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ABSTRACT This paper proposes a comprehensive model order reduction framework to enable fast power
integrity verification at the system level. This approach is developed to compress models of complete power
delivery networks of high-end multiprocessor systems, where electromagnetic models of board and package
are connected through banks of per-core Fully Integrated Voltage Regulators to chip models and loads in
a closed-loop configuration. Due to complexity in both dynamical behavior and number of signals to be
monitored, a direct transient simulation at the system level is very challenging. We show that a careful
topological formulation of the circuit equations leads to a global model format that enables a structured
projection framework for the elimination of the redundant states. Within this framework, we present and
compare two alternative approaches based on approximate interpolation and empirical balancing, here
adapted for the application at hand. In both cases, the resulting system is proven to be unconditionally stable
both in open and in closed-loop configuration. Transient simulation of the reduced system provides a speedup
exceeding 100× with respect to SPICE.

INDEX TERMS Power integrity, integrated voltage regulators, model order reduction, moment matching,
balanced truncation, macromodeling.

I. INTRODUCTION
Advancements in computational performance of modern
high-end microprocessors is mainly driven by combining
increasingly many processing cores to parallelize and dis-
tribute workload. This trend results from technological limits
in power density and area, that have ultimately determined
the slowdown in frequency scaling and single-core per-
formance [1]. Consequently, microprocessors designed for
pervasive applications such as high-performance computing
(HPC) and artificial intelligence (AI) are necessarily many-
cores platforms, with possibly hundreds of cores.

The associate editor coordinating the review of this manuscript and
approving it for publication was Michel Nakhla.

Power delivery networks (PDNs) for many-cores sys-
tems take advantage of Fully-Integrated Voltage Regulators
(FIVRs) as an innovative architectural solution where mul-
tiple voltage regulators are integrated on the package and
die, effectively providing a second stage of regulation after
the main platform Voltage Regulator (VR). This dual-stage
topology has been introduced to maintain efficiency in spite
of growing power levels and to enable fine-grain power
management over a large number of independent power
domains in different cores. FIVRs consist in an array of
multi-phase integrated Buck switching regulators, whose
purpose is to deliver a stably regulated and filtered voltage
to individual cores. Per-core feedback controllers modulate
the instantaneous duty cycle in the respective converter so as
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to reject load voltage variations. Key components of FIVRs
are in-package inductors and on-die capacitors used to realize
the output low-pass filter, whose size is constrained to fit in
a small volume. The distributed nature of this architecture
makes design more difficult and inherently system-level,
as it involves the board, package and die levels at the same
time. Similarly, verification of such large-scale complex
systems becomes a challenging task, because unintended
electromagnetic interaction between distinct cores becomes
inevitable as many components operate in close vicinity.
Thus, performance verification aimed at certifying desired
specifications in terms of voltage droop and power noise
requires a system-level analysis in time-domain where all
subsystems are simulated concurrently.

System-level simulations are set up by joining highly-
accurate models of individual parts, which are usually
extracted from commercial electromagnetic solvers and
available as tabulated S-parameters data or lumped equiv-
alent circuits (SPICE netlist) [2]. In case of S-parameters
data, typical workflows rely on rational fitting to build
macromodels that are instantiated in the larger system-level
netlist. These individual models are accurate representations
of the corresponding physical components, thus making
the resulting numerical simulation computationally heavy
and time-consuming, even if performed with state-of-the-
art circuit solvers such as HSPICE. This represents an issue
that is still to be addressed, as computational solutions
for fast transient simulation tailored for multi-core power
delivery networks have not been satisfactorily addressed in
the literature yet. The present work contributes to fill this
gap by leveragingmodel reduction (MOR) to simplify system
complexity and ultimately bring transient analysis runtime
to a fraction of what is currently required. The same issue
has been addressed in [3] and [4], where reduced models are
constructed through a compressed and parameterized black-
box method, and [5], where structured projection is used
instead.

This work presents an intrusive, projection-based reduction
method whose key novelties are
• a structured approach where the reduced PDN model
retains the FIVR switches as a separate and unaffected
system block, as only the linear components of the
PDN are compressed. This effectively enables adapting
linear MOR to a system with mild nonlinearities (due
to duty cycle modulation). In addition, this avoids
neglecting the nonlinear effects of the switches in
transient simulation. In this regard, it fundamentally
differs from [4], where parameterization is used to
construct a black-box surrogate to model duty cycle
modulation.

• scalability and applicability to many-cores platforms
thanks to a computationally cheap formulation that oper-
ates directly on the network equations as obtained via
Modified Nodal Analysis (MNA). Building a reduced
model only requires performing frequency-domain AC
analyses of the full-order model. For this reason,

FIGURE 1. Topology of a generic power delivery network with an
integrated switching regulation stage.

it represents an extension of [5], where the structured
approach depends on a state-space representation,
possibly difficult to obtain and handle. Moreover, the
moment-matching method of [5] is here improved
using balancing-based reduction to make the scheme
more efficient and realization-independent, hence more
robust. Furthermore, fundamental properties such as
exact DC behavior and passivity are guaranteed by
construction.

Compared to related projection-based MOR algorithms, the
present work leverages the particular system topology to
devise a method where a) reduction of a descriptor form
is carried out without computing spectral projectors as in
the theory of [6]; b) passivity preservation is achieved at
a reduced computational cost with respect to [7], since
solution of generic large-scale Lur’e equations is avoided;
c) a randomized SVD scheme is employed to limit the
memory footprint of projection matrices computation.

With these features, we can demonstrate a fast transient
solver with a computational speedup of 50-200× compared
to the full-order model and up to 230× with respect to
HSPICE in realistic power integrity transient analyses, with
error in the order of 5 − 10 mV or less, compatibly with
the accuracy required in the application at hand. Results of
transient analyses using the proposed reduced models yield
essentially the same information as the full-order model in
terms of maximum voltage droop, inter-core coupling noise,
transient response and DC characteristic.

II. NOTATION
We denote scalar variables as x, vector variables as x
or X, and matrices as X or X , with the latter notation
reserved for block matrices related to small-signal linearized
system representations. The all-zero and identity matrices
are denoted as 0 and I, respectively. We will adopt a
MATLAB-consistent notation to denote horizontal stacking
(X1,X2) and vertical stacking (X1;X2) of matrix blocks
of compatible size. Vertical stacking will also be denoted
through the operator col{·}, whereas diag{·} and blkdiag{·}
will denote (block) diagonal stacking. Also, we denote with
X(r1:r2,c1:c2) the submatrix of X formed by its rows from
r1 to r2 and its columns from c1 to c2, with the operator:
alone selecting all rows/columns. The standard Kronecker
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FIGURE 2. Detailed block schematic of FIVR-based multi-core power
delivery network, with expanded per-core view of the output network,
switches and controllers.

matrix product is ⊗ and operator orth{X} produces a matrix
whose orthogonal columns span the range R{X} of matrix
X. Finally, for a generic descriptor system, we will use the
alternative notation(

E,A B
C D

)
↔

{
Eẋ = Ax+ Bu
y = Cx+ Du

(1)

with A replacing E,A for regular state-space with E = I.

III. PROBLEM STATEMENT
This paper considers the system topology depicted in
Fig. 1, representing a power delivery network (PDN) whose
architecture includes a voltage regulation stage implemented
through switching converters. The main supply to the power
delivery network is provided by the ideal (constant) input
voltage VIN. On the output side, the PDN delivers power to
multiple loads, represented by ideal time-dependent current
sources. Load voltage regulation relies on a bank of switching
regulators that are here assumed to be PWM-controlled Buck
converters with fixed switching period and time-varying duty
cycle. The duty cycles d(t) are synthesized by a feedback
controllerK, based on the error signal e(t) between the actual
load voltage and a predefined target value Vref.

Besides the switching and control circuitry, a system-
level PDN description includes suitable models of all
passive components and parasitic elements, represented in
Fig. 1 through the input and output network blocks. Unlike
the converter switches, which introduce a nonlinear duty
cycle modulation effect, both input and output networks
are Linear and Time-Invariant (LTI). This motivates the
system partitioning evidenced in Fig. 1, where all LTI
components are collectively viewed as a large subsystem
G, while the converter switches constitute a separate block.
This decomposition underpins the structured approach of
this work, whereby methods are provided to build compact
models of G that are accurate and stable when operating in
the closed-loop configuration of Fig. 1.

This topology captures the essential features of PDNs
of many-core architectures with per-core Fully-Integrated
Voltage Regulators (FIVRs), which is the application that
motivates this work (see Fig. 2). The reduction methods
outlined here can be directly employed to formulate and
compress the system equations in order to enable a fast
transient solver for system-level prediction of the PDN
performance under realistic load current transients.

In order to set notation, we define with reference to Fig. 2
• Nc number of cores;
• No number of load ports (voltages to be monitored) for
each core;

• P = NcNo total number of output voltages to be
monitored;

• Np number of phases of each FIVR.
Each building block is now described in more detail.

A. INPUT NETWORK
The block denoted as Input network in Figs. 1–2 represents
the electrical behavior of the board and the package up to the
interface with the FIVR switches. This block is intended
to model all parasitics and resonances of the combined
board/package PDN portion, together with its on-board and
on-package decoupling capacitors and a linear model of
the platform VRM. This block is equipped with 1 + NcNp
ports since connected with VIN and with each FIVR phase
of each core. The input model is thus a large-scale Linear
Time-Invariant (LTI) system, which can be represented by a
frequency-domain multi-input multi-output (MIMO) transfer
function Gin(s) through(

IIN
V1

)
= Gin(s)

(
VIN
I1

)
(2)

where V1, I1 ∈ CNcNp .
The characterization of the input model is available in

terms of its constitutive parts:
• an electromagnetic characterization of the coupled PDN
interconnect (excluding VRM and decoupling capac-
itors), available through frequency-domain scattering
matrix samples over the bandwidth of interest computed
by a full-wave Maxwell equation solver. This descrip-
tion is converted to a state-space macromodel in a pre-
processing phase, using standard passivity-constrained
rational fitting algorithms [8].

• a set of models of decoupling capacitors, which can
be available either as RLC subcircuits or as frequency
response samples, in which case a macromodeling step
is used to derive associated state-space descriptions.

• a linear VRM model, expressed as an RL subcircuit.
It can be easily shown (see Appendix A) that assembling
the above building blocks using a standard Modified Nodal
Analysis (MNA) stamping leads to the general descriptor
form

Gin(s) :

{
Einẋin = Ainxin + Binuin
yin = Cinxin + Dinuin

(3)
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where

uin ≜

(
VIN
i1

)
, yin ≜

(
IIN
v1

)
. (4)

Note that the descriptor matrix Ein is generally singular,
so that (3) is a Differential Algebraic system of equations
(DAE).

B. OUTPUT NETWORK
Each individual core is described by a corresponding output
model, which represents the PDN portion between the FIVR
switches and the loading current sources (see Fig. 2). The
collection of all Nc core-wise output models forms the output
network of Fig. 1. Each output model includes
• detailed electrical models of integrated inductors, which
are part of the output filtering network of each FIVR.
Such models are here available in terms of frequency
scattering samples computed by a full-wave Maxwell
equation solver, applied to the coupled coils related
to all phases of any individual FIVR. Such samples
are converted to passive rational macromodels and are
therefore available in state-space form.

• on-die integrated passive component models, including
MIM capacitors that complete the FIVR filtering net-
work, as well as PDN die models. All such components
are again described by R(L)C subcircuits.

The output model for the k-th core is therefore a passive
LTI systems represented by a MIMO transfer function Gk (s)
through (

I2,k
Vo
k

)
= Gk (s)

(
V2,k
Iok

)
(5)

where V2,k , I2,k ∈ CNp collect the interface variables to the
switches and Vo

k , I
o
k ∈ CNo are the voltages and currents at

the k-th core load ports. Following a similar MNA stamping
procedure as for the input network, the output models are
available in descriptor form

Gk (s) :

{
Ek ẋk = Akxk + Bkuk
yk = Ckxk + Dkuk

k = 1, . . . ,Nc (6)

where

uk ≜

(
v2,k
iok

)
, yk =

(
i2,k
vok

)
(7)

C. FIVR CONTROLLERS
The controllers are responsible for driving the switches in
a feedback loop by sensing the output voltage(s) to be
regulated. For the k-th core, an error signal quantifying the
difference between the regulated load voltage and a target
reference Vref is defined as

ek (t) = Nkvok − Vref, (8)

where Nk ∈ R1×No is a selector vector that extracts a single
port voltage. Such error signal is processed by a compensator,
whose output is the duty cycle signal dk (t) of the FIVR

switches. The controllers are then described by the following
state-space realizations{

ẋK,k = AK,kxK,k + BK,kek
dk = CK,kxK,k

k = 1, . . . ,Nc (9)

whose coefficients are assumed to be known.

D. SWITCHES
Power transistor switches are key components of Buck
regulators, which require a hierarchy of models for vari-
ous stages of design and verification. Although efficiency
investigations require detailed transistor-level descriptions,
much simpler models are sufficient for system-level power
integrity analysis and verification. In this context, the natural
description of the switching bank of the multiphase FIVR
associated to a single core k is

wk = 1kzk , wk ≜

(
i1,k
v2,k

)
, zk ≜

(
v1,k
i2,k

)
(10)

where 1k is a 2Np-port hybrid matrix representation. In case
an accurate description of the voltage ripple induced by
the PWM switching pattern is desired, a time-dependent,
piecewise constant model for 1k can be used. Instead,
if only a system-level evaluation of the voltage droop
and long-term transient response is required as induced by
load current transients, a low-frequency averaged switch
model is sufficient. This is the model herein adopted, which
basically amounts to representing each pair of switches
through an ideal transformer having its turn ratio equal to the
instantaneous duty cycle. Under this assumption, we have

1k =

(
0 −dkINp

dkINp 0

)
(11)

E. FULL SYSTEM DESCRIPTION
We now assemble all individual submodels representing the
input network, the output models associated to all cores
with the corresponding averaged switches models and the
controllers. We first collect all relevant circuit variables in the
following global vectors

io = col{iok}
Nc
k=1 vo = col{vok}

Nc
k=1

i1 = col{i1,k}
Nc
k=1 v1 = col{v1,k}

Nc
k=1

i2 = col{i2,k}
Nc
k=1 v2 = col{v2,k}

Nc
k=1 (12)

Combining (3) with (6)-(9) and (11) for k = 1, . . . ,Nc leads
to the complete system description

Eẋ = Ax+ Bww+ Buu (13a)

z = Czx+ Dzww+ Dzuu (13b)

y = Cyx+ Dyww+ Dyuu (13c)

w = 1(d)z (13d)

where

w ≜

(
i1
v2

)
, z ≜

(
v1
i2

)
(14)
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FIGURE 3. Left panel: sparsity pattern of the input network Ain matrix
in (3) for a 60-core enterprise server system (see Sec. VIII-B). Only 0.6%
of all entries are nonzero. Right panel: sparsity pattern of the A matrix
in (13) for the same testcase.

collect the ‘‘internal’’ variables at the switch interface,

u ≜

(
VIN
io

)
, y ≜

(
IIN
vo

)
(15)

define input and output variables, respectively, and

1(d) =
(

0 −1′(d)
1′(d) 0

)
(16)

where

d = col{dk}
Nc
k=1, 1′(d) = diag{d} ⊗ INp . (17)

The differential-algebraic system (13) can be interpreted as
an open-loop description of the regulated PDN where the
duty cycle signals collected in d play the role of external
inputs. This systemmust be complemented with the feedback
control, represented collectively for all cores as

ẋK = AKxK + BKe (18a)

e = Nvo − Vref (18b)

d = CKxK (18c)

where

N = col{Nk}
Nc
k=1 (19)

and Vref replicates the reference voltage Vref into a column
vector of size Nc. The cumulative state vector xK in (18) is
the column stacking of the per-core vectors xK,k used in (9).

F. DISCUSSION
It is easy to show that the descriptor matrix E ∈ Rn×n in (13)
is obtained by stacking as diagonal blocks the individual
submodel matrices Ein and Ek for k = 1, . . . ,Nc. The
same applies to A and to the various other matrices in (13)
and (18). The procedure of Appendix A can be further applied
to split dynamic and algebraic states as x = (xd ; xa) , with
xd ∈ Rnd , xa ∈ Rn−nd , obtaining the following canonical
partition [9]

E =
(
E11 0
0 0

)
, A =

(
A11 A12
A21 A22

)
,

B =
(
B1
B2

)
, C =

(
C1 C2

)
. (20)

This decomposition is obtained with cheap algebraic opera-
tions (see Appendix A) and leads to a structured descriptor
system where matrix E11 ∈ Rnd×nd is nonsingular and
symmetric, and all structured descriptor matrices are sparse
(see Fig. 3 for an example). For example, using the canonical
partition (20) to represent the system (13) leads to a matrix
B with (NcNo+ 1)+ 2NcNp columns, because it corresponds
to horizontal concatenation of the 2NcNp columns of Bw and
the (NcNo + 1) columns of Bu. Similarly, C would have the
same number of rows as the columns of B.
An additional assumption made throughout this work

whenever the partitioning in (20) is used, is that the corre-
sponding system is impulse-free. In particular, we assume
that either A22 is an invertible matrix (in this case (E,A)
is said to have index 1), or any infinite dynamic mode
of (E,A) is uncontrollable and unobservable [10]. This
technical condition is practically verified for all RLC circuits
that do not contain cuts of inductors and current sources,
or loops of capacitors and voltage sources [11]. As detailed
in Appendix A-B, the same property carries over to all
systems discussed in this work, since they arise from the
combination of MNA descriptions of RLC networks and
passive macromodels.

One of the objectives of this work is to apply and compare
various MOR approaches to reduce model complexity
and simulation runtime, while avoiding any operation that
requires dense linear algebra operations at the large scale.
This is essential to obtain efficient reduction schemes. For this
reason, although elimination of algebraic states is possible
(see Appendix B) to obtain a large-scale standard state-space
description, this operation will be never performed here since
the obtained system matrices would be dense. In this respect,
this work differentiates from and generalizes [5], where
regular state-space descriptions were assumed. System (13)
in canonical form (20) combined with (18) provides the
starting point of our MOR formulation, and will be assumed
in all subsequent derivations. The dynamic states in this
system are xd and xK, whereas the algebraic states include
xa, z, and w.

IV. MODEL REDUCTION STRATEGY AND LINEARIZATION
The adoption of averaged switch models simplifies both the
system description and the consequent numerical simulation,
since the time-varying and possibly discontinuous behavior
of the switching operator 1(d) is eliminated. However,
the coupled equations (13)-(18) are nonlinear, due to the
product 1(d)z between the duty cycle variables d and the
electrical quantities in z. The overall system is therefore
a nonlinear differential-algebraic set of equations, where
the nonlinearity is quadratic (bilinear). Linear reduction
approaches are therefore not directly applicable, and more
general nonlinear MOR schemes would be required.

In this work, we circumvent the above difficulties by

1) performing a structured order reduction, applied only to
the linear components of (13) and (18). The averaged
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switch equations (13d) are preserved by the reduction
scheme;

2) the reduction of the linear components will consider
the constraints induced by the interconnection of
all blocks, including the averaged switch charac-
teristics. This procedure is justified by the fact
that the closed-loop system dynamics are severely
restricted with respect to the open-loop dynamics,
described by the individual blocks acting alone.
The loading effects of output networks on the
input network through the control loops can be
shown to constrain the large-scale state-space onto a
significantly lower-dimensional manifold. We attempt
to identify such manifold through a projection
framework.

3) The projection subspaces used in the proposed linear
structured MOR are constructed based on a lineariza-
tion process around a nominal operating point. This
corresponds to embedding the reduced-order dynamics
into a linear subspace L.

4) In the transient simulation phase, the complete (non-
linear) reduced-order system is solved, so that the
only approximation step is the projection of the
large-scale linear subsystem onto the identified linear
subspace L.

The following sections V-VII will provide a detailed
formulation of above steps 1,2,4. The linearization process
in step 3 is instead addressed below.

A. LINEARIZATION
Linearization to infer approximate dynamics is here justified
based on physical considerations. In fact, any voltage
regulator, including switching converters, is designed to
stabilize the output voltage. By design, such structures are
developed to make all signals have small fluctuations around
some nominal operating point. In such conditions, small-
signal linearized models are appropriate. In fact, small-signal
analysis is routinely employed for analysis and controller
design [12].
System equations are linearized by replacing the last line

in (13) with its Taylor expansion around an operating point
identified by the constant steady-state quantities (d̄, z̄)

w ≈ 1(d̄)z̄+1(d̄)(z− z̄)+1(d− d̄)z̄. (21)

The nominal operating point is computed by assuming a
nominal loading condition io = Ioref and solving the DC
steady-state problem associated to (13)-(18).
In the linearization process, any variable ζ is decomposed

as

ζ = ζ̄ + ζ̃ (22)

where ζ̃ is a small-signal component around the DC bias
ζ̄ . Using these definitions and (21) in (13)-(18), while
subtracting the DC bias terms, leads to the linearized
small-signal model, expressed in the following descriptor

form {
E ˙̃χ = A χ̃ + B ũ
ṽo = C χ̃ +D ũ

, χ̃ ≜


x̃d
x̃K
x̃a
z̃

 (23)

where the small-signal state vector χ̃ collects all states and
variables w̃ and d̃ are eliminated through (21) and (18).
Note that (23) retains the structure (20), in particular E =
blkdiag

{
E11, InK , 0n−nd , 0nz

}
. The small-signal transfer

function corresponding to (23) is denoted as H(s) = D +
C(sE−A)−1B. Note that only the small-signal output voltages
ṽo are retained, as the only quantities of interest.
A remark on notation is in order: we denote with

calligraphic fonts (E ,A) quantities related to the small-signal
linearized system (23) and with bold upright fonts (E,A)
quantities related to the original system (13)-(18). Note that
the size of the dynamic states in these two cases is different,
since the linearized system (23) includes also the small-signal
components of x̃a and z̃.

V. MODEL REDUCTION
This section develops the proposed model reduction
approach. The linear-nonlinear decomposition described in
Sec. III shows that the dynamic complexity of the system (13)
is entirely due to the linear subnetwork denoted asG in Fig. 1
and represented by (13a)-(13c). Hence, a straightforward
approach would be to replace G with a reduced-order
system Ĝ using any of the available MOR algorithms. This,
however, would require treatingG as an isolated linear block,
thus neglecting that the signals at its ports are constrained
by (13d). Our proposed approach constructs Ĝ by taking
this feedback into consideration, in order to optimize model
accuracy in the closed-loop configuration.

We propose and compare two alternative MOR schemes,
based on moment-matching [13] and balanced trunca-
tion [14], [15], respectively. Both approaches fit in the
classical projection framework [16], so that Ĝ is obtained by
a Petrov-Galerkin projection of (13). A pair of matrices W,
V ∈ Rn×q with q ≪ n defines the reduced model via the
following transformations

Ê =WTEV, Â =WTAV ,

B̂w,u =WTBw,u , Ĉz,y = Cz,yV , (24)

with direct coupling blocks D̂ = D left unchanged. In this
projection, the dynamic-algebraic decomposition in (20) is
preserved by constructingW,V to have the following block-
diagonal structure

V = blkdiag{Vd , In−nd }, W = blkdiag{Wd , In−nd } (25)

with Vd , Wd ∈ Rnd×q. Consequently, the canonical
form (20) continues to hold for the reduced system, whose
dynamic part is reduced to dimension q, and the algebraic part
is left unaffected. The choice of reducing only the dynamic
states is non-standard, as most well-known projection-based
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methods do not assume any particular structure as (25) for the
projectionmatrices. This choice is motivated by the following
considerations:
• the reduced model must match exactly the DC response
of the original model. This constraint can be enforced
easily with a standard (unstructured) projection, but with
a significantly higher computational cost and a much
less efficient reduction. This point will be discussed in
detail in Sec. V-C;

• balanced truncation of singular descriptor systems
as (13) requires some technical assumptions and oper-
ations, which may be numerically challenging. The
adopted structured projection avoids such difficulties by
construction. This is discussed in Sec. V-B.

We follow the usual practice of constructing the right
projection matrix V solely based on model accuracy con-
siderations, and then selecting the left projection matrix
W to enforce closed-loop stability (see Sec. V-D). The
construction of V is discussed in a moment matching
(interpolation) framework in Sec. V-A and in an empirical
balanced truncation framework in Sec. V-B. In both cases,
we search for a dominant subspace L to embed the reduced-
order dynamics. Such subspace is constructed based on the
linearized model (23), which is assumed as a proxy for
the true system (13) under small-signal operating conditions
around the nominal operating point.

A. APPROXIMATE INTERPOLATION
This section proposes a reduction approach that identifies
a matrix V whose range embeds the dominant dynamics
of the linearized system (23). This is achieved through a
moment-matching approach where only the first moment is
enforced, resulting in an interpolation condition. Only the
components ofV along the dynamic states of (13) are retained
to define the right projection matrix V.
Let us consider a set of K points s1, . . . , sK ∈ C. It is well

known [13] that, if R
{
(skE −A)−1B

}
⊂ R {V}, then the

reduced system response Ĥ(s) defined as

Ĥ(s) =
(
WTEV,WTAV WTB

CV D

)
(26)

interpolates the original system response as Ĥ(sk ) = H(sk ).
Let us consider a matrix M collecting frequency-domain
snapshots Xk = X (jωk ) ≜ (jωkE − A)−1B evaluated at K
frequencies {ωk}Kk=1,

M ≜
(
X1 . . . XK

)
. (27)

This matrix is partitioned conformably with the structure of
χ̃ in (23),

M =


Md
MK
Ma
Mz̃

 . (28)

The first block Md of nd rows deserves particular attention,
because it corresponds to the dynamic part of the linear

subsystem G whose dominant subspace is sought for.
We define

Vd = orth{Md } (29)

and we construct the right projection matrix V as in (25).
Finally, we define

V = blkdiag{Vd , InK , In−nd , Inz} , (30)

W = blkdiag{Wd , InK , In−nd , Inz} (31)

for any left projection matrix W of compatible size. The
interpolation condition Ĥ(sk ) = H(sk ) follows from the
observation that the inclusion

R {V} ⊃ R {M} (32)

holds by construction.
Fulfillment of this exact interpolation condition might

come at the price of large dimension of the subspace
R {Vd }, which is generically NoK . This would lead to an
unnecessarily large order of the reduced model. Therefore,
we pursue only an approximate interpolation condition
by taking R {Vd } to be the subspace spanned by the
leading singular vectors of Md . Using the Singular Value
Decomposition (SVD) ofMd ,

Md =
(
U1 U2

)
blkdiag{61, 62}ZT (33)

we choose Vd = U1, with U1 containing the first q left
singular vectors. The order q is selected to enforce σq+1 ≤

ϵ σ1 where σi are the singular values in decreasing order and ϵ

is the desired relative accuracy threshold. Given the large size
ofMd , the actual computations are here performed through a
randomized SVD, see Sec. VI.

B. EMPIRICAL BALANCING
Model reduction via balanced truncation is known to be
superior to interpolation-based reduction in terms of accu-
racy [17] and optimality [18]. In fact, explicit a priori error
bounds are easily derived for balanced truncation, whereas
only a-posteriori or heuristic error control is possible for
interpolation-based reduction methods. Balanced truncation
methods aim at finding a special set of state-space coordi-
nates, in which the state variables that are simultaneously
poorly controllable and observable (hence with a negligible
contribution to the input-output response) can be safely
removed. Such coordinate systems are determined based on
the system Gramians, whose computation requires dense
linear algebra operations. A standard balanced truncation
for large-scale systems is therefore impractical. A further
complication for our case of study is that we need to process
a singular descriptor system (13). For such systems, balanced
truncation requires the identification of spectral projectors,
whose computation may be numerically problematic [19],
[20]. The reader is referred to [16] for a complete overview
of the state of the art.

In this work, we avoid dense large-scale linear algebra
operations through an empirical (snapshot-based) balancing,
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which directly computes a low-rank factorization of the
Gramians using fast and cheap operations (thanks to the
sparse nature of our system). Further, spectral projections
are avoided by construction thanks to the adopted structured
formulation and projection framework.

We define the following input-state and dual (output-state)
responses

X c(jω) = (jωE −A)−1B (34)

X o(jω) = (jωET
−AT)−1CT (35)

by initially assuming that E is full rank. In such case, the con-
trollability and observability Gramians can be computed [15]
through the following frequency domain integrals

Wc
= Re

{
1
π

∫
+∞

0
X c(jω)X cT(−jω) dω

}
(36)

Wo
= Re

{
1
π

∫
+∞

0
X o(jω)X oT(−jω) dω

}
. (37)

The balanced coordinates where a simple reduction by
truncation can be applied is provided by the eigenvectors of
the product of the two Gramians [18]. When E is singular,
the above Gramians must be replaced by the so-called
proper Gramians, obtained by spectral projections onto the
deflating subspaces associated to the finite eigenvalues of
the pencil λE − A. The evaluation of these projectors is
here not necessary, since we start from a block-structured
representation of the system (13) in form (20), where
dynamic state variables are explicit. Spectral projection
simply amounts to downselecting from (34)-(35) the first nd+
nK components. However, since the controller states xK are
not involved in the proposed structured projection, we further
restrict the evaluation to the first nd states, resulting in

Xν
d (jω) =

[
X ν(jω)

]
(1:nd ,:)

, (38)

where ν ∈ {c, o} is used as a placeholder for both
controllability and observability. Replacing X ν(jω) in the
integrals (36)-(37) with its upper block row Xν

d (jω) leads to

Wν
d = Re

{
1
π

∫
+∞

0
Xν
d (jω)X

νT
d (−jω) dω

}
(39)

whereWν
d matches the upper nd×nd block ofWν . The above

result holds under technical assumptions that are here verified
by construction. See Appendix C for details.

The evaluation of the dynamic components Xν
d (jω) at

any desired frequency ω is numerically cheap due to the
sparse nature of the system matrices. However, integration
still needs to be performed, which is a possibly expensive
operation. Following the strategy of [14], we approximate the
integrals (39) through a quadrature rule

Wν
d ≈ Re

{
K∑
k=1

αkXν
d (jωk )X

νT
d (−jωk )

}
(40)

based on a set of nodes {ωk , k = 1, . . . ,K } spread over the
frequency band of interest, with weights αk that depend on the

discretization scheme (e.g. trapezoidal rule). Note that only
contributions up to the maximum frequency � = max{ωk}
are considered, thus effectively leading to an approximation
of bandlimited Gramians [21]. This is a desired feature,
since accuracy in model reduction is only required over the
frequency band of interest ω ∈ [0, �].
Further splitting of real and imaginary parts as Xν

d (jω) =
Xν,r
d (jω) + jXν,i

d (jω) leads to the following representation of
the Gramians

Wν
d ≈ RνRνT (41)

through real snapshot matrices

Rν ≜
(
· · · ,
√

αk X
ν,r
d (jωk ),

√
αk X

ν,i
d (jωk ), · · ·

)
. (42)

Thanks to (41), the factors Rc and Ro are used to obtain
the desired right and left projection matrices Vd , Wd
through the Square Root Balancing method [6], [22]. This
procedure is standard and requires to first compute the SVD
decomposition

RcTE11Ro
= (U1 U2) blkdiag{61, 62} (Z1 Z2)

T (43)

where 61 contains the largest singular values up to a prede-
fined relative accuracy threshold. The projection matrices are
then computed as

Vd = Rc U16
−1/2
1 , Wd = Ro Z16

−1/2
1 (44)

from which we retain Vd only.
Thanks to this representation, we see that the explicit cal-

culation of the Gramians is not required, and all computations
leading to the projection matrixVd can be performed through
large-scale (but sparse) evaluations of the snapshots, followed
by dense but low-rank decompositions. In addition, all SVD
operations are here performed through a randomized SVD
scheme (Sec. VI) to further limit both memory and CPU cost
in the construction of Vd .

C. DC ENFORCEMENT
This section shows how the reducedmodel can be constrained
to preserve the steady-state behavior of the original system
under constant excitation. For this purpose, it is sufficient to
match the DC response as Ĝ(0) = G(0). We illustrate two
alternative ways to achieve this condition in the proposed
workflow, with reference to (13).

1) BASIS AUGMENTATION
Building on a well-known fact from classical moment
matching algorithms, the basis V can be augmented as

V← orth
{(
V A−1Bw A−1Bu

)}
(45)

With this modification,R {V} includes the subspace spanned
by A−1 (Bw, Bu), which is sufficient to achieve interpolation
atω = 0 as desired. Amajor downside of this approach is that
the basis size (columns of V) hence the order of the reduced
system may become exceedingly large in case the number of
system inputs/outputs is large. This is indeed the case for the
power distribution networks under consideration.
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2) RECIPROCAL TRANSFORMATION
This technique is described in [23] and is based on the
reciprocal frequency transformation s ← 1/s, which maps
DC to infinite frequency and vice-versa. Starting from
G(s) defined by (13a)-(13c), a descriptor realization of
the corresponding reciprocal system Gr (s) = G(1/s) is
Gr = (Er ,Ar ,Br ,Cr ,Dr ), whose expressions are given in
Appendix D.
This reciprocally-transformed system is such that

lim
s→∞

Gr (s) = Dr = D− CA−1B = G(0). (46)

Projection of the state-space matrices in (75) does not affect
the feedthrough term Dr . Hence, a reduced system Ĝr =(
Êr , Âr , B̂r , Ĉr , D̂r

)
obtained from (75) using Wd ,Vd as

in (24) is such that D̂r = Dr . Finally, an additional reciprocal
transformation on Ĝr (s) yields a reduced model Ĝ(s) =
Ĝr (1/s) back in the original frequency variable. This model
satisfies

Ĝ(0) = D̂r = Dr = G(0), (47)

as desired.
It is important to remark that, just as reported in [23]

and [24] for the case of nonsingular E, Gramian matrices
are invariant under the above reciprocal frequency transfor-
mation (see Appendix D). This implies that Vd can still be
constructed in the original s-domain following the procedure
in either Sec. V-A or Sec. V-B. The resulting basis can be used
to reduce the intermediate reciprocally-transformed system
Gr , followed by a final reciprocal transformation on the
reduced system.

D. ENFORCING CLOSED-LOOP STABILITY
Up to this point, only the determination of the right
projection matrixV has been addressed, with emphasis on the
accurate characterization of the subspace L where dominant
dynamics take place. We now focus on the left projection
matrix W, which is here entirely driven by the necessity
of guaranteeing closed-loop input-output stability of the
reduced-order interconnected system.

We start by noting that the full system (13) can be
decomposed in two parts: i) an LTI subsystem (G in Fig. 1)
formed by (13a)-(13c) with external ports (inputs u, outputs
y) and internal interface ports (inputs w, outputs z); ii) the
FIVR switches represented by (13d), which are connected
to the internal interface ports of G. The input-output
representation of both subsystems is immittance (hybrid,
since some ports are voltage-controlled and some other ports
are current-controlled for both subsystems).

The LTI subsystem is physically passive and is represented
as a passive descriptor system, thanks to the formulation in
Appendix A. Therefore, the descriptor form of the Positive
Real Lemma (PRL) [25] holds, which states that there exists
a matrix P such that ETP = PTE ≥ 0 and(

ATP+ PTA PTB− CT

(PTB− CT)T −(D+ D)T

)
≤ 0. (48)

Additionally, the averaged switch model (13d) is lossless,
since the hybrid matrix 1(d) in (16) is skew-symmetric
and 1(d) + 1(d)T = 0. This remains true even when
the duty cycle signals d(t) are time-varying, as obtained
by the feedback controllers (18), since for any trajectory of
d(t), the signals w, z are related instantaneously by w(t) =
1(d(t)) · z(t), thus satisfying w(t)Tz(t) = 0 at all times. The
latter condition implies no power dissipation nor generation.
Now, since the interconnection of passive subsystems is also
passive [26], and since any passive system is also stable,
we conclude that if we can enforce the reduction process to
preserve passivity, then the reduced-order closed-loop system
will also be passive hence stable.

We now proceed to find a left projection matrix W that
preserves passivity. This is in fact straightforward: starting
from any solution P of (48) and setting W = PV guarantees
that also the reduced system matrices defined in (24) satisfy
the PRL condition (48), with a solution matrix P̂ = I,
as can be verified by direct substitution. Note that the MNA
formulation of an RLC(M) network is a particular case of
the above with P = I and W = V. In such case, the
projection is also a congruence transform, a fact exploited in
well-known passivity-preserving projection algorithms such
as PRIMA [27].

The explicit solution of the PRL equations (48) is very
expensive for large-scale systems. Fortunately, this operation
is not necessary for the proposed block-structured system.
As discussed in Appendix A, the PRL solution P of a system
obtained by assembling arbitrary RLC(M) elements and
passive macromodels can be obtained by the block-diagonal
assembly of the individual PRL matrices

P = blkdiagℓ{Pℓ}. (49)

If the ℓ-th block is a state-space macromodel, the corre-
sponding Pℓ needs to be determined by explicit solution of
the corresponding PRL equations. A computational method
for finding Pℓ is through the associated algebraic Riccati
equation, see e.g. [16, chap. 2 and 5] and references therein.
If instead the block is made of RLC(M) elements, the
corresponding Pℓ = I. We see that this solution provides a
significantly less expensive approach with respect to other
known passive projection methods, such as [7] and [28].

VI. EXPLOITING RANDOMIZED SVD
In this section, we discuss how the randomized SVD
algorithm can be used to enable fast computation of the
empirical Gramians in a large-scale setting. Notice that the
block entries in the Rν matrix in (42) are not necessarily
sparse, even if the matrices E andA are. Therefore, explicitly
storing these matrices to perform SVD in a second step
might become impractical due to largememory requirements.
Since only their principal components are ultimately needed,
it is possible to leverage the randomized SVD algorithm
from [29] for computing a low-rank representation of Rν in
an online fashion, meaning that the snapshots do not need
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Algorithm 1 Online Randomized SVD for Gramian
Computation

Require: {ωk}Kk=1, (E,A,B, C,D), ρ
1: Initialize Rν

�← 0
2: for k = 1, . . . ,K do
3: �′k , �′′k ← random matrices in RM×p

4: Xν
d,k ←

[
(jωkE −A)−1B

]
(1:nd ,:)

5: Rν
�← Rν

� +
√

αk

[
Xν,r
d,k�

′
k + Xν,i

d,k�
′′
k

]
6: end for
7: Compute Q from a QR decomposition of Rν

�

8: Q1← Q(:,1:ρ)
9: for k = 1, . . . ,K do

10: Zk ← QT
1

[√
αk (jωkE −A)−1B

]
(1:nd ,:)

11: Zrk ← Re{Zk}, Zik ← Im{Zk}
12: end for
13: Z←

(
Zr1 Zi1 . . . ZrK ZiK

)
14: Perform SVD decomposition of Z = Uz6VT

15: U← Q1Uz
16: return U,6,V such that Rν

≈ U6VT

to be all stored in memory simultaneously. This procedure is
particularized for current application in Algorithm 1.

Two passes over the K data matrices Xν
d (jωk ) are

performed. In the first pass (Steps 2– 6), the product between
Rν
∈ Cnd×M and p random vectors is computed, where p is

larger than the desired rank ρ in the low-rank decomposition.
According to [29], it is typically sufficient to set p = ρ +

10when the singular values ofRν decay rapidly. By regarding
these random vectors as the columns of a matrix � ∈ RM×p,
a block-row partitioning compatible with the block-columns
of Rν

� = col{. . . , �′k , �
′′
k , . . . } (50)

allows us to decompose the product Rν� as

Rν� =

K∑
k=1

√
αk

(
Xν,r
d (jωk )�′k + Xν,i

d (jωk )�′′k
)

(51)

which shows how Rν� can be computed by summing
contributions for each k without ever forming Rν . The
remaining algorithmic steps are standard and not specific
to present application, so we refer the reader to [29] for a
complete discussion.

VII. NUMERICAL INTEGRATION
Transient simulation consists in integrating the system of
differential equations (13), coupled with the controller (18).
In this section, we outline the time-stepping scheme used to
provide the results reported in the foregoing Sec. VIII. The
first step in our derivation is the discretization of (13) using
the backward Euler scheme with a fixed timestep δ,

xh+1 = (E− δA)−1 (Exh + δBwwh+1 + δBuuh+1) (52a)

zh+1 = Czxh+1 + Dzwwh+1 + Dzuuh+1 (52b)

FIGURE 4. For the mobile benchmark of Sec. VIII-A, top and middle
panels report the load voltage transient response (at the third port of the
first core) to a sequence of current steps, used to compare two reduced
models of order q = 470. Bottom panel: maximum instantaneous error
between full-order and reduced models across all load voltages in the
same simulation.

yh+1 = Cyxh+1 + Dywwh+1 + Dyuuh+1 (52c)

where ζh denotes a first-order approximation of the corre-
sponding variable ζ (hδ). The controller equations (18) can
be discretized analogously. The remaining equation (13d) is
treated differently and discretized semi-explicitly as

wh+1 = 1 (dh) zh+1 (53)

In this way, the solution at timestep h + 1 is obtained by
solving (52) and (53) simultaneously in a linear system,
where the value of dh is known and available from the
previous timestep. Since the format of (52) is invariant upon
proposed model order reduction schemes, the above time
discretization holds for and will be applied to both original
and reduced systems. We remark that the matrix E − δA

VOLUME 12, 2024 18207



A. Carlucci et al.: Structured Model Order Reduction of System-Level PDNs

in (52a) is constant and can be efficiently pre-factorized for a
fast inversion at each time step.

VIII. NUMERICAL EXPERIMENTS
A. A MOBILE PLATFORM
This section validates the proposed reduction approaches on
a relatively small-scale test case, namely a mobile computing
system equipped with a 4-cores Intel® CoreTM micropro-
cessor. The corresponding PDN includes four FIVRs with
Np = 4 phases each, No = 36 output ports per core and
144 output ports overall. The initial state dimension of the
full-order system is n = 2673.
Application of the balanced truncation procedure

described in Sec. V-B gives a reduced model of order q =
470, corresponding to σq+1/σ1 < 10−5. Another model
with the same q has been constructed with the approximate
interpolation approach of Sec. V-A. The approximation error
is evaluated numerically in a realistic scenario where both
reduced models are used in a transient simulation, in which
the load ports are excited with current signals that model
chip activity. In this experiment, individual cores transition
between an off-state, where no current is drawn from the
corresponding output ports, and an on-state, where the load
current iok is a random piecewise linear waveform with
peak per-core current 10A (uniformly distributed among
all No = 356 core ports) and average current 0.11A. The
power spectrum of this signal is contrived to have a peak
at 20MHz, close to the resonant peak of the PDN output
impedance. Results of this transient analysis are reported
in Fig. 4. The load voltage measured at the third load port
of the first core is shown in the upper panels, and a more
comprehensive picture of the approximation error is given in
the bottom panel, which reports the maximum error across
all 144 load ports for each time instant. It is seen that both
models essentially capture the correct voltage response, with
the truncated balancing approach providing a generally more
accurate result for the same reducedmodel order q. The larger
oscillations starting at t = 1µs correspond to the first core
being turned on, whereas the smaller ringing between 0 and
1µs is the effect of drawing current from the second core
(core coupling through the input network through the FIVRs
switches). This simulation runs in 17 seconds, that is 56×
faster than the full-order model using the same solver (955 s)
with the same fixed timestep δ = 0.1 ns. The same simulation
in HSPICE runs in 972 seconds (with maximum timestep
δ = 0.1 ns).

B. AN ENTERPRISE SERVER PLATFORM
This section describes the application of the proposed model
reduction framework to the PDN of an enterprise server based
on an Intel® Xeon® microprocessor with Nc = 60 modeled
cores and Np = 3 FIVR phases. There are No = 57 load ports
for each core, and 3420 output ports overall where voltage
needs to be stabilized and monitored. The MNA algorithm
could be used to obtain a descriptor realization of the linear
subnetwork, whose state dimension is in excess of 5 · 104.

TABLE 1. Modeling times for the enterprise server benchmark of
Sec. VIII-B.

Using K = 25 evaluations of the frequency-domain
snapshots as described in Sec. V, reduced models could be
built with different accuracies depending on the reduced order
q. These were tested in time-domain using a benchmark sim-
ulation where the excitation current profile consists of step
signals at each individual load port having amplitude 20/57A
and rise time 3 ns. In this 1.1-µs long simulation, groups of
15 cores are turned on and off simultaneously, and the total
current drawn from each core in the on-state is 20 A.

A reduced model with q = 380, built with the empirical
balancing approach is seen to achieve a maximum error of
3.3 mV in this test case, as reported in Fig. 6. This model is
also compared with another one with the same q built using
the approximate interpolation alternative. The errors of both
models in the benchmark time-domain simulation, defined as
the maximum instantaneous error across all load ports, are
compared in the bottom panel of Fig. 6. The time required to
simulate these reduced models is 65 s, more than ten times
faster than the 902 s taken by the full-order model using the
same transient solver.

Results concerning numerical experiments with different
reduced models and methodologies are summarized in
Table 2. This shows that both proposed methodologies yield
acceptable time-domain peak errors, which can be decreased
by increasing the reduced order q. The empirical balancing
approach shows lower error than approximate interpolation
when comparing different models with the same q or with
the same relative truncation threshold σq+1/σ1. Although the
balancing approach is more accurate and robust, building a
model takes longer, as summarized in Table 1, where the
modeling times required by each algorithmic step of Sec. V
are detailed. Note that the majority of time is spent in the
phase of snapshot computation, which is basically an AC
analysis where a large sparse linear system is solved for each
frequency point, and is perhaps one of the computationally
cheapest ways to gather information on the system to be
reduced. Time spent for this task could be further reduced
by means of more sophisticated approaches for AC analysis,
by parallelizing the computation for different frequencies and
exploiting iterative methods available for large and sparse
linear systems. Additional computational steps specific to
the model reduction task take negligible time with respect
to AC response computation. Note that this computational
cost is paid only once to construct the model, which can
then be used for power integrity verification through multiple
repeated time-domain simulations with different load current
waveforms or compensator models.
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FIGURE 5. RMS error over frequency for each response of the reduced
small-signal output impedance submatrix [part of Ĥ(jω)] over the
bandwidth [0, 1GHz], relative to the enterprise server benchmark of
Sec. VIII-B. Models where built with a fixed relative threshold
σq+1/σ1 ≤ 10−4.

TABLE 2. Enterprise server benchmark (60 cores). Comparison between
reduction methods in terms of worst-case error and transient simulation
time.

Besides time-domain analysis, we also evaluate the
frequency response error of the linearized transfer function
H(jω) versus the reduced model Ĥ(jω). In particular,
we consider the root-mean-square (RMS) error for each
individual matrix entry of the small-signal output impedance
in a bandwidth [0, 1]GHz. Fig. 5 reports the RMS errors
of two models corresponding to the second and fourth rows
in Tab. 2, which are built with the same relative truncation
threshold σq+1/σ1 ≤ 10−4. Each point in this picture
indicates the RMS error over frequency of the corresponding
impedance matrix entry. A further numerical demonstration
of the accuracy and correctness of the proposed framework is
provided in Fig. 7, showing the magnitude of two entries Z1,1
and Z2,400 of the small-signal output impedance matrix. The
original model is compared with the result obtained from the
empirical balancing approach with reduced order q = 600,
corresponding to σq+1/σ1 = 2 · 10−5. Here, the reciprocal
transformation is used to enforce the DC point during model
reduction, so that reduced and full models are identical at
ω = 0. Accuracy at all other frequencies is enforced during
projection by an appropriate selection of the reduced order
model. In this example, such order has been selected so that
the worst-case absolute deviation in the output impedance at
any frequency is ≈ 10−7 �. This accuracy is far more than
required for the considered application.

C. SCALABILITY ANALYSIS
Starting from the 60-cores benchmark of Sec. VIII-B, here
we analyze how runtime scales with the model complexity
by including only part of all available cores in the model,
in particular Nc ∈ {16, 32, 48, 60}. Reduced-order models

FIGURE 6. Top panel: load voltage response for the enterprise server
benchmark in Sec. VIII-B. Top and middle panels compare the responses
of the reduced models based on empirical balancing and interpolation,
respectively, to the reference full-order responses. Bottom panel reports
the corresponding maximum error across all load ports. Both reduced
models have the same order q = 380.

are built for each case with a fixed relative threshold
σq+1/σ1 = 10−4 and solved in time-domain using a
MATLAB implementation of the integration scheme of
Sec. VII. The runtime is compared with the time taken
by the same solver to simulate the full-order model with
the same Nc, and the runtime of the reference commercial
solver HSPICE. All simulations are perfomed on the same
workstation based onCore i9-7900XCPU running at 3.3GHz
with 64 GB of RAM.

We remark that, once the descriptor system (13) is available
by parsing the netlist and filling in the MNA matrices, there
are two main options to carry out the transient simulation of
the full-order system:
• if no further processing is done and the descriptor system
is solved directly, the matrix (E−δA) is large and sparse,
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FIGURE 7. Enterprise server benchmark: selected responses from the
output impedance matrix of the full-order H(jω) and reduced-order
Ĥ(jω) obtained through empirical balancing, with q = 615 and
σq+1/σ1 = 1 · 10−5.

FIGURE 8. Scalability analysis reporting the transient simulation runtime
required by various combinations of models/solvers for the enterprise
server benchmark. Runtime is plotted as a function of the Nc modeled
cores.

TABLE 3. Runtime as a function of Nc as in Fig. 8. Speedup refers to
reduced vs. full-order models solved in MATLAB.

and the repeated application of its inverse in (52a) at
each timestep can be done efficiently by pre-computing
its LU factorization.

• if the system size is not too large, one might choose
to first convert it to a standard state space using the
procedure in Appendix B. This procedure eliminates
some states but produces dense and still large matrices.
A standard diagonalization can be further applied to
make the resulting A diagonal or quasi-diagonal. The
latter step can become computationally infeasible as the
size of these matrices becomes large, due to storage and
CPU requirements (exact diagonalization takes O(n3)
operations).

In the present case, it was possible to apply both approaches.
The corresponding results are depicted in Fig. 8. These issues
do not arise with the reduced model, so that a standard
state-space description in diagonal form (modal realization)

can be obtained at negligible cost. The corresponding results
correspond to the blue line in Fig. 8.

Figure 8 shows that the direct descriptor solver takes
almost as long as HSPICE to simulate the full-order model,
compatibly with the fact that no simplification is applied
to the MNA descriptor system. Note that HSPICE failed to
converge when more than Nc = 32 cores were included.
Solving a full-order diagonal state-space realization is much
more efficient, despite the overhead of diagonalization that
in this case is 63 s for Ain and 0.27 s for the output model.
After model reduction applied, the runtime decreases by a
factor ranging from 50× to 200× depending on the system
configuration, as reported in Table 3. Speedup is reduced
for larger Nc because runtime scales differently in the full
and reduced models (notice the slopes in Fig. 8). In fact, the
full-order runtime is dominated by the cost of applying the
operator (E − δA)−1, an n × n matrix in LU-factored form
[see Sec. VII, in particular (52a)]. As this is reduced to a
quasi-diagonal q × q matrix, the computational bottleneck
becomes the repeated solution of the linear system (52)
combined with (53), which has the cost of solving for the
NcNp unknowns in wh+1.

APPENDIX A FROM CIRCUITS AND MACROMODELS TO
DESCRIPTOR FORM
Here, we show how a standard MNA formulation can be
used to assemble a descriptor system in form (3) or (6)
for a multiport structure including an arbitrary number
of RLCM components and state-space macromodels in
immittance form. We demonstrate the procedure for a single
macromodel GM in admittance form, and we target an
impedance representation of the multiport. Generalizations
are straightforward.

A. FORMULATION
Wedefine the reduced and block-partitioned incidencematrix
(AR,AL ,AC ,AX ,AP) of the structure assuming a global
reference node. The various column blocks are indexed by
a subscript referring to the subgraphs of resistors, inductors,
capacitors, macromodel ports and external interface ports.
The KCL and KVL equations read∑

ν

Aν iν = 0, vν = AT
ν e, ν ∈ {R,L,C,X ,P}

(54)

where e collects the nodal voltages and vν , iν collect voltages
and currents of the ν-th subgraph, defined using normal
reference directions. The characteristics of all circuit blocks
are

iR = GvR, vL = Li̇L , iC = Cv̇C (55)

wherematricesG,L andC collect all conductances, (possibly
coupled) inductances and capacitances of the various circuit
elements. The macromodel is known through its state-space
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equations {
ẋX = AMxX + BMvX
iX = CMxX + DMvX

(56)

where input and output variables are voltages vX and currents
iX . Finally, port excitations are ideal current sources such
that iP = −I. Assembling all above equations leads to the
following representation of the multiport impedance relating
port voltages V and currents I

Z(s) = BT(sE− A)−1B :

{
Eẋ = Ax+ BI
V = BTx

(57)

where BT
=

(
AT
P 0 0 0

)
,

x =


e
iL
xX
iX

 , E =


ACCAT

C 0 0 0
0 L 0 0
0 0 I 0
0 0 0 0

 (58)

and

A = −


ARGAT

R AL 0 AX

−AT
L 0 0 0

−BMAT
X 0 −AM 0

−DMAT
X 0 −CM I

 (59)

B. PASSIVITY CHARACTERIZATION
The structure of the system (57)-(59) can be exploited to
infer and characterize its passivity properties. Let us assume
that the macromodel (56) is passive, so that its state-space
realization (AM ,BM ,CM ,DM ) satisfies the Positive Real
Lemma (PRL) inequality (48) with a matrix PM = PT

M > 0
(being a regular state-space, the PRL applies with EM =
I). We know that the interconnection of passive systems is
also passive, therefore also (57)-(59) must fulfil the PRL
conditions (48) with a suitable matrix P. A straightforward
algebraic verification shows that we can define this matrix
as the block-diagonal collection P = blkdiag{I, I,PM , I},
where the presence of the identity matrices is a consequence
of the internal passivity of the RLCMblocks. In this particular
example, the PRL (48) holds with the particular conditions
ATP+ PA ≤ 0, PB− CT

= 0, and D = 0.

C. REDUCTION TO CANONICAL FORM
A closer look at (57)-(59) reveals the following facts:
• the upper-left block in matrix E is not generally full-
rank. However, elimination of selected nodal voltages
in favor of the capacitor branch voltages along locally
connected capacitor trees (assuming no capacitor loops)
leads to a change of variable that reduces this upper
block toACCAT

C → blkdiag{Ĉ, 0}where Ĉ is full-rank.
This operation can be performed by basic row/column
sums.

• the inductance matrix L can be rank deficient when
perfect inductor couplings are present. In such case,
a simple eigendecomposition reveals the vanishing

eigenvalues so that the change of variable induced by
the (orthogonal) eigenvectors of L reduces this block to
blkdiag{L̂, 0} where L̂ is full-rank.

We conclude that a standard MNA stamping process, fol-
lowed by the above-described low-cost algebraic operations
and a reordering of the states, leads to representation of
any multiport structure including interconnected state-space
macromodels with arbitrary RLCM elements as a descrip-
tor form, with matrices (E,A,B,C,D) in the canonical
form (20). This form is instrumental to the derivations in
Appendix B.

APPENDIX B FROM DESCRIPTOR TO STATE-SPACE FORM
In this section, we report a procedure to obtain an equivalent
standard state-space representation of a descriptor system
arranged in the form (20). This operation could be formally
accomplished through the Weierstrass form to separate finite
and infinite modes [6]. This procedure is known to be
numerically unreliable. Furthermore, general methods are
available to remove non-dynamic modes in a descriptor
system, such as the one described in [30] (based on the SVD-
coordinate form [9]), or to recast it as a standard state-space
system altogether (such as the shuffle algorithm [31]). The
above general methods are fortunately unnecessary here.
In fact, such decompositions are required for so-called high-
index systems, which are characterized by the presence of
impulsive modes, or equivalently by a direct dependence of
the output on high-order derivatives of the input, hence by an
asymptotic behavior of the frequency response Z(s) ∼ O(sm)
for s → ∞ as a high-order polynomial. For the considered
application, however,

• the LTI system is passive: it can be shown [26] that the
associated descriptor is at most index-two (i.e., at most
polynomial order m = 1 for s→∞);

• further, the specific configuration of the considered PDN
system can be shown to satisfy an even stronger (and
beneficial) condition, with m = 0 and Z(s) bounded for
s→∞.

The various situations that may occur are analyzed in detail
below, with reference to (20).

A. CASE 1: A22 INVERTIBLE
In the simplest case, the index of the regular pencil (E,A)
is at most one, the frequency response Z(s) is bounded for
s → ∞ and the block A22 is invertible [20, Thm 2.1].
In this case, all dynamic modes are finite and xa can be
eliminated to recast (20) as an equivalent descriptor system
with reduced-size matrices (Ĕ, Ă, B̆, C̆, D̆) with nonsingular
Ĕ = E11 and

Ă = A11 − A12A−122 A21, B̆ = B1 − A12A−122 B2,

C̆ = C1 − C2A−122 A21, D̆ = D− C2A−122 B2 (60)

A regular state-space realization is obtained by inverting Ĕ
and redefining Ă← Ĕ−1Ă and B̆← Ĕ−1B̆.
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B. CASE 2: A22 NON INVERTIBLE, NO IMPULSIVE MODES
In the more general case where A22 is singular, expres-
sions (60) become ill-defined. The index of the pencil
(E,A) is two and there are impulsive modes. In this
subcase, we assume that these impulsive modes are not
visible in the input-output response, meaning that they
cannot be excited by the inputs (uncontrollable) or are not
detected on output (unobservable). In the present context,
this situation holds when the circuit does not contain cutsets
of inductors and current sources or loops of capacitors and
voltage sources. Such cases would practically require ideal
inductances directly connected in series to current-controlled
ports (on-chip excitation and Gin ports connected to FIVRs),
or ideal capacitances directly connected in parallel to
voltage-controlled ports (VIN or Gk ports connected to
FIVRs). No PDN of practical use falls in this situation. These
topological conditions can be stated algebraically (see [11])
as

∀ v ∈ Rn−nd : A22v = 0 H⇒ C2v = 0 (61a)

∀p ∈ Rn−nd : pTA22 = 0 H⇒ pTB2 = 0 (61b)

Conditions (61) enable an algebraic procedure to eliminate
xa. We first introduce a change of coordinate and a
partitioning on xa to cast (20) as

E11ẋd = A11xd + A′12x
′
a + A′′12x

′′
a + B1u (62a)

0 = A′21xd + A′22x
′
a + B′2u (62b)

0 = A′′21xd + B′′2u (62c)

y = C1xd + C′2x
′
a + C′′2x

′′
a + Du (62d)

where A′22 is nonsingular. This is always possible, e.g.,
through a rank-revealing QR factorization or an SVD. The
consequence of conditions (61) is that, in this transformed
representation, B′′2 = 0 and C′′2 = 0. The variable x′a can be
solved for in (62b) and eliminated, leading to

E11ẋd = Ā11xd + A′′13x
′′
a + B̄1u (63a)

0 = A′′21xd (63b)

y = C̄1xd + D̄u (63c)

with Ā11 = A11 − A′12A
′−1
22 A′21, B̄1 = B1 − A′12A

′−1
22 B′2,

C̄1 = C1 − C′2A
′−1
22 A′21 and D̄ = D − C′2A

′−1
22 B′2. This new

canonical form has been studied in detail in [32] and [33], and
basically shows that the states xd are constrained by (63b)
to ker{A′′21}. Therefore, we can write xd = Kξd where the
columns of K ∈ Rnd×µd with µd < nd are an orthogonal
basis for ker{A′′21}. Using this representation, simple algebraic
manipulations lead to a state-space realization with reduced-
size state vector ξd ∈ Rµd , with nonsingular Ĕ = I and

Ă = KTE−111 5Ā11K, B̆ = KTE−111 5B1, (64a)

C̆ = C̄15K, D̆ = D̄, (64b)

where 5 = I − A′′12(A
′′

21E
−1
11 A

′′

12)
−1A′′21E

−1
11 . We conclude

that also for index-two systems with uncontrollable and

unobservable impulsive modes, a regular state-space repre-
sentation holds.

C. CASE 3: A22 NON INVERTIBLE, IMPULSIVE MODES
When inductor-current source cutsets or capacitor-voltage
source loops are present, so that (61) do not hold, it is still
possible to derive an equivalent state-space representation,
but the latter includes also one term in the output equation
that is proportional to the derivative of the inputs. Since this
case is of no interest in this work, we omit such details and
refer the Reader to [32] and [33], where a technical discussion
and a complete derivation can be found.

APPENDIX C SYSTEM GRAMIANS
In this section, we show that balanced truncation on the
realizations (Ĕ, Ă, B̆, C̆, D̆) with Ĕ nonsingular derived in
Appendix B and valid for Case 1 (60) or Case 2 (64)
can be equivalently carried out by working with the
original semi-explicit descriptor (E,A,B,C,D) in (20) with
singular E, without performing explicitly the conversion to
state-space.

We define the state responses of the regular realizations as

X̆c(s) = (sĔ− Ă)−1B̆, X̆o(s) = (sĔT
− ĂT)−1C̆T (65)

and the associated Gramians

W̆ν
=

1
2π

∫
∞

−∞

X̆ν(jω)X̆ν(−jω)T dω, ν = {c, o}. (66)

Similarly, for the original descriptor (20) we define

Xc(s) = (sE− A)−1B, Xo(s) = (sET
− AT)−1CT (67)

from which we extract the first block-rows corresponding to
dynamic equations

Xν
d (s) ≜ [Xν(s)](1:nd ,:), ν = {c, o} (68)

to define the Gramians

Wν
d =

1
2π

∫
∞

−∞

Xν
d (jω)X

ν
d (−jω)

T dω, ν = {c, o} (69)

Note that, based on the block structure of (20), we have

Xc(s) =
(
sE11 − A11 −A12
−A21 −A22

)−1 (
B1
B2

)
(70)

and similarly for the response Xo(s).
We consider separately the cases 1-2 of Appendix B.

A. CASE 1: A22 INVERTIBLE
If A22 is invertible, we can show that

W̆ν
=Wν

d , ν = {c, o} (71)

In fact, block inversion formulas applied to (70) show that

Xc
d (s) = (sĔ− Ă)−1B̆, Xo

d (s) = (sĔT
− ĂT)−1C̆T (72)

with Ĕ, Ă and B̆ defined as in (60). Therefore,

X̆c(s) = Xc
d (s), X̆c(s) = Xc

d (s) (73)

and (71) holds trivially.
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B. CASE 2: A22 NON INVERTIBLE, NO IMPULSIVE MODES
In the case whereA22 is singular, under the same assumptions
made in Appendix B and adopting the same notation, one can
show that

Xc
d (s) = KX̆c(s), (74a)

Xo
d (s) = 5TE−T

11 KX̆o(s), (74b)

Wc
d = KW̆cKT, (74c)

Wo
d = (5TE−T

11 K)W̆o(5TE−T
11 K)T (74d)

Detailed derivations are here omitted for the sake of brevity,
the Reader is referred to [32] and [33] for details. From
(74c)-(74d) we see that Wc

d and Wo
d are obtained by

embedding in a space of dimension nd the gramians W̆c, W̆o,
which in turn have numerical rank µd . Therefore, the low-
rank factorization (41) applied to Wc

d and Wo
d will produce

the same projection bases (44) as if applied to W̆c and
W̆o. This implies that balanced truncation of the singular
descriptor form (20) and the regular state-space (64) provide
indeed the same result.

APPENDIX D RECIPROCAL TRANSFORMATION
Starting from a descriptor system (E,A,B,C,D) in semi-
explicit form (20), a realization of the transfer function
Gr (s) ≜ G(1/s) is given by (Er ,Ar ,Br ,Cr ,Dr ), with

Er = E11, Ar = E11Ar,11,

Br = E11Br,1, Cr = Cr,1 (75)

where all matrices are defined by the partitioning(
A−1E A−1B
−CA−1E D− CA−1B

)
=

Ar,11 Ar,12 Br,1
Ar,21 Ar,22 Br,2
Cr,1 Cr,2 Dr


(76)

with Ar,11 ∈ Rnd×nd .
Proof: By manipulation of the transfer function,

Gr (s) = D+ C(s−1E− A)−1B

= D+ C(sI− A−1E+ A−1E)(A−1E− sI)−1B
= D− CA−1B− CA−1E(sI− A−1E)−1A−1B

whose realization is (76). Assuming the original system in the
canonical form in (20), Ar,12, Ar,22, Cr,2 result identically
vanishing, thus corresponding to a block of unobservable
states that can be removed. Finally, left-multiplication by E11
yields (75). □
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