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ABSTRACT Ensuring the quality and functionality of printed circuit boards (PCBs) during manufacturing
requires precise, automated visual inspection. Detecting integrated circuits (ICs) on PCBs poses a significant
challenge due to diverse component sizes, types, and intricate board markings that complicate accurate object
detection. This study addresses this challenge by proposing an enhanced EfficientNet-YOLOv4 algorithm
tailored explicitly for the IC detection of PCBs. Numerous modifications are integrated into YOLOv4, with
the replacement of its original backbone by a robust feature extraction network, EfficientNetv2-L, and
meticulous hyperparameter tuning, including variations in loss functions, anchor size configurations, and
other training techniques. The methodology further incorporates diverse data augmentation techniques to
enrich the training dataset and enhance the model’s generalization ability. Extensive experiments conducted
in this study showed the efficacy and robustness of the algorithm in handling complex PCB layouts
and varying lighting conditions, outperforming existing PCB inspection models. The proposed method,
EfficientNetv2-L-YOLOV4, achieved an impressive Fl-score of 99.22 with an inference speed of 0.14 s
per image. The proposed method also performed well compared to EfficientNet-B7-FasterRCNN and the
original YOLOv4; it attains an F1-score of 98.96 and an inference speed of 0.10 s per image (with a batch size
of 4). These results highlight the significance of effective feature extraction networks for object detection.
Beyond addressing IC detection challenges, this algorithm advances the fields of computer vision and object
detection. The implementation of EfficientNetv2-L-YOLOV4 in real manufacturing scenarios holds promise
for automating component inspections and potentially eliminating the need for human intervention.

INDEX TERMS Automated visual inspection, feature extraction network, object detection, printed circuit
board (PCB).

I. INTRODUCTION

Industry 4.0 marks a transformative era in which the Inter-
net of Things (IoT) and artificial intelligence (AI) redefine
supply chain automation, especially within manufacturing,
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leveraging artificial intelligence and machine learning to
elevate global supply and value chains [1]. Technological
advancements enable the digital transformation of factories
by automating industrial processes, aiming for autonomous
operations and attaining high-quality electronic production
equipment. Machine vision is crucial in modern electronics
manufacturing, primarily manifesting in four key aspects:
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measurement, inspection, identification, and positioning [2].
One notable application is printed circuit board (PCB) inspec-
tion, where intelligent vision technology is employed to
ensure precision and product quality.

Printed circuit boards serve as cores for electronic devices,
interconnected housing circuits, and electronic components.
Traditional manual visual inspection, prone to inefficiencies
and errors owing to human limitations, requires non-contact
automation methods, particularly in PCB assembly (PCBA)
[3]. Automatic Optical Inspection systems (AOIs) have
emerged as pivotal machine vision applications to ensure
PCB quality and streamline inspection processes, thereby
alleviating manual inspection challenges [4]. AOI systems
advance data acquisition by capturing high-resolution images
of PCBs using cameras. These images are meticulously
analyzed against design specifications to detect defects, pro-
viding a robust dataset for quality assessment. Alternative
inspection methods for PCBs, including Automated X-ray
Inspection (AXI), Infrared Thermography (IRT), and Acous-
tic Micro Imaging (AMI), are employed for quality assurance.

Accurate component detection is pivotal in automating
PCB production monitoring, specifically in addressing crit-
ical manufacturing defects such as component shifts or
missing parts within Surface Mount Technology (SMT) pick-
and-place processes [2], [5]. The enhancement of automated
PCB inspection tools is imperative for effectively tackling
these issues, optimizing efficiency, and enabling swift, pre-
cise, and early fault detection across all stages of production.
Additionally, pinpointing the exact component location not
only aids in defect inspection but also facilitates character
identification of PCB components and supports the recycling
process of the PCB.

The detection and localization of ICs on PCBs remains
a formidable challenge for automated inspection systems.
This difficulty arises from the complex variability in com-
ponent sizes, orientations, and layouts encountered during
inspections. Object detection, a fundamental facet of com-
puter vision, relies on machine learning or deep learning
methodologies to extract meaningful insights from images.
It encompasses two integral components: image classification
and localization, both of which are vital for the identification
and precise positioning of PCB components.

Object detection in PCB inspection presents substantial
opportunities for enhancement, particularly in critical aspects
such as feature learning, backbone architecture, and proposal
generation [6]. Challenges persist in effectively handling
feature-scale issues and mastering multiscale feature learn-
ing, both essential for accurately identifying diverse ICs.
The pursuit of a detection-aware backbone architecture tai-
lored explicitly for object detection has emerged as a pivotal
research focus [6]. However, identifying the most suitable
backbone architecture within PCB datasets remains a signif-
icant challenge, impacting the precision and complexity of
object detection tasks. Achieving a balance between speed
and accuracy necessitates adaptive multilevel features and a
well-designed backbone architecture [7]. As current feature
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extraction networks face challenges in capturing intricate
details across diverse PCBs, there is a growing interest
in exploring the direct learning of backbone architectures
from datasets [6]. Significant strategies involve optimizing
backbone architectures such as Neural Architecture Search
(NAS) within Auto Machine Learning (AutoML) or adapting
existing architectures such as EfficientNet to tailor them to
specific object-detection tasks.

Moreover, hyperparameter settings in machine learning
represent predetermined choices that significantly influence
the behavior, complexity, and speed of the learning pro-
cess, and these values must be carefully chosen to achieve
optimal performance [8], [9]. The underexplored realm of
hyperparameter tuning in machine learning remains mainly
uncharted, resulting in a conspicuous lack of systematic
analyses of parameter tuning practices in academic research.
Consequently, there is a need for the systematic exploration
and refinement of these configurations to enhance the perfor-
mance of object detection models.

This study explicitly targets the detection of integrated
circuits on a PCB, excluding their pins or soldering parts.
The focus of this research is on implementing the feature
extraction network and fine-tuning the training settings, aim-
ing to further improve the accuracy of object detectors. The
contributions of this study are as follows:

« Enhance object detection performance, particularly for
ICs on PCBs, by gaining valuable insights into backbone
architecture development and selection.

« Optimize model configurations, including variations in
loss functions, anchor sizes, and training techniques.

« Explore image-augmentation techniques to improve the
generalization ability of the model.

The remainder of this paper is organized as follows.
Section I provides a review of the relevant literature on object
detection algorithms, with a particular focus on those applied
to PCB inspections. Section III outlines the methodology,
including details on the data collection process, and discusses
the selection and modification of the proposed algorithm.
Comprehensive experiments to evaluate the performance of
the proposed method are presented in Section IV. Finally,
Section V summarizes the key findings of this study and
offers recommendations for future research in this field.

Il. RELATED WORKS

In PCB assembly, object detection techniques prove invalu-
able for identifying and classifying various types of electrical
components, including resistors, capacitors, and integrated
circuits. These techniques are equally valuable for detect-
ing common defects like soldering issues (open circuits,
excess solder) and component irregularities (missing or mis-
aligned elements) on the PCB. This exploration delves into
different categories of deep learning-powered object detec-
tors and neural network-based methods, underscoring their
significance in PCB inspection. The focus of the reviewed
techniques lies predominantly on PCB component detection,
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extending to the examination of common electrical compo-
nents, and incorporates research on PCB defect detection,
offering a comprehensive understanding of PCB inspection
methodologies. Figure 1 shows the scope of the literature
review.

Overview of Literature

Review
Electrical Component
Detection
PCB Components PCB Defects
Detection Detection
Component Defects Type
Component Types Detects Classiﬁcai’i%n
Localization  Classification Localization MGisien

/Detection

FIGURE 1. Overview of the literature review.

A. DEEP LEARNING-BASED OBJECT DETECTORS

Object detection in deep learning is commonly categorized
into two main paradigms: two-stage and one-stage meth-
ods. Two-stage methods are renowned for their precision
in predictions but are often associated with increased com-
putational overhead due to an additional step involving the
identification of regions of interest before classification [10].
In contrast, one-stage methods streamline the process by per-
forming object detection in a single step [11]. These methods
directly predict class labels and bounding box coordinates for
all potential objects within an image, eliminating the need
for explicit region proposal generation and offering notable
advantages in computational efficiency [2].

Exemplifying two-stage methods are established architec-
tures such as R-CNN (Region-based Convolutional Neural
Network), Fast R-CNN, Faster R-CNN, Mask R-CNN (Mask
Region-based Convolutional Neural Network), and R-FCN
(Region-based Full Convolutional Network) [2]. On the other
hand, YOLO (You Only Look Once) and RetinaNet emerge as
regression-based deep learning algorithms, classified under
the one-stage method [2].

1) ONE-STAGE DETECTOR: YOLO

The YOLO method, based on Convolutional Neural Net-
works (CNNs), was widely utilized for real-time prediction
in PCB assemblies. YOLOV3, distinguished from YOLOv2
primarily by its Feature Pyramid Network (FPN) architecture,
excelled in multi-scale prediction and effective small-object
detection [12]. In the detection of small surface-mounted
devices (SMD) on PCBs, Li et al. [2] proposed enhance-
ments to the YOLOv3 model by introducing a target-sensitive
YOLO output layer to prevent the loss of feature informa-
tion for small components. Addressing the concern of absent
components in PCBs, Khare et al. [13] introduced PCB-Fire,
a solution involving object detection (using YOLOv3), image
subtraction, and pixel manipulation. Silva et al. [14] applied
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a pre-trained YOLOV3 model, fine-tuned with the publicly
available PCB DSLR dataset [15], to detect ICs in waste
PCBs, thereby facilitating the recycling process.

In YOLOV3, bounding box predictions depended on the
anchor-box concept [2]. However, the performance could be
affected by discrepancies between the anchor and target sizes.
This issue was addressed by employing K-means clustering,
which generated the anchors suitable for the distribution
of PCB electronic components based on the size ratio of
the target in the training dataset [2], [16]. The YOLOv3
was successfully enhanced by applying K-means clustering
to generate 12 anchor boxes in PCB electronic component
detection [2].

The backbone networks responsible for feature extrac-
tion played a pivotal role in identifying objects within
images. In their study, Chen and Tsai [16] replaced the
Darknet-53 backbone of YOLOv3 with DenseNet-121 for
defect inspection in SMD LED chips, aiming to enhance the
efficiency of defect identification. The evolution of object
detection algorithms notably elevated YOLOv4 as the pre-
ferred choice for PCB detection, surpassing its predecessor
YOLOV3. Caliskan and Gurkan [17] successfully employed
the YOLOv4 algorithm to detect solder joint defects in
assembled PCB production lines. Subsequently, YOLOv4
underwent further improvements and found applications
in defect-detection methods for PCB electronic compo-
nents [18]. Furthermore, the integration of the YOLOv4-tiny
algorithm with a Multiscale Attention Module (MAM)
proved effective in enhancing the accuracy of electronic com-
ponent detection [19].

In object detection, the loss function typically encom-
passed classification loss, confidence loss, and bounding box
regression loss—each evaluating distinct aspects of perfor-
mance. The loss function quantified the disparity between the
predicted and actual (ground truth) values and assessed the
proximity or dissimilarity between these values. Its primary
purpose was to guide the learning process of the model and
facilitate parameter updates during optimization. Various loss
functions were introduced to object detectors for component
detection, including Generalized Intersection over Union
(GIoU) [3], Gaussian Intersection of Union (GsloU) [20],
Loss Boosting (LB) [10], and modified binary cross-entropy
(BCE) [19].

2) ONE-STAGE DETECTOR: RetinaNet

In an evaluation of PCB analysis methods, Mahalingam et al.
[21] explored diverse approaches, such as YOLOV3,
RetinaNet-50, and Faster R-CNN. RetinaNet, designed as a
one-stage object detector, utilized focal loss for classification
and featured a unified network with a backbone and two
subnets for classification and box regression tasks. Despite
RetinaNet exhibiting the best overall performance among
the evaluated models, it faced challenges in distinguishing
components resembling ICs. Furthermore, they also intro-
duced a publicly available PCB image dataset, PCB-METAL,
encompassing various PCB components [21].
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3) TWO-STAGE DETECTOR

Mallaiyan Sathiaseelan et al. [22] introduced ECLAD-Net,
an Electronic Component Localization and Detection Net-
work designed for detecting counterfeits and defects in
PCB assembly. The ECLAD-Net comprised two stages: the
Region Proposal Network (RPN), suggesting regions, and the
Similarity Prediction Network (SPN), functioning as a classi-
fier to distinguish between resistors and capacitors. In another
approach, Kuo et al. [23] proposed a three-stage object detec-
tion pipeline. The RPN identified potential components using
bounding boxes, while the SPN addressed imbalanced distri-
butions among various types of PCB components.

Various methodologies rooted in Faster R-CNN emerged
for PCB inspection. A specific variant of Faster R-CNN,
Inception-v2, exhibited promising performance in local-
izing PCB components, particularly in identifying absent
resistors [24]. EfficientNet found applications in various
PCB-related domains. Fan et al. [3] introduced an enhanced
Faster R-CNN version, Efficient Faster R-CNN, utilizing
the EfficientNet-B7 network to accurately detect solder joint
defects and PCB components, replacing the original VGG-16
backbone network. Soomro et al. [25] leveraged EfficientNet-
B3 to develop a robust PCB recycling classification system.
Both experiments underscored a clear correlation between
the chosen feature extraction network and detection accuracy.
While Faster R-CNN was widely used and excelled in most
PCB inspection tasks, a study exploring electronic compo-
nent detection and localization methods, including transfer
learning with Faster R-CNN, unsupervised machine learning
clustering (XOR-K-means), and multi-template matching,
revealed that combining k-means and CNN classification
outperformed Faster R-CNN [26].

B. OTHER NEURAL NETWORK-BASED METHODS
Various studies investigated the effectiveness of different
deep neural network architectures for PCB component classi-
fication. Lu et al. [27] compared AlexNet and Inception-v3,
with Inception-v3 demonstrating superiority in parameters,
training speed, and accuracy. In contrast, Wang et al. [28]
highlighted AlexNet’s exceptional chip defect detection,
achieving 99.73% accuracy through specialized methods.
Additionally, Reza and Crandall [29] demonstrated the suc-
cess of IC-ChipNet by adopting a Siamese Network with
a ResNet-50 backbone, achieving 83.69% accuracy in IC
manufacturer identification, surpassing AlexNet and VGG16.
Autoencoders, employed in unsupervised machine learn-
ing, constituted artificial neural networks comprising both
an encoder and a decoder. While less explored than main-
stream approaches such as Faster R-CNN or YOLO,
autoencoder-based methods offered the advantage of learn-
ing robust and concise feature representations from input
data. De Paulis et al. [30] proposed an advanced PCB
inspection system utilizing a skip-connected convolu-
tional autoencoder to identify defect shapes and loca-
tions. Makwana et al. [31] introduced PCBSegClassNet,
an encoder-decoder architecture crafted for the segmentation
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and classification of PCB components. The network incorpo-
rated a dual-branch design in the backbone to accommodate
diverse component sizes and shapes. It also utilized a Tex-
ture Enhancement Module (TEM) for refining component
boundaries.

lll. METHODOLOGY

The methodology involved three primary phases: data prepa-
ration, model construction, and model evaluation. YOLOv4
was selected for further refinement based on its successful
application in PCB defect detection, as demonstrated by
Caliskan and Gurkan [17] and Xin et al. [18]. The proposed
solution aimed to improve YOLOV4 by replacing its original
CSPDarknet-53 backbone with EfficientNet, a proven and
effective architecture for detecting PCB solder joint defects
and components [3]. The success of EfficientNet extended
beyond that of the PCB industry. For instance, a modified
YOLOvV4 with EfficientNet-BO as its backbone was utilized
in apple detection, resulting in a lighter model with reduced
computational complexity and superior performance com-
pared with YOLOvV3 and YOLOv4 [32]. Figure 2 visually
illustrates the overall stages of the study.

Hyperparameter
Determine the best Tuning

1
. 1
Pre-processing ==

I

: E performing backbone

i 1 Feature Extraction Netiok ]

. 1 Network Object Detector
i (EfficientNet (YOLOvV4)

| ! Backbone)

Model Testing & Evaluation

|
|
Proposed )
Baseline Model 1

Method i 3
Jetho (EfficientNet- EfficientNetB7. YOLOv4 !
(EfficientNetv2- BO-YOLOV4 FasterRCNN 1
L-YOLOV4) - ) |
|

FIGURE 2. Overall stages of the research.

A. NETWORK DESIGN

Object detection architectures typically consists of three main
components: backbone, neck, and head. For IC detection
on PCBs, the modified EfficientNet-YOLOv4 algorithm was
crafted by incorporating EfficientNet as the backbone net-
work, YOLOvV4 as the head, and retaining the original neck
part of YOLOv4, which included Spatial Pyramid Pooling
(SPP) and Path Aggregation Network (PANet) modules.

1) BACKBONE (EfficientNet)

Backbone networks are often derived from classification
tasks without a fully connected layer [7]. EfficientNet,
introduced by Google in 2019 [33], is one of the current state-
of-the-art classification networks. EfficientNet encompassed
eight structures, ranging from EfficientNet-BO to B7, with
EfficientNet-B7 having the largest number of parameters.
A key merit of EfficientNet lay in its compound scaling
method that optimized the width, depth and resolution of the
model, resulting in a good trade-off between size and perfor-
mance. Figure 3 shows the compound scaling of EfficientNet
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that uniformly scales depth, width, and resolution with a fixed
ratio. However, the computational demands of EfficientNet
impeded training and inference time, especially for models
B6 and B7.

To address those issues, a more compact yet potent iter-
ation, EfficientNetv2, was introduced [34]. EfficientNetv2
included S-, M-, and L-sized structures, with EfficientNetv2-
L having the largest size. By incorporating MBConv and
Fused-MBConv, EfficientNetv2 integrated Neural Architec-
ture Search (NAS) for optimal block combinations. Its novel
non-uniform scaling approach gradually added layers in later
stages, enhancing efficiency in training, parameters, and
inference speed compared to its predecessor, EfficientNetvl
[34]. EfficientNetv2-M attained comparable accuracy to
EfficientNet-B7 with fewer parameters and trained 4.1 times
faster [34].

-- wider --»

# channels

“ layer_i

...... o

1
1
1
1
i
;
i
7 resolution Hx W E
:
b . -

higher resolution

Baseline Network Compound Scaling

FIGURE 3. Compound scaling method of EfficientNet.

2) NECK

The neck plays a crucial role in aggregating and refining
features obtained from the backbone. Its primary function
is to enhance the representational power of these features,
contributing to more accurate and robust predictions. In the
proposed model, the SPP block and modified PANet were
retained as the neck, similar to YOLOv4. This design choice
ensured continuity with the architecture of YOLOv4. The
SPP block is a feature used to capture context at differ-
ent scales within an image. It uses multiple pooling scales
to gather information at various resolutions [35]. PANet
introduces a bottom-up pathway on top of FPN to extract
and amalgamate additional feature information. Additionally,
PANet significantly contributes to refining instance segmen-
tation by preserving spatial data and aiding in accurate pixel
localization for mask prediction [36].

3) HEAD (YOLO)

The head component is responsible for generating pre-
dictions, encompassing bounding boxes and class scores.
YOLOV4 is the fourth version of the YOLO family and
represents a mature release that capitalizes on the strengths
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and insights gained from its earlier versions. Each grid cell
in YOLOV4 predicts three bounding boxes with nine anchors
based on three different scales and three aspect ratios. These
anchors help to determine the actual width and height of the
predicted bounding boxes.

In addition, YOLOV4 introduced two techniques known as
Bag of Freebies (BoF) and Bag of Specials (BoS) to enhance
overall model performance. BoF methods were designed to
modify the training strategy or cost without increasing the
inference time. BoF included augmentation techniques, such
as mosaic data augmentation and Self-Adversarial Training
(SAT). Conversely, BoS comprised plugin modules and post-
processing methods that significantly improved detection
accuracy, albeit resulting in a slight increase in the inference
cost [35]. Examples of BoS included Mish activation and the
SPP block.

4) EfficientNet-YOLOv4

In the proposed model architecture, the emphasis was placed
on enhancing object detection capabilities, particularly for
applications like PCB inspection. When designing a detec-
tor, prioritizing a higher input network size (resolution)
enables effective detection of multiple small-sized objects.
Incorporating additional layers expands the receptive field
to encompass the augmented input size, while the increased
parameters fortify the model’s capability to detect diverse
object sizes [35]. YOLOv4 embodies these traits, facilitating
swift predictions of the object position and classification,
making it ideal for real-time applications. As a one-stage
detector, YOLOV4 is a state-of-the-art model known for its
rapid inference speed. The integration of EfficientNet with
YOLOv4 will result in a robust object-detection system.
EfficientNet is one of the most potent CNN models, and its
updated version, EfficientNetv2-L, exhibits superior param-
eter efficiency and accuracy.

In this fusion, EfficientNetv2-L replaced YOLOv4’s orig-
inal backbone, thereby enriching the model architecture. The
compound scaling method inherent in EfficientNet facilitated
the creation of a feature extraction network that is deeper,
wider, and higher in resolution, enhancing the model’s abil-
ity to capture intricate features. The integration of the SPP
module from YOLOv4 with the EfficientNet backbone was
a strategic move to handle objects of varying scales effi-
ciently. This addition enabled the model to capture multiscale
information within the network, and the model became more
robust in detecting objects in the input image regardless of
their size.

This integration of the proposed method not only improved
the efficiency and accuracy of the PCB inspection system
but also demonstrated its potential to advance computer
vision capabilities, particularly in the domain of object
detection. Figure 4 provides a visual representation of the
proposed model’s architecture, highlighting the replacement
of YOLOv4’s original backbone with EfficientNetv2-L and
illustrating the integration of the SPP module.
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The proposed model underwent various enhancements
to boost its performance, incorporating Bag of Freebies
(BoF) techniques from YOLOV4, adjusting anchor sizes, and
refining the loss function. YOLOv4 integrated various BoF
techniques into its training pipeline to enhance accuracy. This
study specifically explored the impact of experimenting with
multiple anchors for a single ground truth and incorporated
mosaic data augmentation features. Multiple anchors for a
single ground truth are based on the rules in which the inter-
section over union (IoU) between the anchors and ground
truth exceeds a specified threshold. Mosaic data augmen-
tation mixes four training images into one training image,
allowing the model to learn different contexts [35].

The YOLOv4 head utilizes anchor boxes to predict the
locations and sizes of the objects. However, the dataset used
in this study mainly consisted of images containing a single
chip object of similar size; k-means clustering for anchor
size determination was not directly applicable. In this study,
YOLOV4, by default, employed a set of nine anchor sizes for
a 416 x 416 image input size: 10,13, 16,30, 33,23, 30,61,
62,45, 59,119, 116,90, 156,198, 373,326. This set encom-
passed various scales and aspect ratios and was also known
as the anchor size set of YOLOV3, referred to as ‘y3’ in this
study for ease of reference. Additionally, the study explored
another set of anchor sizes (13,31, 21,42, 31,15, 34,58, 51,29,
57,98, 78,48, 150,118, 255,323) derived from [2]. This alter-
native anchor size set was explicitly tailored from a dataset of
PCB electronic components. This study referred to this as the
‘PCB anchor size set’ for ease of reference. Figure 5 shows
the distribution diagram of both anchor size sets.

The selection of an appropriate loss function depends on
the specific requirements and characteristics of the object
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FIGURE 5. 9 anchor size set distribution diagram for (a) y3 anchor size
set and (b) PCB anchor size set.

detection task. In YOLOV4, the loss function comprises three
main components: localization loss (which can include IoU or
similar loss), confidence loss, and class loss. Regression loss
optimizes various aspects of the predicted bounding boxes,
covering localization, confidence scores for object presence,
and class predictions. Complete IoU (CloU), an enhanced
version of the IoU metric, is employed as a bounding
box regression loss function in YOLOv4 [37]. CloU loss
addresses IoU limitations by considering geometric mea-
sures for the complete bounding box information, including
overlap area, central point distance, and aspect ratio, pro-
viding more precise object localization [37], [38]. Another
loss function for bounding box regression is SCYLLA-IoU
(SIoU), which focuses on the spatial overlap between bound-
ing boxes and was found to perform better than CloU [39].
SIoU consists of angle cost, distance cost, shape cost, and
IoU costs. Both loss functions were experimented with to
determine which was more effective for the proposed model.
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TABLE 1. Number of datasets.

Dataset Number of ~ Number of Total
original augmented
images images
Training 19171 19171 38342
Validation 2197 2197 4394
Testing 5407 5407 10814
Total 26775 26775 53550

The formulas of CloU and SIoU are expressed as follows: (1)
and (2).

p*(b, b
Lcioy = 1—-1o0U + 0—2 + av (1)
where « is a positive trade-off parameter (m), an(ti
v measures the consistency of aspect ratio (%(artan;f—;
— artan¥)?) [37], [38].

A+ Q
Lsjoy = 110U +

@)

where A is distance cost (Zt:x,y (1 — e7Y#r)), and Q2 is shape

cost (3, (1 — e)) [39].

B. DATASETS
The initial dataset consisted of 146 folders with 26,775
images. Within each folder, images were randomly split into
a training set (80%) and a testing set (20%). The training
set underwent an additional division to create a validation
set (10%). The original images in the dataset exhibited a
high degree of similarity, prompting the need for increased
diversity in features, patterns, or elements across these
images. Therefore, the dataset underwent augmentation using
the Albumentations library for offline image augmentation.
Table 1 provides the dataset breakdown for this study.
Albumentations [40], an open-source Python library com-
patible with popular deep learning frameworks such as
TensorFlow and PyTorch, was utilized for offline image
augmentation. The process involved generating new images
by applying random transformations to the existing ones.
Diverse transformations were applied to each original image
to create an augmented version. The randomness of these
transformations was determined by the probability assigned
to each augmentation. Moreover, specific preconditions were
established to determine whether certain transformations
were applied. For instance, images deemed dark underwent
contrast-limited adaptive histogram equalization (CLAHE)
initially to improve brightness. The augmentation methods
applied to the original data are summarized in Table 2.

IV. EXPERIMENTS AND DISCUSSION

The software operated on Ubuntu 20.04.2 LTS, utilizing
Tesla V100-SXM2-32GB with Driver 470.57.02 and CUDA
version 11.4. Python 3.8 served as the primary program-
ming language. The proposed model was configured with
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TABLE 2. List of augmentations used.

Pixel-level augmentations | Spatial-level augmentations
HueSaturationValue e RandomRotate90
RGBShift e  HorizontalFlip
ToSepia e Transpose
ChannelShuffle e  GridDistortion
CLAHE
RandomBrightness
RandomContrast
GaussNoise
MultiplicativeNoise
ISONoise
Emboss
RandomFog
RandomSunFlare

specific parameters: 100 epochs, a batch size of 16, input
image dimensions of 416 x 416, and an initial learning
rate set at 1 x 1073, with a 0.5 reduction factor for every
10 epochs using a patience approach. Stochastic Gradient
Descent (SGD) was employed as the training optimizer. Dur-
ing inference, the IoU threshold was set to 0.9, and the
confidence threshold was 0.8.

The development environment for the proposed model and
YOLOV4 utilized Keras-Applications version 1.0.8 with Ten-
sorFlow backend version 2.9.1. However, for EfficientNet-
B7-FasterRCNN, PyTorch was used, and the batch size
was limited to 4 due to GPU memory constraints from
its larger model architecture. During the model evaluation
phase, consistency among the compared models was main-
tained by setting identical learning rates and batch sizes. The
implementation of the proposed algorithm was based on the
repositories of Keras [41] and David [42].

A. BACKBONE COMPARISON

This experiment aimed to identify the best-performing back-
bone network in YOLOv4. The study compared different
backbone networks, with a specific focus on EfficientNet
versions 1 and 2. EfficientNetvl comprises models B0, B1,
and B7, ranging from the smallest (BO) to the largest (B7)
variant, achieved by scaling the depth of the network. In con-
trast, EfficientNetv2 offers models S, M, and L, representing
small, medium, and large scales based on depth, width, and
resolution, respectively. For this comparison, a batch size of
10 was utilized, which was the maximum for EfficientNet-
B7-YOLOv4. Table 3 presents the results of a comparative
analysis of various EfficientNet backbones integrated into the
YOLOV4.

In the first series, EfficientNet-B7 exhibited commendable
accuracy with the highest Fl-score of 98.43. In contrast,
in series 2, EfficientNetv2-L outperformed all others and
showcased an impressive Fl-score of 98.75 and an mAP of
98.25. It recorded the highest TP count of 10,677 and the
lowest FP count of 133, indicating high precision and recall
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TABLE 3. Performance comparison of different efficientnet backbones.

Model EfficientNetv1 EfficientNetv2
B0 Bl B7 S M L
Fl-score 97.45 97.58 98.43 98.18 98.46 98.75
mAP@IoU=0.90 96.18 96.20 97.46 97.58 97.81 98.25
Precision 97.47 97.61 98.45 98.21 98.47 98.77
Recall 97.43 97.55 98.41 98.16 98.44 98.73
Inference Time (s) 0.08 0.09 0.15 0.10 0.12 0.14
TP 10536 10549 10642 10615 10645 10677
FP 274 258 167 194 165 133
FN 4 7 5 5 4 4
TABLE 4. Performance comparison of different configurations of the proposed model.

Model L-ciou- L-ciou-y3  L-siou- L-siou-y3  L-siou- L-siou- L-ciou- L-ciou-

pcban pcban y3-BoF pcban- pcban- y3-BoF

BoF BoF

Fl1-score 98.23 98.19 98.38 98.30 99.09 99.14 99.16 99.22
mAP@IoU=0.90 97.27 97.48 97.72 97.38 98.41 98.66 98.82 98.71
Precision 98.25 98.21 98.39 98.33 99.09 99.14 99.16 99.22
Recall 98.21 98.16 98.37 98.28 99.09 99.13 99.16 99.22
Inference Time 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
(s)
TP 10620 10615 10638 10628 10716 10720 10723 10730
FP 189 193 174 181 98 93 91 84
FN 5 6 2 5 0 1 0 0
Training Time 431 431 3.86 3.87 3.88 3.89 433 432
(days)

for EfficientNetv2-L. This model surpassed other backbone
networks and displayed superior mAP, precision, and recall
values. Despite its exceptional performance, EfficientNetv2-
L did not have the shortest inference time. EfficientNet-BO
stood out in this regard, requiring only 0.08 seconds per image
due to its shallow architecture. In comparison, EfficientNet-
BO processed images approximately 1.73 times faster than
EfficientNetv2-L, and EfficientNetv2-L processed images
approximately 1.06 times faster than EfficientNet-B7.

B. EXPERIMENT ON ANCHOR SIZE, LOSS FUNCTION AND
BOF

The experiments incorporated a combination of diverse
loss functions, anchor sizes, and Bag of Freebies (BoF)
within the EfficientNetv2-L-YOLOv4 model to evaluate their
impact on accuracy. Models were labelled using a specific
naming convention: Backbone-lossfunction-anchorsize-BoF,
enabling the distinction of various configurations. The train-
ing was performed with a batch size of 16, and Table 4
provides details on the outcomes of various configurations
of the proposed methods.

« Backbone: EfficientNetv2-L (L)
o Loss function: CIoU (ciou), SIoU (siou)
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« Anchor size: YOLOV3 anchor size set (y3), PCB anchor
size set (pcban)
« Bag of Freebies: Bag of Freebies (BoF)

When evaluating the proposed model with two anchor
size sets, namely the YOLOV3 anchor size set (y3) and the
PCB anchor size set (pcban), on the test data, L-ciou-pcban
exhibited slightly better performance than L-ciou-y3 in terms
of Fl-score. The model employing the SIoU loss (L-siou-
pcban) also outperformed the model using the y3 anchor size
set (L-siou-y3). This experiment suggested that anchor size
had an impact on and potentially enhanced the performance
of the object detector. In comparing the loss functions, the
model that utilized SIoU showed a slightly higher F1-score
and TP value than CloU. Additionally, it was observed from
the experiment that the utilization of the CloU loss function
required longer training times compared to the SIoU loss
function. This is because SIoU aligns the prediction box more
closely with the nearest axis, thus simplifying the regression
process and accelerating the training, as stated by [39].

After incorporating the Bag of Freebies (BoF) from
YOLOv4 into the proposed models, notable accuracy
improvements were observed across all configurations. For
instance, L-ciou-y3 achieved a 1.05% accuracy boost upon
the inclusion of BoF. However, the combination of BoF,
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SIoU loss function, and pcban anchor size set did not bring
significant accuracy advantage to the proposed method. The
L-ciou-y3-BoF model, incorporating the CIoU loss function
and y3 anchor size set with BoF, stood out with an impressive
F1-score of 99.22. Inference time remained consistent across
models, at approximately 0.14 seconds.

The improvement in accuracy was attributed to the uti-
lization of multiple anchor points for a single ground truth,
enabling the proposed model to select the anchor box that
best matched an object’s size and aspect ratio, especially
for diverse shapes and sizes. When coupled with BoF, the
YOLOv3 anchor size set (y3) proved to be better suited for
the PCB dataset used in this study. In the IC detection task,
the CloU loss function was applied to address comprehen-
sive bounding box regression errors, proving advantageous
in scenarios with varying object sizes and shapes. Conse-
quently, this led to improved localization accuracy compared
to using SloU. Evaluation metrics such as Fl-score, mAP,
confusion matrix, and inference time exhibited minimal dif-
ferences among all settings. However, the combination of
BoF with the YOLOv3 anchor size set and CIoU loss function
in the EfficientNetv2-L-YOLOv4 model (L-ciou-y3-BoF)
emerged as the most optimal choice for the IC detection task.
Figure 6 and Figure 7 depict the IoU and loss graphs for
L-ciou-y3-BoF.

The loss graph illustrated a consistent and gradual reduc-
tion in model loss during training, indicating ongoing learn-
ing and refinement in predictions. The training loss (blue
line) and validation loss (red line) showed a downward trend.
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The training loss evaluated the model’s fit to the training
data, while the validation loss measured generalization to the
test data. A marginal surpassing of the training loss over the
validation loss indicated effective learning without overfit-
ting, highlighting the model’s capability to generalize—an
essential goal in machine learning.

Below are examples of test results obtained using the
proposed method, as illustrated in Figure 8. The predicted
IoU scores are visualized, with red bounding boxes represent-
ing predictions and green bounding boxes indicating ground
truth.

C. TEST THE ROBUSTNESS OF THE MODEL WITH
DIFFERENT AUGMENTATION METHODS

The proposed method (L-ciou-y3-BoF) was subjected to var-
ious augmentation techniques simulating real-world factors,
including blur, size variation, lighting, contrast, color, noise,
white spot, and rotation. This evaluation aimed to assess the
generalization capabilities of the method in PCB layout sce-
narios. Despite these simulated environmental changes, the
proposed method consistently achieved accurate chip predic-
tions, maintaining IoU scores above 0.90. This high IoU score
signified a close alignment between predicted and actual
bounding boxes, highlighting the method’s robustness. The
results showcased the method’s reliability in IC inspection
tasks and demonstrated its effectiveness even under diverse
and challenging image conditions such as noise and varying
illumination.

D. PERFORMANCE COMPARISON BETWEEN DIFFERENT
MODELS

The enhanced proposed method was compared against the
original and other relevant object detection algorithms,
including EfficientNet-BO-YOLOv4 [32], EfficientNet-
B7-FasterRCNN [3], and the original YOLOv4 [35] to
assess its effectiveness. The proposed model, derived from
EfficientNet-BO-YOLOv4, acted as the baseline, while
EfficientNet-B7-FasterRCNN was drawn from previous PCB
component detection studies [3]. This comparison delin-
eated performance distinctions between one-stage (YOLO)
and two-stage detectors (Faster R-CNN), both utilizing the
EfficientNet backbone but featuring different detector heads.
Additionally, the inclusion of YOLOv4 allowed the explo-
ration of potential improvements resulting from backbone
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TABLE 5. Model evaluation.

Model EfficientNet-BO- EfficientNet-B7- YOLOv4 EffcientNetv2-L-
YOLOv4 FasterRCNN YOLOv4

F1-score 97.94 72.77 96.70 98.96
mAP@IoU=0.90 96.98 68.26 95.48 98.23
Precision 97.96 72.78 96.80 98.96
Recall 97.92 72.77 96.60 98.96
Inference time (s) 0.06 0.06 0.06 0.10

TP 10589 7869 10446 10701

FP 220 2943 345 112

FN 5 2 23 1

alterations. The models were trained with a batch size of
4 throughout the evaluation due to limited GPU resources
to accommodate the large architecture of EfficientNet-B7-
FasterRCNN. The hardware and software environments
encompassed Ubuntu 20.04.3, utilized an NVIDIA A40 GPU,
Driver 495.29.05, and CUDA 11.5. Table 5 displays the
results of the model comparison.

Precision and accuracy are significant in real-world
applications such as quality control and manufacturing,
underscoring the importance of minimizing false positives
and ensuring robust IC detection. The EfficientNetv2-L-
YOLOv4 model excelled, showcasing impressive perfor-
mance with an Fl-score of 98.96 and mAP of 98.23,
demonstrating superior capabilities in accurately identify-
ing ICs. The baseline model, EfficientNet-BO-YOLOv4,
achieved commendable accuracy and precision with an F1-
score of 97.94 and mAP of 96.98, slightly lower than the
former. Replacing EfficientNet-BO with EfficientNetv2-L
resulted in a noteworthy 1.8% accuracy improvement. The
proposed EfficientNetv2-L-YOLOv4 marked a significant
2.349% accuracy enhancement over the original YOLOv4 by
replacing its CSPDarkNet-53 backbone with EfficientNetv2.
EfficientNet-B7-FasterRCNN exhibited the lowest F1-score
and mAP among the models.

EfficientNetv2-L-YOLOV4 had a slightly longer inference
time, taking 0.102 seconds. In contrast, EfficientNet-BO-
YOLOvV4 demonstrated faster inference, completing the task
in 0.058 seconds. Interestingly, the two-stage EfficientNet-
B7-FasterRCNN detector showcased a shorter inference time
(0.059 seconds) than the proposed model, while YOLOv4
recorded a similar inference time of 0.061 seconds. The
baseline model operated approximately 0.57 times faster than
the proposed method.

EfficientNetv2-L-YOLOvV4 excelled in accuracy and pre-
cision, making it suitable for applications where precision
and minimizing false positives were crucial, albeit with
slightly longer inference times than other models. Conversely,
EfficientNet-B7-FasterRCNN emphasized speed but sacri-
ficed accuracy, while YOLOv4 maintained a balance, albeit
with slightly lower accuracy. Two-stage detectors typically
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leveraged a region proposal step for increased accuracy.
However, in this scenario, EfficientNet-B7-FasterRCNN did
not notably outperform the one-stage detectors in accu-
racy. The dataset’s characteristics did not fully leverage the
two-stage approach, potentially leading to information loss
or degradation during transitions between region proposal
and object detection, impacting final detection accuracy.
While the baseline model outperformed EfficientNet-B7-
FasterRCNN in inference speed, EfficientNetv2-L-YOLOv4
lacked this speed advantage, requiring enhancements in infer-
ence speed compared to the other three algorithms.

V. CONCLUSION

This research focuses on the challenging task of inte-
grated circuit detection on printed circuit boards by refin-
ing the EfficientNet-YOLOv4 algorithm. EfficientNetv2-L-
YOLOvV4 achieved an impressive Fl-score of 99.22 and
an inference time of approximately 0.135 seconds through
extensive experimentation. Integrating the EfficientNetv2
backbone enhances accuracy beyond baseline models such
as EfficientNet-BO-YOLOv4, EfficientNet-B7-FasterRCNN,
and the original YOLOv4.

Furthermore, enriching the training dataset with data
augmentation techniques improves the proposed model’s
generalization capabilities. The combination of diverse
augmentation methods with EfficientNetv2-L, CIoU loss,
YOLOV3 anchor size set (for 416 image size), and Bag of
Freebies (L-ciou-y3-BoF) produces optimal outcomes for
IC detection. Overall, this study underscores the enhanced
EfficientNet-YOLOv4 algorithm’s effectiveness in address-
ing intricate challenges related to IC detection on PCBs,
demonstrating superior performance metrics and robustness
in handling real-world complexities.

Future research should prioritize exploring various net-
work architectures to advance object detection models,
particularly in IC detection on PCBs. Fine-tuning architec-
tural elements like backbone networks, feature extraction
layers, and network connectivity promises to enhance model
performance in accuracy, speed, and efficiency. Notably, the
recent release of YOLOvV7, showcasing a 1.5% higher AP
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than YOLOv4, suggests a promising avenue for refining
inspection methods in the industry [43]. Addressing these
recommendations could advance IC detection on PCBs, fos-
tering the development of more accurate, robust, and efficient

detection methods for industrial inspection applications.

APPENDIX A
PLOT OF PROPOSED METHOD
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FIGURE 9. Confusion matrix of EfficientNetv2-L-YOLOv4.
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FIGURE 11. mAP graph of EfficientNetv2-L-YOLOv4.
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APPENDIX B

TABLE 6. Abbreviations and acronyms.

Acronyms Definition

Al Artificial Intelligence

AMI Acoustic Micro Imaging

AOIs Automatic Optical Inspection systems

AP Average Precision

AXI Automated X-ray Inspection

AutoML Auto Machine Learning

BoF Bag of Freebies

BoS Bag of Specials

BCE Binary Cross-Entropy

CloU Complete Intersection over Union

CLAHE Contrast-Limited Adaptive Histogram
Equalization

CNN Convolutional Neural Networks

CSp Cross Stage Partial

ECLAD-Net Electronic Component Localization and
Detection Network

FPN Feature Pyramid Network

GsloU Gaussian Intersection of Union

GloU Generalized Intersection over Union

ICs Integrated Circuits

IoT Internet of Things

IoU Intersection over Union

IRT Infrared Thermography

LB Loss Boosting

Mask R-CNN Mask Region-based Convolutional Neural
Network

mAP mean Average Precision

MBConv Mobile Inverted Bottleneck Residual Blocks

MAM Multiscale Attention Module

NAS Neural Architecture Search

PANet Path Aggregation Network

PCB Printed Circuit Board

PCBA Printed Circuit Board Assembly

RCNN Regions with Convolutional Neural Network

R-FCN Region-based Full Convolutional Network

RPN Region Proposal Network

SloU SCYLLA-IoU

SAT Self-Adversarial Training

SPN Similarity Prediction Network

SPP Spatial Pyramid Pooling

SGD Stochastic Gradient Descent

SMT Surface Mount Technology

SMD Surface-Mounted Device

TEM Texture Enhancement Module

VGG Visual Geometry Group

YOLO You Only Look Once

ACKNOWLEDGMENT

This work was financially supported by the Collaborative
Research in Engineering, Science and Technology (CREST)
and SanDisk Storage Malaysia Sdn. Bhd. The authors would

VOLUME 12, 2024



T. S. Chi et al.: Enhancing EfficientNet-YOLOv4 for Integrated Circuit Detection on PCB

IEEE Access

like to extend their heartfelt appreciation and deepest thanks
to everyone who generously supported and actively con-
tributed to the successful completion of this paper.

REFERENCES

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

N. Jahani, A. Sepehri, H. R. Vandchali, and E. B. Tirkolaee, “Application
of Industry 4.0 in the procurement processes of supply chains: A systematic
literature review,” Sustainability, vol. 13, no. 14, p. 7520, Jul. 2021, doi:
10.3390/su13147520.

J. Li, J. Gu, Z. Huang, and J. Wen, “Application research of improved
YOLO v3 algorithm in PCB electronic component detection,” Appl. Sci.,
vol. 9, no. 18, p. 3750, Sep. 2019, doi: 10.3390/app9183750.

F. Fan, B. Wang, G. Zhu, and J. Wu, “Efficient faster R-CNN: Used in
PCB solder joint defects and components detection,” in Proc. IEEE 4th
Int. Conf. Comput. Commun. Eng. Technol. (CCET), Aug. 2021, pp. 1-5,
doi: 10.1109/CCET52649.2021.9544356.

N. K. Singh, P. Muthukrishnan, and S. Sanpini, “System assembly, bring-
up and validation,” in Industrial System Engineering for Drones: A Guide
With Best Practices for Designing. Berkeley, CA, USA: Apress, 2019,
pp. 139-165, doi: 10.1007/978-1-4842-3534-8_5.

S. Cao, I. Parviziomran, H. Yang, S. Park, and D. Won, “Prediction of
component shifts in pick and place process of surface mount technology
using support vector regression,” Proc. Manuf., vol. 39, pp. 210-217,
Jan. 2019, doi: 10.1016/j.promfg.2020.01.316.

X. Wu, D. Sahoo, and S. C. H. Hoi, “Recent advances in deep learning for
object detection,” Neurocomputing, vol. 396, pp. 39-64, Jul. 2020, doi:
10.1016/j.neucom.2020.01.085.

L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, “A
survey of deep learning-based object detection,” IEEE Access, vol. 7,
pp. 128837-128868, 2019, doi: 10.1109/ACCESS.2019.2939201.

B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas,
T. Ullmann, M. Becker, A. Boulesteix, D. Deng, and M. Lindauer, “Hyper-
parameter optimization: Foundations, algorithms, best practices, and open
challenges,” WIREs Data Mining Knowl. Discovery, vol. 13, no. 2,
p. 1484, Mar. 2023, doi: 10.1002/widm.1484.

W. Pannakkong, K. Thiwa-Anont, K. Singthong, P. Parthanadee, and
J. Buddhakulsomsiri, “‘Hyperparameter tuning of machine learning algo-
rithms using response surface methodology: A case study of ANN, SVM,
and DBN,” Math. Problems Eng., vol. 2022, pp. 1-17, Jan. 2022, doi:
10.1155/2022/8513719.

M. A. Reza, Z. Chen, and D. J. Crandall, “Deep neural network-based
detection and verification of microelectronic images,” J. Hardw. Syst.
Secur., vol. 4, no. 1, pp. 44-54, Mar. 2020, doi: 10.1007/s41635-019-
00088-4.

N. Dave, V. Tambade, B. Pandhare, and S. Saurav, “PCB defect detection
using image processing and embedded system,” Int. Res. J. Eng. Technol.,
vol. 3, no. 5, pp. 1897-1901, 2016.

R. Huang, J. Gu, X. Sun, Y. Hou, and S. Uddin, “A rapid recognition
method for electronic components based on the improved YOLO-V3
network,” Electronics, vol. 8, no. 8, p. 825, Jul. 2019, doi: 10.3390/elec-
tronics8080825.

T. Khare, V. Bahel, and A. C. Phadke, ‘“PCB-fire: Automated classifi-
cation and fault detection in PCB,” in Proc. 3rd Int. Conf. Multimedia
Process., Commun. Inf. Technol. (MPCIT), Dec. 2020, pp. 123—128, doi:
10.1109/MPCIT51588.2020.9350324.

L. H. D. S. Silva, A. A. F. Junior, G. O. A. Azevedo, S. C. Oliveira,
and B. J. T. Fernandes, “Estimating recycling return of integrated circuits
using computer vision on printed circuit boards,” Appl. Sci., vol. 11, no. 6,
p. 2808, Mar. 2021, doi: 10.3390/app11062808.

C. Pramerdorfer and M. Kampel, “A dataset for computer-vision-based
PCB analysis,” in Proc. 14th IAPR Int. Conf. Mach. Vis. Appl. (MVA),
May 2015, pp. 378-381, doi: 10.1109/MVA.2015.7153209.

S.-H. Chen and C.-C. Tsai, “SMD LED chips defect detection using
a YOLOv3-dense model,” Adv. Eng. Informat., vol. 47, Jan. 2021,
Art. no. 101255, doi: 10.1016/j.2e1.2021.101255.

A. Caliskan and G. Gurkan, “Design and realization of an auto-
matic optical inspection system for PCB solder joints,” in Proc. Int.
Conf. Innov. Intell. Syst. Appl. (INISTA), Aug. 2021, pp.1-6, doi:
10.1109/INISTA52262.2021.9548430.

H. Xin, Z. Chen, and B. Wang, “PCB electronic component defect detec-
tion method based on improved YOLOv4 algorithm,” J. Phys., Conf.
Ser., vol. 1827, no. 1, Mar. 2021, Art. no. 012167, doi: 10.1088/1742-
6596/1827/1/012167.

VOLUME 12, 2024

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(37]

(38]

C. Guo, X.-L. Lv, Y. Zhang, and M.-L. Zhang, “Improved YOLOv4-tiny
network for real-time electronic component detection,” Sci. Rep., vol. 11,
no. 1, p. 22744, Nov. 2021, doi: 10.1038/s41598-021-02225-y.

X. Liu, J. Hu, H. Wang, Z. Zhang, X. Lu, C. Sheng, S. Song, and
J. Nie, “Gaussian-IoU loss: Better learning for bounding box regression
on PCB component detection,” Expert Syst. Appl., vol. 190, Mar. 2022,
Art. no. 116178, doi: 10.1016/j.eswa.2021.116178.

G. Mahalingam, K. M. Gay, and K. Ricanek, “PCB-METAL: A PCB
image dataset for advanced computer vision machine learning component
analysis,” in Proc. 16th Int. Conf. Mach. Vis. Appl. (MVA), May 2019,
pp. 1-5, doi: 10.23919/MVA.2019.8757928.

M. A. Mallaiyan Sathiaseelan, O. P. Paradis, S. Taheri, and
N. Asadizanjani, “Why is deep learning challenging for printed
circuit board (PCB) component recognition and how can we
address it?” Cryptography, vol. 5, no. 1, p.9, Mar. 2021, doi:
10.3390/cryptography5010009.

C.-W. Kuo, J. D. Ashmore, D. Huggins, and Z. Kira, ‘“Data-efficient
graph embedding learning for PCB component detection,” in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2019, pp. 551-560, doi:
10.1109/WACV.2019.00064.

L. K. Cheong, S. A. Suandi, and S. Rahman, “Defects and components
recognition in printed circuit boards using convolutional neural network,”
in Proc. 10th Int. Conf. Robot., Vis., Signal Process. Power Appl., Enabling
Res. Innov. Towards Sustainability. Singapore: Springer, 2019, pp. 75-81,
doi: 10.1007/978-981-13-6447-1_10.

1. A. Soomro, A. Ahmad, and R. H. Raza, “Printed circuit board identifi-
cation using deep convolutional neural networks to facilitate recycling,”
Resour., Conservation Recycling, vol. 177, Feb. 2022, Art. no. 105963,
doi: 10.1016/j.resconrec.2021.105963.

C. Yang. (2020). Machine Learning and Computer Vision for PCB
Verification. KTH KTH Roy. Inst. Technol. Electr. Eng. Comput.
Sci. Accessed: Jul. 21, 2022. [Online]. Available: https://kth.diva-
portal.org/smash/get/diva2:1529213/FULLTEXTO1.pdf

H. Lu, D. Mehta, O. Paradis, N. Asadizanjani, M. Tehranipoor, and
D. L. Woodard, “FICS-PCB: A multi-modal image dataset for automated
printed circuit board visual inspection,” IACR Cryptol. ePrint Arch.,
vol. 2020, p. 366, Mar. 2020.

J. Wang, X. Zhou, and J. Wu, “Chip appearance defect recognition based
on convolutional neural network,” Sensors, vol. 21, no. 21, p. 7076,
Oct. 2021, doi: 10.3390/s21217076.

M. A. Reza and D. J. Crandall, “IC-ChipNet: Deep embedding learning
for fine-grained retrieval, recognition, and verification of microelectronic
images,” in Proc. IEEE Appl. Imag. Pattern Recognit. Workshop (AIPR),
Oct. 2020, pp. 1-10, doi: 10.1109/AIPR50011.2020.9425131.

F. de Paulis, R. Cecchetti, C. Olivieri, S. Piersanti, A. Orlandi, and
M. Buecker, “Efficient iterative process based on an improved genetic
algorithm for decoupling capacitor placement at board level,” Electronics,
vol. 8, no. 11, p. 1219, Oct. 2019, doi: 10.3390/electronics8111219.

D. Makwana, S. C. T. R., and S. Mittal, “PCBSegClassNet—A light-
weight network for segmentation and classification of PCB compo-
nent,” Expert Syst. Appl., vol. 225, Sep. 2023, Art. no. 120029, doi:
10.1016/j.eswa.2023.120029.

L. Wu, J. Ma, Y. Zhao, and H. Liu, “Apple detection in complex scene
using the improved YOLOv4 model,” Agronomy, vol. 11, no. 3, p. 476,
Mar. 2021, doi: 10.3390/agronomy11030476.

M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” in Proc. 36th Int. Conf. Mach. Learn. (ICML)
May/Jun. 2019, pp. 6105-6114.

M. Tan and Q. V. Le, “EfficientNetV2: Smaller models and faster
training,” in Proc. Int. Conf. Mach. Learn., vol. 139, Apr. 2021,
pp. 10096-10106.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, “YOLOv4: Optimal
speed and accuracy of object detection,” 2020, arXiv:2004.10934.

S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation
network for instance segmentation,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8759-8768, doi:
10.1109/CVPR.2018.00913.

Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-IoU
loss: Faster and better learning for bounding box regression,” in Proc.
AAAI Conf. Artif. Intell., Apr. 2020, vol. 34, no. 7, pp. 12993-13000, doi:
10.1609/aaai.v34i07.6999.

Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and W. Zuo,
“Enhancing geometric factors in model learning and inference for object
detection and instance segmentation,” IEEE Trans. Cybern., vol. 52, no. 8,
pp. 8574-8586, Aug. 2022, doi: 10.1109/TCYB.2021.3095305.

25077


http://dx.doi.org/10.3390/su13147520
http://dx.doi.org/10.3390/app9183750
http://dx.doi.org/10.1109/CCET52649.2021.9544356
http://dx.doi.org/10.1007/978-1-4842-3534-8_5
http://dx.doi.org/10.1016/j.promfg.2020.01.316
http://dx.doi.org/10.1016/j.neucom.2020.01.085
http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://dx.doi.org/10.1002/widm.1484
http://dx.doi.org/10.1155/2022/8513719
http://dx.doi.org/10.1007/s41635-019-00088-4
http://dx.doi.org/10.1007/s41635-019-00088-4
http://dx.doi.org/10.3390/electronics8080825
http://dx.doi.org/10.3390/electronics8080825
http://dx.doi.org/10.1109/MPCIT51588.2020.9350324
http://dx.doi.org/10.3390/app11062808
http://dx.doi.org/10.1109/MVA.2015.7153209
http://dx.doi.org/10.1016/j.aei.2021.101255
http://dx.doi.org/10.1109/INISTA52262.2021.9548430
http://dx.doi.org/10.1088/1742-6596/1827/1/012167
http://dx.doi.org/10.1088/1742-6596/1827/1/012167
http://dx.doi.org/10.1038/s41598-021-02225-y
http://dx.doi.org/10.1016/j.eswa.2021.116178
http://dx.doi.org/10.23919/MVA.2019.8757928
http://dx.doi.org/10.3390/cryptography5010009
http://dx.doi.org/10.1109/WACV.2019.00064
http://dx.doi.org/10.1007/978-981-13-6447-1_10
http://dx.doi.org/10.1016/j.resconrec.2021.105963
http://dx.doi.org/10.3390/s21217076
http://dx.doi.org/10.1109/AIPR50011.2020.9425131
http://dx.doi.org/10.3390/electronics8111219
http://dx.doi.org/10.1016/j.eswa.2023.120029
http://dx.doi.org/10.3390/agronomy11030476
http://dx.doi.org/10.1109/CVPR.2018.00913
http://dx.doi.org/10.1609/aaai.v34i07.6999
http://dx.doi.org/10.1109/TCYB.2021.3095305

IEEE Access

T.S. Chi et al.: Enhancing EfficientNet-YOLOv4 for Integrated Circuit Detection on PCB

[39]

[40]

[41]

[42]

[43]

Z. Gevorgyan, “SloU loss: More powerful learning for bounding box
regression,” 2022, arXiv:2205.12740.

A. Buslaev, V. L. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A.Kalinin, “Albumentations: Fast and flexible image
augmentations,” Information, vol. 11, no. 2, p. 125, Feb. 2020, doi:
10.3390/INFO11020125.

Keras-Team. Keras/Keras/Applications/EfficientNet_v2.py at Master.
Accessed: Aug. 18, 2023. [Online]. Available: https://github.com/keras-
team/keras/blob/master/keras/applications/efficientnet_v2.py

David. Keras-YOLOv3-Model-Set: End-to-End YOLOv4/v3/v2 Object
Detection Pipeline, Implemented on tf.keras With Different Technolo-
gies. Accessed: Aug. 18, 2023. [Online]. Available: https://github
.com/david8862/keras-YOLOv3-model-set

C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jul. 2023,
pp. 7464-7475.

TAY SHIEK CHI received the B.Sc. degree (Hons.)
from Universiti Sains Malaysia, Malaysia, in 2020,
with an emphasis on multimedia computing,
where she is currently pursuing the M.Sc. degree.
Her research interests include machine vision and
deep learning techniques.

MOHD NADHIR AB WAHAB (Member, IEEE)
received the B.Eng. (Hons.) and M.Sc. degrees
in mechatronics engineering from Universiti
Malaysia Perlis, in 2010 and 2012, respectively,
and the Ph.D. degree in robotics and automation
systems from the University of Salford, UK.,
in 2017. He is currently a Senior Lecturer with
the School of Computer Sciences, Universiti Sains
Malaysia. His research interests include mobile
robotics, computer vision, machine learning, deep

learning, artificial intelligence, optimization, navigation, and path planning.

AHMAD SUFRIL AZLAN MOHAMED received
the B.L.T. degree (Hons.) from Multimedia Uni-
versity, Malaysia, the M.Sc. degree from The
University of Manchester, UK., and the Ph.D.
degree from the University of Salford, U.K.
He is currently with the School of Computer Sci-
ences, Universiti Sains Malaysia, Pulau Pinang,
Malaysia. His research interests include image
processing, video tracking, facial recognition, and
medical imaging.

25078

MOHD HALIM MOHD NOOR received the
B.Eng. (Hons.) and M.Sc. degrees, in 2004 and
2009, respectively, and the Ph.D. degree in com-
puter systems engineering from the University of
Auckland, New Zealand, in 2017. He is currently
a Senior Lecturer with the School of Computer
Sciences, Universiti Sains Malaysia. His research
interests include machine learning, deep learning,
computer vision, and pervasive computing.

KHAW BENG KANG received the B.E. degree
in electronic system engineering from Sheffield
Hallam University, in 2000. From 2001 to 2004,
he was a Research and Design Engineer with
the Renesas Semiconductor (Malaysia) Sdn. Bhd.
Since 2005, he has been with Motorola Solutions
Malaysia Sdn. Bhd., where he is focusing on two-
way radio firmware development. He is currently
with Western Digital, Batu Kawan, Penang, as a
Specialist in test engineering for solid-state drives.

LIM LAY CHUAN received the bachelor’s degree
in computer science and engineering from Monash
University, in 2000. From 2001 to 2016, he was a
Research and Development Engineer in Trek2000
with STEC, Motorola, Malaysia, specializing in
embedding programming, NAND storage devices,
. = 2-way radio, and computer bus interfaces. In 2017,
A . Wi i he joined Western Digital in test engineering, uti-
&&} i ﬁ f‘ ‘ﬂ\ lizing various data analytic and machine learning
| il ' techniques in company’s 4th IR revolution and dig-
ital transformation. He is the inventor of six patents and three trade secrets.
He received the Recognition Award for the “Global Lighthouse Network™
when Western Digital Batu Kawan was awarded as the first “Light House™
company in Asia by the World Economic Forum (WEF).

LIAU WELJIE BRIGITTE received the B.Comp.Sc.
degree (Hons.) from Universiti Sains Malaysia,
Malaysia, in 2020, where she is currently pur-
suing the M.Sc. degree in computer science.
Her research interests include intelligent systems,
computer vision, and deep learning techniques.

VOLUME 12, 2024


http://dx.doi.org/10.3390/INFO11020125

