERFORMANCE IMPACT OF NOMA AND OMA
In Fig. 12, we present the performance comparison of
different multiple access schemes, namely DRL-NOMA and
DRL-OMA, alongside the exhaustive search-based schemes,
Exhaustive-NOMA and Exhaustive-OMA. The Exhaustive
scheme explores all possible subband allocations to UEs.
At each decision step, the scheme computes the reward that
each UE would receive when offloading via a particular
channel or computing locally. After evaluating rewards for all
subband (and local) allocations, each UE is assigned to the
subband with the highest reward. Both Exhaustive-NOMA
and Exhaustive-OMA provide optimal policies, serving as
benchmarks to illustrate the upper bounds of achievable
performance for their respective multi-access schemes.

In Fig. 12(a), the reward results are presented for an
increasing number of UEs. This figure consistently demon-
strates that DRL-NOMA outperforms DRL-OMA, highlight-
ing the significance of NOMA in expanding wireless capacity
and thereby reducing the constraints on offloading decisions
imposed by capacity limitations. Fig. 12(b) also confirms
this trend, with DRL-NOMA consistently outperforming
DRL-OMA. DRL-NOMA even surpasses Exhaustive-OMA
at several points, underscoring the importance of NOMA.
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FIGURE 12. Comparison of average rewards for NOMA and OMA versus exhaustive search for various settings of UEs and computational
speeds.

Furthermore, the figures indicate that DRL-NOMA achieves
performance close to that of Exhaustive-NOMA, with over
88% of Exhaustive-NOMA’s performance, thus efficiently
optimizing edge VR operation. However, this result also
implies that there is still room for further optimization.

VII. CONCLUSION
We have developed a DRL-based solution for an edge-
assisted VR offloading system, addressing adaptive FR,
offloading decisions, and wireless resource management.
The main objective of our approach is to enhance the user-
perceived visual quality of VR images while minimizing
energy consumption and delay overheads. To achieve this,
we derived a model of the user-perceived visual quality of
a VR image rendered via FR and formulated an objective
function by combining visual quality, energy consumption,
and delay overhead terms. Our solution optimizes the
foveal layer sizes, offloading decisions, and subband and
power allocation for wireless links. Our solution framework
consists of two per-UE modules, each dedicated to learning
the optimal foveal layer sizes and offloading decisions
along with subband allocation, complemented by a central
power allocation module. Through rigorous evaluation,
we demonstrated that our proposed DRL-based solution can
effectively adapt to various environmental conditions, such
as different numbers of UEs, different numbers of subbands,
different values of the balance coefficient between the
visual quality and overhead terms, and different UE process-
ing capabilities. Notably, our solution consistently outper-
formed traditional rendering schemes and other established
benchmarks.

For further research, we can consider including additional
parameters related to FR optimization, such as the number
of foveal layers and the per-layer resolutions. Additionally,

the integration of eye gaze tracking, overfill rendering, and
other VR content creation techniques can also be considered.
Another important area for potential improvement involves
designing a newDRL structure to enhance performancewhile
reducing the computational load. Furthermore, investigating
the impacts of diverse network systems and components
on edge-assisted VR services and designing integrated VR
systems are also worthwhile topics to explore. These topics
encompass new multiple access schemes such as rate-
splitting multiple access (RSMA), new spectrum resources
such as themillimeter wave (mmWave) bands, and new nodes
such as intelligent reflecting surfaces (IRSs).
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