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ABSTRACT This paper presents a novel Robust Feedback Linearization (RFBL) controller for Quadrotor
Unmanned Aerial Vehicle (UAV) when subjected to external disturbances. A Robust Feedback Linearization
controller is achieved by augmenting the conventional Feedback Linearization-based control with the
Supertwisting Algorithm in the outer loop. To estimate the external disturbances acting on a quadrotor a
Nonlinear Harmonic Disturbance Observer (NHDO) is patched with the robust controller. The efficacy and
superiority of the results can be seen in terms of tracking error, rise time and robustness to disturbances when
comparing it with other three robust controllers i.e. Integral Sliding Mode Controller (ISMC), Terminal
Synergetic Controller (TSC) and Finite-Time supertwisting controller. Lyapunov’s stability analysis is
performed to prove stability while numerical simulation is carried out usingMATLAB/Simulink. The results
are also validated by testing the system in a Hardware-In-Loop (HIL) environment on the MicroLabBox
dSPACE RTI-1202 platform.

INDEX TERMS Disturbance observer, quadrotor, robust feedback linearization control, supertwisting
control.

I. INTRODUCTION
The application of drones for delivery purposes has shown
an increasing popularity and is believed to be 90 % cheaper
than car-based services [1]. Big companies such as Amazon
and DHL have started delivery of parcels using drones which
does not have the adverse effects that internal combustion
engine vehicles do; such as congestion, noise and pollutant
emissions [2]. Other uses of drones include infrastructure
inspection, pesticide spraying on crops, army reconnaissance
missions and target tracking [3]. Among the different types
of Unmanned Aerial Vehicles (UAVs), quadrotors are the
most popular since it can take off and land vertically
compared to a fixed-wing aerial vehicle. Also it has high
maneuverability and can lift heavy loads when compared to
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a helicopter. With such vast utilization, quadrotors need to be
robust to external disturbances such as wind gusts, modelling
and parametric uncertainties (due to varying payloads and
inaccurate modelling of the quadrotor). Therefore robust
control is required to compensate for these negative effects.
A comprehensive survey can be found in [4], which discusses
the vast types of controllers that have been implemented
on a quadrotor-type UAV. It can be seen that sliding mode
control has been the most investigated type of controller,
however has the adverse effect of chattering. Moreover, a gap
in the research literature for attitude based robust feedback
linearization control is found. Since feedback linearization
makes the system exactly linear, therefore controllers can
easily be designed for it.

The literature survey can be split between attitude based
and position based control of quadrotors. For the attitude
based control, in [5], a nonlinear sliding surface has been
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chosen to construct a TSMC (Terminal Sliding Mode Con-
troller) based controller along with an enhanced disturbance
observer for mismatched disturbances. Only regulation of
attitude has been achieved. Even though TSMC is finite time
convergent while enhanced DO (Disturbance Observer) has
asymptotic convergence still the author has managed to use
them together. The same author has managed to achieve
an adaptive backstepping sliding mode controller patched
with a disturbance observer along with state estimation
in [6]. For state estimation a high-gain observer has been
used. However, a relatively large settling time for the
estimation of disturbance is noted. In another paper [7],
tracking of attitude and altitude utilizing standard sliding
mode control complemented with disturbance estimation for
both matched and mismatched uncertainties using Simpson’s
approximation has been utilized. The disturbances are high
order polynomials which are approximated and attenuated
using the developed disturbance observer.

Quadcopter control for mismatched uncertainties based
on nonlinear DO based on sliding mode control has been
achieved in [8]. The Nonlinear DO exhibits the salient feature
that requires the gains to be larger than the bound of error
of the disturbance estimation than that of disturbance. Reg-
ulation of attitude has been achieved with the shortcoming
of tracking of attitude reference. Moreover, the controller
achieves finite-time convergence while the nonlinear DO has
asymptotic convergence. A dynamic sliding mode control
patched with a nonlinear disturbance observer has been
implemented in [9]. Attitude regulation has been achieved
and matched nonlinear disturbances has been estimated and
attenuated. A dual fixed-time attitude control is investigated
for a quadrotor unmanned aerial vehicle in [10]. To estimate
the external disturbances a fixed-time adaptive fast super-
twisting disturbance observer is used. For the controller part,
a fixed-time controller is designed by using a universal barrier
lyapunov function to achieve good tracking error constraints.
A tracking differentiator is also used along in the process for
appropriate references and its derivative.

A fault-tolerant controller is designed that can simultane-
ously cater for actuator faults, external disturbances and para-
metric uncertainties in [11]. An adaptive controlmethodology
is employed in both the continuous and discontinuous control
to accommodate actuator faults and parametric uncertainty.
Then a nonlinear disturbance observer is integrated to reject
the external disturbances and thereby keeping magnitude
of the discontinuous control part small. The results are
demonstrated through numerical simulations and experi-
mental verification. A disturbance observer-based attitude
control for aggressive maneuver has been implemented [12].
Cascade connection based controller is developed: for the
outer attitude control loop a quaternion based controller is
developed and disturbance observer based angular velocity
control is for the inner loop.

In the following article [13] an optimization based frame-
work for the nonlinear disturbance observer is developed. The

optimization is based on infinity-normminimization of noise-
to-output transfer function along with the load disturbance
sensitivity function. Step, square and sinusoidal disturbances
are applied in hover and flying modes. The proposed work is
verified through simulations and implemented on real-time
embedded controller for experimental verification.

For the altitude and attitude control, a state-feedback
linearization based controller along with arbitrary order
differentiator for estimation and rejection of external distur-
bances has been implemented [14]. The results are verified
on an experimental setup.

An enhanced extended state observer (ESO) is imple-
mented to cater for wind gusts and actuator faults along
with a supertwisting controller [15]. The extended state
observer provides finite time stability whereas the supertwist-
ing controller achieves asymptotic convergence. Quadrotor
dynamics based on quaternion has been used. Finite time
extended state observer along with non-singular fast terminal
sliding mode as the controller is implemented to cater mod-
eling uncertainties and external disturbances [16]. A tracking
differentiator is also designed to obtain smooth references and
their derivatives. Simulation and experimental results validate
the efficacy of the controller.

As for the position control, [17] a Finite-Time Sliding-
Mode Observer which is used for state as well as disturbance
estimation is utilized. For the control part PID controller
and a continuous sliding mode controller has been designed
in combination that achieve exponential convergence. The
observer and controller are implemented in real time on
an experimental platform. A nonlinear controller based on
Euler angles as virtual control inputs is designed in [18].
This technique eliminates separation of timescale that is
assumed in a hierarchical control system. The controller
is based on dynamic surface control method while distur-
bance observers are designed to estimate disturbances in
the translation and rotational dynamics of the quadcopter.
The results are validated using numerical simulations. The
feedback linearization strategy is patched with a disturbance
observer to make it robust [19]. The disturbance observer
accommodates nonlinearities in the model by considering
them as disturbances. Simulation results show good tracking
in the presence of unmodelled dynamics, actuator failure and
wind disturbances.

Reference [20] develops a finite-time supertwisting con-
troller with a high-order finite time disturbance observer.
Lyapunov Analysis is used to study overall system stability
and provide finite time convergence. The proposed con-
troller is compared with PID and continuous sliding mode
control coupled with a finite time disturbance observer.
The results are validated using an experimental setup.
In [21] a backstepping-based controller is developed along
with incorporating a disturbance observer thus providing
tracking of error dynamics exponentially. The errors are
proven ultimately bounded for time-varying disturbances.
The results are verified through simulations.
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A finite time disturbance observer along with a geometric
controller has been developed in [22]. A simple structure for
the geometric controller is chosenwhich ensure exponentially
stable error dynamics after finite time convergence by the
disturbance estimator. Simulations are done to show to
verification of the results. Finite-time continuous multi-
variable control algorithm is developed in [23], which is
used to develop both controller and observer. The states
and disturbances are estimated through the observer whose
stability and finite-time convergence is proved using Lya-
punov analysis. Numerical simulation is used to verify the
results.

In [24] proposes a continuous non-singular terminal
sliding mode controller along with a Finite time observer.
The sliding motion is independent of the system’s ini-
tial condition which is achieved by utilizing a full-order
homogeneous terminal sliding surface. Stability Analysis
is done using bi-limit homogeneous theory, Lyapunov
theory and Input-to-State Stability. Both Processor in Loop
and experimental results are done to verify the results.
A second-order supertwisting controller along with a finite
time observer for estimation of states and external distur-
bances is presented in [25]. The efficacy of the results
are compared with an adaptive gain controller in both
simulations and experimental validation. Among the earlier
papers published [26] presents a continuous sliding mode
controller along with a sliding mode disturbance observer
to cater for modelling uncertainties, lateral wind gusts and
actuator damage/failure. The results are verified through
simulations. In [27] the nonlinear dynamic inversion con-
troller is robustified using an uncertainty and disturbance
estimator to cater for system nonlinearities, input couplings
and wind disturbances. The uncertainty and disturbance
estimator is based on the time delay disturbance observer
concept. The effectiveness of the results is verified through
Monte Carlo simulations and verified on experimental
hardware.

In this paper, a novel RFBL is designed along with two
other robust controllers i.e. ISMC and TSC. RFBL achieves
results superior to all other controllers for most of the cases
with smaller tracking errors and settling time. The controllers
have been compared with the controller and disturbance
observer designed in [20] for several different reference tra-
jectories. The controllers used for comparison are considered
for their robust qualities and ease of implementation on a real
platform. To the best of the author’s knowledge, harmonic
nonlinear disturbance observer has not been implemented
on a quadrotor along with a robust feedback linearization
approach. The overall contributions of the paper are enlisted
as follows:

• A novel RFBL Controller has been designed that
achieves superior results to several compared robust
controllers (ISMC and TSC).

• Results of RFBL Controller when compared with the
existing controller of [20] via multiple performance
indices is far more superior.

• Lyapunov stability analysis is assured for all the
designed controllers.

• Validation has been done both in simulations and
Hardware-In-Loop experiments.

The paper has been organized as follows: Section II
presents the mathematical modelling of the quadrotor.
Section III includes the design of the robust controllers and
nonlinear disturbance observer. In Section IV the results
of both the simulation and S-HIL are presented. Lastly in
Section V the conclusion is given.

II. MATHEMATICAL MODEL OF QUADROTOR
This section discusses the mathematical modelling of a
quadrotor which can be achieved via several techniques
among which Newton-Euler and Euler-Lagrange are the
most popular. Considering position control, the mathematical
model of quadrotor can be represented as [28]:

z̈ = (cosφ cos θ )
Fz
m

− g− ξz
ż
m

+ dz

φ̈ = θ̇ ψ̇
(Iy − Iz)

Ix
−
Ir
Ix
θ̇ ω̄ −

ξφ

Ix
φ̇ +

1
Ix
τφ + dφ

θ̈ = φ̇ψ̇
(Iz − Ix)

Iy
−
Ir
Iy
ψ̇ω̄ −

ξθ

Iy
θ̇ +

1
Iy
τθ + dθ

ψ̈ = φ̇θ̇
(Ix − Iy)

Iz
−
ξψ

Iz
ψ̇ +

1
Iz
τψ + dψ

ẍ = (cosφsinθcosψ + sinφsinψ)
Fz
m

− ξx
ẋ
m

+ dx

ÿ = (cosφsinθsinψ − sinφsinψ)
Fz
m

− ξy
ẏ
m

+ dy (1)

where m denotes the mass of the quadrotor; g is the
acceleration due to gravity; Ix , Iy, Iz are the moment of inertia
for each axis; ξz, ξφ , ξθ and ξψ are the aerodynamic damping
coefficients; Ir the inertia of the rotor; ω̄ = ω4+ω3−ω2−ω1
represents the residual rotor angular disturbance; Fz the thrust
in z direction; τφ, τθ , τψ the respective input torques in the
roll, pitch and yaw axis. The disturbances acting on the
system are dz, dφ , dθ , dψ , dx and dy.
Converting the above eq. 1 in state-space form yields:

ẋ1 = x2

ẋ2 = (cos x3 cos x5)
Fz
m

− g− ξz
x2
m

+ dz

ẋ3 = x4

ẋ4 = x6x8
(Iy − Iz)

Ix
−
Ir
Ix
x6ω̄ −

ξφ

Ix
x4 +

1
Ix
τφ + dφ

ẋ5 = x6

ẋ6 = x4x8
(Iz − Ix)

Iy
−
Ir
Iy
x4ω̄ −

ξθ

Iy
x6 +

1
Iy
τθ + dθ

ẋ7 = x8

ẋ8 = x4x6
(Ix − Iy)

Iz
−
ξψ

Iz
x8 +

1
Iz
τψ + dψ

ẋ9 = x10

ẋ10 = −
ξx

m
x10 +

FzFx
m

+ dx

17968 VOLUME 12, 2024



M. Sadiq et al.: Robust Feedback Linearization Based Disturbance Observer Control of Quadrotor UAV

ẋ11 = x12

ẋ12 = −
ξy

m
x12 +

FzFy
m

+ dy (2)

As seen from eq. 1, the quadrotor is an under-actuated
system. To convert it into a fully actuated system, virtual
control inputs Fx and Fy are introduced to control motion in
the x,y axis.

The desired roll and pitch angles can then be represented
as:

φdes =
1
Fz
(Fxsinψd

− Fycosψd )
θdes =

1
Fz
(Fxcosψd

− Fysinψd )

}
(3)

For a quadrotor in X-configuration the matrix relating the
thrust force and torques with the speed of the propeller’s can
be written as:

Fz
τφ
τθ
τψ



=



−kF −kF −kF −kF

−
1

√
2
lkF −

1
√
2
lkF

1
√
2
lkF

1
√
2
lkF

1
√
2
lkF −

1
√
2
lkF −

1
√
2
lkF

1
√
2
lkF

kM −kM kM −kM





�2
1

�2
2

�2
3

�2
4


(4)

where kF and kM represents the thrust coefficient, l the length
of the arm of the quadrotor.

Rearranging the above equation 4, the required propeller’s
rotational speed can be represented as:
�1
�2
�3
�4



=



−
1

4kF
−

1

2
√
2lkF

1

2
√
2lkF

1
4kM

−
1

4kF
−

1

2
√
2lkF

−
1

2
√
2lkF

−
1

4kM

−
1

4kF

1

2
√
2lkF

−
1

2
√
2lkF

1
4kM

−
1

4kF

1

2
√
2lkF

1

2
√
2lkF

−
1

4kM




Fz
τφ
τθ
τψ



(5)

III. ROBUST CONTROL AND DISTURBANCE OBSERVER
DESIGN
A. CONTROLLER DESIGN
To facilitate control system design, it will be divided into
Altitude/Attitude Control and Position X-Y control.

FIGURE 1. X-configuration parrot mambo drone.

1) ALTITUDE AND ATTITUDE CONTROL
The mathematical model for the Altitude and Attitude control
of a quadrotor without considering the disturbances can be
written as:

ẋ1 = x2

ẋ2 = (cos x3 cos x5)
Fz
m

− g− ξz
x2
m

+ dz

ẋ3 = x4

ẋ4 = x6x8
(Iy − Iz)

Ix
−
Ir
Ix
x6ω̄ −

ξφ

Ix
x4 +

1
Ix
τφ + dφ

ẋ5 = x6

ẋ6 = x4x8
(Iz − Ix)

Iy
−
Ir
Iy
x4ω̄ −

ξθ

Iy
x6 +

1
Iy
τθ + dθ

ẋ7 = x8

ẋ8 = x4x6
(Ix − Iy)

Iz
−
ξψ

Iz
x8 +

1
Iz
τψ + dψ (6)

representing the above eq. 6 in the form ẋ = f (x)+g(x)u+

d , where f (x), g(x), u and d can be written as:

f (x) =



x2
−g− ξz

x2
m

x4

x6x8
(Iy − Iz)

Ix
−
Ir
Ix
x6ω̄ −

ξφ

Ix
x4

x6

x4x8
(Iz − Ix)

Iy
−
Ir
Iy
x4ω̄ −

ξθ

Iy
x6

x8

x4x6
(Ix − Iy)

Iz
−
ξψ

Iz
x8


(7)

g(x) =



0 0 0 0
cos x3 cos x5

m
0 0 0

0 0 0 0

0
1
Ix

0 0

0 0 0 0

0 0
1
Iy

0

0 0 0 0

0 0 0
1
Iz


(8)
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u =


Fz
τφ
τθ
τψ

 (9)

d =



0
dz
0
dφ
0
dθ
0
dψ


(10)

Inorder to implement input-to-state feedback linearization,
the control action can be calculated as:


Fz
τφ
τθ
τψ

 =



m
cos x3 cos x5

(g+ ξz
x2
m

+ v1 − d̂z)

Ix(−x6x8
(Iy − Iz)

Ix
+
Ir
Ix
x6ω̄ +

ξφ

Ix
x4 + v2 − d̂φ)

Iy(−x4x8
(Iz − Ix)

Iy
+
Ir
Iy
x4ω̄ +

ξθ

Iy
x6 + v3 − d̂θ )

Iz(−x4x6
(Ix − Iy)

Iz
+
ξψ

Iz
x8 + v4 − d̂ψ )


(11)

where d̂z, d̂φ, d̂θ and d̂ψ are the estimated disturbances.
Considering tracking problem, the inputs a proportional
derivative controller can be designed as v1, v2, v3 and v4,
which are the control inputs to the feedback linearized plant:

v1 = ẋd2 − Kpze1 − Kdze2

v2 = ẋd4 − Kpφe3 − Kdφe4

v3 = ẋd6 − Kpθe5 − Kdθe6

v4 = ẋd8 − Kpψe7 − Kdψe8


(12)

where ei = xi − xdi , where i = 1, . . . , 8 and xdi is the desired
state trajectory.

In-order to add robustness to the existing controller,
a supertwisting controller will be added in the outer-
loop of the feedback linearized controller. Addition of the
supertwisting control action modifies the control inputs v1,
v2, v3 and v4 as:

v1,new = ẋd2 − Kpze1 − Kdze2 − k1z |sz|0.5 sign(sz)
−k2z

∫
sign(sz) dt

v2,new = ẋd4 − Kpφe3 − Kdφe4 − k1φ
∣∣sφ∣∣0.5 sign(sφ)

−k2φ
∫
sign(sφ) dt

v3,new = ẋd6 − Kpθe5 − Kdθe6 − k1θ |sθ |0.5 sign(sθ )
−k2θ

∫
sign(sθ ) dt

v4,new = ẋd8 − Kpψe7 − Kdψe8 − k1ψ
∣∣sψ ∣∣0.5 sign(sψ)

−k2ψ
∫
sign(sψ ) dt


(13)

where k1 and k2 are the gains of the supertwisting controller
for the z-direction, roll, pitch and yaw-axis. The sliding

surface for the supertwisting controller can be represented as:

sz = c1e1 + e2
sφ = c2e3 + e4
sθ = c3e5 + e6
sψ = c4e7 + e8

 (14)

where c1, c2, c3, c4 are the design constants.

2) STABILITY ANALYSIS OF ALTITUDE AND ATTITUDE
CONTROLLER
First analyzing the stability of the feedback linearization
based controller part, the system can be written in the
following standard form, ė = Acl e, where Acl is the closed
loop error dynamics matrix represented as: (15), as shown at
the bottom of the next page.
The stability of the closed-loop system is ensured by

selecting values of Kp, Kd > 0, which yields eig|Acl | < 0.
This ensures that the errors ei → 0 as t → ∞, where
i = 1, . . . , 8.
As for the supertwisting controller, the stability can be

derived from [29] as:

ż1 = −k1 |z1|0.5 sign(z1) + z2
ż2 = −k2sign(z2) + ρ

}
(16)

where z1, z2 ∈ R and the disturbance ρ is bounded by
|z1| < δ.
Consider a lyapunov function which can be written

in quadratic form as V1 = ζ TP ζ where ζ T =[
|z1|0.5 sign(z1) z2

]
and P is positive definite matrix. V1 is

continuously differentiable except for when z1 = 0. V̇1 exists
and is negative differentiable ∀z1 ̸= 0.
The Lyapunov function V1 is both positive definite and

radially unbounded:

λmin(P) ∥ζ∥2 ≤ V1 ≤ λmax(P) ∥ζ∥2 (17)

The Euclidean norm of ζ can bewritten as ∥ζ∥22 = |z1|+z22.
The following algebraic equation can be constructed:(

ATP+ PA+ ϵP+ δ2CTC PB
BTP −1

)
< 0 (18)

where A =

[
−

1
2k1

1
2

−k2 0

]
;B =

[
0
1

]
and C =

[
0 1

]
, with

k1, k2 > 0. Using ζ T =
[
|z1|0.5 sign(z1) z2

]
, eq. 16 can be

written as:

ζ̇1 =
1

|ζ1|
(Aζ + Bρ̃) (19)

Using the assumption that the perturbation is uniformly
bounded satisfying 2 |ρ| ≤ δ, the transformed perturbation
ρ̃ = |ζ1| ρ satisfies |ρ̃| ≤ δ |ζ1|. This results in ω̂ =

−ρ̃2 + δ2ζ 21 ≥ 0.
Considering the lyapunov equation V1 = ζ TP ζ , its

derivative becomes:

V̇1=
1

|ζ1|
[ζ ρ̃]T

[
ATP+ PA PB
BTP −1

]
[ζ ρ̃]
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≤
1

|ζ1|

{
[ζ ρ̃]T

[
ATP+ PA PB
BTP −1

]
[ζ ρ̃] + ω̂

}
≤

1
|ζ1|

[ζ ρ̃]T
[
ATP+ PA+ δ2CTC PB

BTP −1

]
[ζ ρ̃]

≤
1

|ζ1|
[ζ ρ̃]T

[
ATP+PA+ϵP−ϵP+δ2CTC PB

BTP − 1

]
[ζ ρ̃]

≤−
ϵ

|ζ1|
ζ TP ζ (20)

Therefore V̇1 ≤ −
ϵ

|ζ1|
ζ TP ζ = −

ϵ
|ζ1|

V1.
From the eq. 17 the following inequality can be deduced:

|ζ1| ≤ ∥ζ∥ ≤
V 0.5
1

λmin(P)
.

This concludes that V̇1 satisfies V̇1 ≤ −αV 0.5
1 , where α =

ϵλ0.5
minP. This guarantees finite time convergence where time

is bounded by Ts =
2V 0.5

1 ζ (0)
α

, where ζ (0) is the initial value
of ζ .
For the LMI equation in eq. 18 to be satisfied, the transfer

function G(s) = C(sI − A)−1B has to satisfy the following
max |G(jω)|

ω
< 1. This implies that max |G(jω)|

ω
< 1

δ
.

Using this inequality the following conditions on the gains
can be achieved max |G(jω)|

ω
< 1

k if k21 > k2. Then the

conditions on k1 and k2 can be deduced as: k2 > δ and
k21 > 4k2.

3) POSITION X-Y CONTROLLER
The remaining part of the quadrotor dynamics can be
represented as:

ẋ9 = x10
ẋ10 = −

ξx
m x10 +

FzFx
m + dx

ẋ11 = x12
ẋ12 = −

ξy
m x12 +

FzFy
m + dy

 (21)

The control action similar to the fully actuated system can
be designed as:

Fx =
m
Fz
(ẋd10 +

ξx
m x10 − Kpxe9 − Kdxe10

−k1x |sx |0.5 sign(sx) − k2x
∫
sign(sx) − d̂x)

Fy =
m
Fz
(ẋd12 +

ξy
m x12 − Kpye11 − Kdye12

−k1y
∣∣sy∣∣0.5 sign(sy) − k2y

∫
sign(sy) − d̂y)

 (22)

where Kp,Kd > 0 and k1, k2 are the controller design
gains of the supertwisting controller, ei = xi − xdi , where

i = 9, . . . , 12 and xdi is the desired state trajectory. The
sliding surfaces are chosen as:

sx = c5e9 + e10
sy = c6e11 + e12

}
(23)

where c5, c6 are design constants of the sliding surface.
The stability analysis for the X-Y position control can be
performed similarly to the Altitude and Attitude Control
stability analysis; by analyzing the proportional derivative
controller and supertwisting controller separately assuming
the thrust, Fz to be bounded.

B. NONLINEAR HARMONIC DISTURBANCE OBSERVER
A nonlinear harmonic disturbance observer can be imple-
mented where the frequency of the disturbance in known
but with unknown amplitude and phase. An enhanced
formulation is presented where the requirement of the
derivative of the state can be eluded.

The enhanced formulation of this harmonic disturbance
observer is defined as [30]:

ż = [A− l(x)g2(x)C]z+ Ap(x)

− l(x)[g2(x)Cp(x) + f (x) + g1(x)u] (24)

ξ̂ = z+ p(x)
d̂ = C ξ̂
l(x) =

∂p(x)
∂x

 (25)

ẋ = f (x) + g1(x)u+ g2(x)d (26)

The error dynamics of the disturbance and its estimation is
represented as:

eξ = ξ̂ − ξ

ėξ =
˙̂
ξ − ξ̇

= ż+
∂p(x)
∂x ẋ − Aξ

= [A− l(x)g2(x)C]z+ Ap(x)
−l(x)[g2(x)Cp(x) + f (x) + g1(x)u]
+l(x)[f (x) + g1(x)u+ g2(x)d] − Aξ
= [A− l(x)g2(x)C](ξ̂ − p(x)) + Ap(x)
−l(x)[g2(x)Cp(x) + f (x) + g1(x)u]
+l(x)[f (x) + g1(x)u+ g2(x)Cξ ] − Aξ
= [A− l(x)g2(x)C](ξ̂ − ξ )
= [A− l(x)g2(x)C]eξ



(27)

From eq. 27 if l(x) is selected such that ξ̂ approaches ξ
exponentially and ėξ is globally exponentially stable.

Acl =



0 1 0 0 0 0 0 0
−Kpz −Kdz 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −Kpφ −Kdφ 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −Kpθ −Kdθ 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −Kpψ −Kdψ


(15)
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The block diagram of this harmonic nonlinear disturbance
observer is depicted in the figure below:

FIGURE 2. Block diagram of harmonic nonlinear disturbance observer.

Considering the quadrotor mathematical model with
disturbances included as in eq. 2, the controller already
designed can be patched with the estimates of the unmatched
disturbances dz, dφ , dθ , dψ , dx and dy.
The control action after the addition of estimated distur-

bance for the Altitude and Attitude system can be written as:

v1,new = ẋd2 − Kpze1 − Kdze2
−k1z |sz|0.5 sign(sz) − k2z

∫
sign(sz) dt − d̂z

v2,new = ẋd4 − Kpφe3 − Kdφe4
−k1φ

∣∣sφ∣∣0.5 sign(sφ) − k2φ
∫
sign(sφ) dt − d̂φ

v3,new = ẋd6 − Kpθe5 − Kdθe6
−k1θ |sθ |0.5 sign(sθ ) − k2θ

∫
sign(sθ ) dt − d̂θ

v4,new = ẋd8 − Kpψe7 − Kdψe8
−k1ψ

∣∣sψ ∣∣0.5 sign(sψ) − k2ψ
∫
sign(sψ ) − d̂ψ


(28)

while for the position X-Y system can be written as:

Fx =
m
Fz
(ẋd10 +

ξx
m x10 − Kpxe9 − Kdxe10

−k1x |sx |0.5 sign(sx) − k2x
∫
sign(sx) dt − d̂x)

Fy =
m
Fz
(ẋd12 +

ξy
m x12 − Kpye11 − Kdye12

−k1y
∣∣sy∣∣0.5 sign(sy) − k2y

∫
sign(sy) dt − d̂y)

 (29)

C. INTEGRAL SLIDING MODE CONTROL
Integral Sliding Mode Control defers from the regular sliding
mode controller by designing its sliding surface which
includes the integral terms of all the errors [31].

1) CONTROLLER DESIGN
For Tracking of desired states, the sliding surface for the roll
axis is defined as:

sφ = c1φe1φ + e2φ + c2φe3φ + e4φ
e1φ = x3 − xd3
e2φ = x4 − xd4
e3φ =

∫
(x3 − xd3 )dt

e4φ =
∫
(x4 − xd4 )dt

 (30)

The derivative of the sliding surface can be defined as:

ṡφ = c1φ ė1φ + ė2φ + c2φe1φ + e2φ (31)

Inserting the time derivatives of the errors in eq. 31 yields:

ṡφ = c1φ (ẋ3 − ẋd3 ) + ẋ4 − ẋd4 + c2φe1φ + e2φ (32)

In order to make Lyapunov function negative-definite,
we equate ṡφ = −k

∣∣sφ∣∣0.5 sign(sφ).
The control action for the roll-axis then yields:

τφ = −Ix(ẋd4 + x6x8
(Iy − Iz)

Ix
−
Ir
Ix
x6ω̄ −

ξφ

Ix
x4

+ kφ
∣∣sφ∣∣0.5 sign(sφ) + c1φe2φ + c2φe1φ + e2φ − d̂φ)

(33)

where kφ is the gain of the integral sliding mode and d̂φ is the
estimated disturbance in the roll-axis.

The Integral Sliding Mode Controller for the x-axis can be
designed as:

Fx =
m
Fz

(−
ξx

m
x10 − kx |sx |0.5 sign(sx)

− c1xe2x − c2xe1x − e2x − d̂x) (34)

where kx is the gain of the integral sliding mode and d̂x is the
estimated disturbance in the x-axis.

The sliding surface is chosen as sx = c1xe1x+e2x+c2xe3x+
e4x ,where c1x and c2x are the design parameter. The errors
e1x = x9 − x9d , e2x = x10 − x10d , e3x =

∫
e1x dt and e4x =∫

e2x dt .
The Integral Sliding Mode Control patched with harmonic

disturbance observer for the complete quadrotor system for
tracking of states is defined as:

Fz =
m

cosx3cosx5
(ẋd2 + g+ ξz

x2
m − kz |sz|0.5 sign(sz)

−c1zx2 − c2ze1z − e2z − d̂z)
τφ = Ix(ẋd4 − x6x8

(Iy−Iz)
Ix

+
Ir
Ix
x6ω̄ +

ξφ
Ix
x4

−kφ
∣∣sφ∣∣0.5 sign(sφ) − c1φe2φ − c2φe1φ − e2φ − d̂φ)

τθ = Iy(ẋd6 − x4x8
(Iz−Ix )
Iy

+
Ir
Iy
x4ω̄ +

ξθ
Iy
x6

−kθ |sθ |0.5 sign(sθ ) − c1θe2θ − c2θe1θ − e2θ − d̂θ )
τψ = Iz(ẋd8 − x4x6

(Ix−Iy)
Iz

+
ξψ
Iz
x8

−kψ
∣∣sψ ∣∣0.5 sign(sψ )−c1ψe2ψ−c2ψe1ψ−e2ψ−d̂ψ )


(35)

while the control action for x and y axis can be defined as:

Fx =
m
Fz
(ẋd10 −

ξx
m x10 − kx |sx |0.5 sign(sx)

−c1xe2x − c2xe1x − e2x − d̂x)
Fy =

m
Fz
(ẋd12 −

ξy
m x12 − ky

∣∣sy∣∣0.5 sign(sy)
−c1ye2y − c2ye1y − e2y − d̂y)

 (36)

2) STABILITY ANALYSIS
Considering the Lyapunov candidate function as:

V =
1
2
s2 (37)
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Taking its derivative we get V̇ = sṡ. Inserting ṡ =

−k |s|0.5 sign(s), we get V̇ = s(−k |s|0.5 sign(s)).
For simplification sign(s) can also be written as sign(s) =

|s|
s . Substituting this in V̇ gives:

V̇ = −k |s|1.5 (38)

Since k is a positive number, V̇ will always be negative
definite, which ensures asymptotic stability.

D. TERMINAL SYNERGETIC CONTROLLER
Synergetic control achieves convergence of state variables
as time goes to infinity [32]. To achieve finite time
convergence Terminal Synergetic Control is used which
combines synergetic control theory with terminal attractor to
achieve finite time convergence.

1) CONTROLLER DESIGN
A controller for the roll-axis is developed, similarly con-
trollers for the remaining axis can also be designed. We start
by introducing a macro-variable ζ , which is expressed as:

ζ = e1φ + w1φ(
∫ t

0
e1φ dt)p1/q1+e2φ+w2φ(

∫ t

0
e2φ dt)p2/q2

(39)

where w1φ and w2φ are positive constants chosen by the
designer, while p1,q1,p2 and q2 are odd positive numbers such
that 1 < p1

q1
< 2 and 1 < p2

q2
< 2. The errors are defined as

e1φ = x3 − xd3 and e2φ = x4 − xd4 .
Taking the time derivative of ζ we attain:

ζ̇ = ˙e1φ + w1φ(
p1
q1

)e1φ(
∫ t

0
e1φ dt)p1/q1−1

+ ˙e2φ

+ w2φ(
p2
q2

)e2φ(
∫ t

0
e2φ dt)p2/q2−1 (40)

After placing the values of ė1 and ė2 we get:

ζ̇ = x4 + w1φ(
p1
q1

)e1φ(
∫ t

0
e1φ dt)p1/q1−1

+ x6x8
(Iy − Iz)

Ix

−
Ir
Ix
x6ω̄ −

ξφ

Ix
x4 +

1
Ix
τφ − ẋd4

+ w2φ(
p2
q2

)e2φ(
∫ t

0
e2φ dt)p2/q2−1 (41)

Considering the following relation between ζ and ζ̇ :

Tφ ζ̇ + ζ = 0 (42)

where Tφ is a positive constant and is the convergence rate of
the terminal attractor.

By putting eq. 41 in eq. 42 we get:

Tφ(x4 + w1φ(
p1
q1

)e1φ(
∫ t

0
e1φ dt)p1/q1−1

+ x6x8
(Iy − Iz)

Ix

−
Ir
Ix
x6ω̄ −

ξφ

Ix
x4 +

1
Ix
τφ

− ẋd4 + w2φ(
p2
q2

)e2φ(
∫ t

0
e2φ dt)p2/q2−1) + ζ = 0 (43)

Solving eq. 43 for the control input τφ :

τφ = Ix(ẋd4 − x6x8
(Iy − Iz)

Ix
+
Ir
Ix
x6ω̄ +

ξφ

Ix
x4 −

ζφ

Tφ
− x4

− w1φ(
p1
q1

)e1φ(
∫ t

0
e1φdt)p1/q1−1

− w2φ(
p2
q2

)e2φ(
∫ t

0
e2φdt)p2/q2−1) (44)

The Terminal Synergetic Controller for the x-axis position
control is as follows:

Fx =
m
Fz

(ẋd10 −
ζx

Tx
− x10 − w1x(

p1
q1

)e1x(
∫ t

0
e1x dt)p1/q1−1

− w2x(
p2
q2

)e2x(
∫ t

0
e2x dt)p2/q2−1) (45)

where the macro-variable ζx = e1x + w1x(
∫ t
0 e1x dt)

p1/q1 +

e2x + w2x(
∫ t
0 e2x dt)

p2/q2 , the errors e1x = x9 − xd9 , e2x =

x10 − xd10. w1x , w2x and Tx are the design constants.
TSC patched with harmonic disturbance observer for the

complete quadrotor system for tracking of states is defined
as:

Fz =
m

cosx3cosx5
(ẋd2 + g+ ξz

x2
m −

ζx
Tz

−x2 − w1z(
p1
q1
)e1z(

∫ t
0 e1zdt)

p1/q1−1

−w2z(
p2
q2
)e2z(

∫ t
0 e2zdt)

p2/q2−1
− d̂z)

τφ = Ix(ẋd4 − x6x8
(Iy−Iz)
Ix

+
Ir
Ix
x6ω̄ +

ξφ
Ix
x4 −

ζφ
Tφ

−x4 − w1φ(
p1
q1
)e1φ(

∫ t
0 e1φdt)

p1/q1−1

−w2φ(
p2
q2
)e2φ(

∫ t
0 e2φdt)

p2/q2−1
− d̂φ)

τθ = Iy(ẋd6 − x4x8
(Iz−Ix )
Iy

+
Ir
Iy
x4ω̄ +

ξθ
Iy
x6 −

ζθ
Tθ

−x6 − w1θ (
p1
q1
)e1θ (

∫ t
0 e1θdt)

p1/q1−1

−w2θ (
p2
q2
)e2θ (

∫ t
0 e2θdt)

p2/q2−1
− d̂θ )

τψ = Iz(ẋd8 − x4x6
(Ix−Iy)
Iz

+
ξψ
Iz
x8 −

ζψ
Tψ

−x8 − w1ψ (
p1
q1
)e1ψ (

∫ t
0 e1ψdt)

p1/q1−1

−w2ψ (
p2
q2
)e2ψ (

∫ t
0 e2ψdt)

p2/q2−1
− d̂ψ )



(46)

while the control action for x and y axis can be defined as:

Fx =
m
Fz
(ẋd10 −

ξx
m x10 −

ζ
Tx

− x10
−w1x(

p1
q1
)e1x(

∫ t
0 e1x dt)

p1/q1−1

−w2x(
p2
q2
)e2x(

∫ t
0 e2x dt)

p2/q2−1
− d̂x)

Fy =
m
Fz
(ẋd12 −

ξy
m x12 −

ζ
Ty

− x12
−w1y(

p1
q1
)e1y(

∫ t
0 e1y dt)

p1/q1−1

−w2y(
p2
q2
)e2y(

∫ t
0 e2y dt)

p2/q2−1
− d̂y)


(47)

2) STABILITY ANALYSIS
The Lyapunov function can be considered as:

V2 =
1
2
ζ 2 (48)

Taking the time derivative of eq. 45:

V̇2 = ζ ζ̇ (49)
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By equating value of ζ̇ from eq. 42 we get:

V̇2 = −
ζ 2

T2
(50)

By putting in value of ζ 2 from eq. 45:

V̇2 = −
2V2
T2

(51)

The solution of eq. 51 yields:

V̇2 = V02e(−2/T2)t (52)

where V02 is the value of the Lyapunov function at t = 0.
Therefore eq. 52 ensures global exponential finite time
stability.

IV. RESULTS
The numerical simulations have been carried out for the
controllers designed i.e. RFBL Controller, ISMC and TSC.
The three controllers have been patched with nonlinear
harmonic disturbance observer. The results for all three
controllers as well as the disturbance observer have been
compared with that implemented in [20].

A. DISTURBANCE OBSERVER
Nonlinear Harmonic Disturbance Observer in comparison
with Finite Time Disturbance Observer implemented in [20]
will be presented in this section. It can be seen from
the figures below that the nonlinear harmonic disturbance
observer estimates disturbances much superior to that of [20].
The reference disturbance acting on each axis is dz, dφ , dθ ,

dψ , dx , dy = 0.1 sin (2t).

FIGURE 3. X-axis disturbance estimation.

B. CONTROLLER IMPLEMENTATION ON MULTIPLE TYPE
OF TRAJECTORIES
In this section RFBL Controller designed will be compared
with the controller implemented in [20] along with ISMC and
TSC. The controllers are implemented for various reference

FIGURE 4. Y-axis disturbance estimation.

FIGURE 5. Z-axis disturbance estimation.

FIGURE 6. Roll-axis disturbance estimation.

trajectories to ensure the efficacy of the control system
designed.
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FIGURE 7. Pitch-axis disturbance estimation.

FIGURE 8. Yaw-axis disturbance estimation.

To analyse the performance of the controllers designed
multiple performance indices would be used i.e. IAE (Integral
Absolute Error), ITAE (Integral Time Absolute Error), ISE
(Integral Square Error) and ITSE (Integral Time Square
Error). The formulas for the performance index are as
follows:

IAE =

∫ t

0
|e| dt

ITAE =

∫ t

0
|t e| dt

ISE =

∫ t

0
e2dt

ITSE =

∫ t

0
t e2dt (53)

1) MULTI-STEP INPUT TRAJECTORY
For the design of multi-step input trajectory xd and yd are
varied, while z and ψ are kept constant at zd = 2 and

ψd
=π/6 respectively.

xd =


2, 0 < t ≤ 5
3, 5 < t ≤ 10
5, t > 10

yd =


1, 0 < t ≤ 5
2, 5 < t ≤ 10
4, t > 10

The results are depicted in the figures below:

FIGURE 9. Multi-step input response for a) x-axis, b) y-axis, c) z-axis and
d) ψ-axis.

While the control action for the multi-step input is shown
in the following figure 10 and 11.

TABLE 1. Specification for X-axis (multi-input trajectory).

TABLE 2. Specification for Y-axis (multi-input trajectory).

TABLE 3. Specification for Z-axis (multi-input trajectory).

The results achieved by RFBL Controller as shown in
table 1, 2, 3 and 4 outweigh all other controllers that have been
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TABLE 4. Specification for Yaw(ψ)-axis (multi-input trajectory).

FIGURE 10. Control Input for multi-step input trajectory, a) Thrust Force,
b) Roll Torque.

FIGURE 11. Control input for multi-step input trajectory, c) Pitch Torque,
d) Yaw Torque.

compared. Even though TSC seems to outperform RFBL
Controller in ISE and ITSE metrics as seen in table 1,
however, there is a high spike in contents in the control effort
of TSC as shown in figure 10 and 11.

2) CIRCULAR TRAJECTORY
To achieve a circular trajectory, an altitude of 1m to track the
z − axis is given, while the yaw angle ψ is kept at 0 rad.
The desired trajectory to track for the x and y axis are: xd =

cos(0.5t) and yd = cos(0.5t).
Figure 12 below shows the plot of circular trajectory.
The control action required to achieve the circu-

lar trajectory is depicted by the following figure 4
and 14:
All the tables 5, 6 and 7 show that RFBL Controller is far

superior. The TSC once again shows high spikes therefore
negating its effectiveness. The performance index depicts
the RFBL Controller outperforming all the other controllers
including that designed in [20].

FIGURE 12. Circular trajectory plot.

FIGURE 13. Control action for circular trajectory, a) Thrust Force, b) Roll
Torque.

FIGURE 14. Control action for circular trajectory, c) Pitch Torque.

TABLE 5. Specification for X-axis (circular trajectory).

3) 8/INFINITY SHAPED TRAJECTORY
Trajectory to attain shaped of numeric digit 8 or ∞ can be
achieved by setting the desired commanded states as xd =

cos(0.5 t), yd = cos(0.5 t) sin(0.5 t), zd = 1.5 and ψd
= 0.
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TABLE 6. Specification for Y-axis (circular trajectory).

TABLE 7. Specification for Z-axis (circular trajectory).

FIGURE 15. Plot of 8/infinity shaped trajectory.

FIGURE 16. Control action for 8/infinity shaped trajectory, a) Thrust
Force, b) Roll Torque.

TABLE 8. Specification for X-axis (infinity shaped trajectory).

Results of tracking the infinity-shaped trajectory shown in
table 8, 10 and 9 highlights the efficacy and superiority of the
RFBLController over the compared controllers designed. All
performance indices highlighted in bold show that the best
results are achieved by the RFBL Controller.

FIGURE 17. Control action for 8/infinity shaped trajectory, c) Pitch Torque.

TABLE 9. Specification for Y-axis (infinity shaped trajectory).

TABLE 10. Specification for Z-axis (infinity shaped trajectory).

4) SQUARE TRAJECTORY
The commanded trajectory for this case is achieved by setting
zd = 1.5, ψd

= 0. While xd and yd are set as:

xd =


0, 0 < t ≤ 2.5
2, 2.5 < t ≤ 10
0, 10 < t ≤ 15
2, t > 15

yd =


0, 0 < t ≤ 5
2, 5 < t ≤ 12.5
0, t > 12.5

TABLE 11. Specification for X-axis (square shaped trajectory).

Only for the square trajectory tracking does the TSC
achieve slightly better results compared to the RFBL
Controller as shown in table 11 and 12 i.e. for the X and
Y axis. However, RFBL Controller is way more superior in
the Z axis as shown in table 13. The superiority of the TSC
achieved in X and Y axis seems to be negated by the fact that
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FIGURE 18. Plot of square shaped trajectory.

FIGURE 19. Control action for square shaped trajectory, a) Thrust Force,
b) Roll Torque.

FIGURE 20. Control action for square shaped trajectory, c) Pitch Torque.

TABLE 12. Specification for Y-axis (square shaped trajectory).

high spike content in its control effort can be seen in figure 8
and 20.

TABLE 13. Specification for Z-axis (square shaped trajectory).

5) SPIRAL TRAJECTORY
To achieve a spiral trajectory, the yaw angleψ is kept at 0 rad.
The desired trajectory to track for the x, y and z axis are: xd =

cos(0.5t), yd = cos(0.5t) and zd = t .
Figure 21 shows the plot of the spiral trajectory.

FIGURE 21. Spiral trajectory plot.

The control action required to achieve the spiral trajectory
is depicted by figure 22 and 23:

FIGURE 22. Control action for spiral trajectory, a) Thrust Force, b) Roll
Torque.

Lastly, to test the efficacy of the RFBL Controller over
other compared controllers, a spiral trajectory has been used.
The results achieved by RFBL Controller outweigh all other
controllers by a large extent as shown in table 14, 15 and 16.
The X, Y and Z axis is tracked by the RFBL Controller
with the highest accuracy, clearly depicted by the numbers
highlighted in bold.
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FIGURE 23. Control action for spiral trajectory, c) Pitch Torque.

TABLE 14. Specification for X-axis (spiral trajectory).

TABLE 15. Specification for Y-axis (spiral trajectory).

TABLE 16. Specification for Z-axis (spiral trajectory).

C. HARDWARE IN LOOP VALIDATION
To emulate our controller and plant in a real setting,
a Hardware-in-Loop (HIL) experiment is carried out.
Although implementation on real hardware provides a better
validation, due to limited resources S-HIL was implemented.
S-HIL approximates the controller in a real-time setting and
provides a cost-effective solution by implementing both the
plant and controller on a microprocessor field-programmable
gate array (FPGA).

S-HIL (Single Hardware in Loop) is implemented by dis-
cretization of the continuous time blocks in Simulink/Matlab
with appropriate sample time [33]. The implementation for
S-HIL is carried out on MicroLabBox dSPACE RTI-1202
platform. The results shown in Fig. 24 show good tracking
of S-HIL results in comparison with simulation. A low
computational burden was seen during implementation in S-
HIL environment since both each disturbance observer is
a two-state ordinary differential equation and can be easily
solved using a discrete-time solver.

The control efforts seen in Fig. 25 vary slightly initially
during the transient phase. After the transition phase, the
control efforts for both the S-HIL and simulation seem to be
tracked closely. Hardware in Loop (HIL) provides results that
are safe for future practical implementation.

FIGURE 24. Comparison of S-HIL and simulation of RFBL controller for
the circular trajectory.

FIGURE 25. Comparison of S-HIL and simulation of RFBL control efforts
a) Thrust Control Force, b) Roll Control Torque, c) Pitch Control Torque.

TABLE 17. Quadrotor drone parameters.

V. CONCLUSION
The results verify that the RFBL Controller achieves superior
performance compared to the other implemented controllers.
The TSC may seem to outperform RFBL Controller in a few
cases, however, the high spikes in control action observed
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TABLE 18. Robust Feedback Linearization (RFBL) controller parameters.

TABLE 19. Integral sliding mode controller (ISMC) parameters.

TABLE 20. Terminal synergetic controller (TSC) parameters.

in the control effort negate the response it achieves by
causing actuator saturation. Lower error tracking and fast
settling times are noticeable for RFBL Controller in addition
to robustness to external disturbances. Also, the nonlinear
harmonic disturbance observer achieves a better estimation
of disturbances and tracks the reference disturbances much
more precisely as compared to the finite time disturbance
observer. Hardware-in-Loop provides validation of the con-
troller for practical implementation.

In the future, the controllers will be implemented on
the experimental drone platform for further validation of
results in real-time. Moreover, various other published
controllers and their associated disturbance observers will
be included for the comparison analysis, benefiting the
readers. Additionally, controller parameters can be selected
by using meta-heuristics algorithms by having an appropriate
objective function. Another area that needs to be explored is
disturbance observer for mismatched disturbances.
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