
Received 27 December 2023, accepted 26 January 2024, date of publication 30 January 2024, date of current version 8 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3359996

Progress Estimation for End-to-End Training
of Deep Learning Models With Online
Data Preprocessing
QIFEI DONG AND GANG LUO
Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA

Corresponding author: Gang Luo (luogang@uw.edu)

ABSTRACT Deep learning is the best machine learning algorithm for numerous analytical tasks. On a large
data set, training a deep learning model frequently lasts several days to several months. Throughout this
long period, it would be helpful to show a progress indicator, which continually projects the percentage of
model training work accomplished as well as the outstanding model training time. We formerly invented the
first method to support this function while allowing early stopping. This method assumes that the input data
to the model have been preprocessed before model training starts. This is a limitation. In practice, online
data preprocessing is often integrated into the model and done as part of the end-to-end model training.
Ignoring online data preprocessing costs can cause our former method to produce inaccurate estimates.
To overcome this limitation, this paper presents a new progress estimation method that explicitly considers
online data preprocessing. We did a coding implementation of our new method in TensorFlow. Our tests
unveil that for various deep learning models that integrate online data preprocessing and in comparison with
our former method, our proposed new method produces more stable progress estimates for model training
and on average lowers the error of the predicted outstanding model training time by 16.0%.

INDEX TERMS Deep learning, online data preprocessing, TensorFlow, progress indicator, model training.

SYMBOL LIST
⌊⌋ Floor function.
⌊⌉ Nearest integer function.
⌈⌉ Ceiling function.
bmax Greatest number of batches that we allow in training

the model.
B Quantity of training instances that we handle in each

batch.
c0 Upon exiting the first raw point of validation, the

cost of model training that we have spent ignoring
the overhead that the progress indicator has incurred
at the inserted points of validation to compute
validation errors.

C Upper limit of the cost of model training that we
have spent upon exiting the 4th point of validation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Akansha Singh.

ej The model’s validation error computed at the j-th raw
point of validation.

g Count of batches of model training that are done
between two sequential raw points of validation.

K Size of the sliding window of time that we use to
compute the speed of model training.

me Greatest number of epochs that we allow in training
the model.

n0 Number of points of validation inserted ahead of the
first raw point of validation.

p Patience.
P1 Greatest permitted percentage rise in the cost of

model training caused by the progress indicator
between the model training start time and the time of
exiting the first raw point of validation.

r T-V cost ratio.
r0 Starting learning rate that the exponential decay

approach employs.

18658

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-5751-3208
https://orcid.org/0000-0001-7217-4008


Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

st Latest speed of handling training instances.
sv Latest speed of handling validation instances.
U Unit of work for handling the training instances.
vmax Greatest number of raw points of validation that we

allow in training the model.
V Quantity of data instances the whole validation set

contains.
Vmin Smallest quantity of data instances that the subset of

the whole validation set employed at each inserted
point of validation requires.

V ′ Fixed quantity of data instances that the subset of
the whole validation set employed at each inserted
point of validation contains.

W Unit of work for handling the validation instances.
δ min_delta.
ρ Constant that the exponential decay approach uses

to decide the decay speed of the learning rate.

I. INTRODUCTION
A. OUR FORMER PROGRESS ESTIMATION METHOD AND
ITS LIMITATION
Deep learning is the best machine learning algorithm for
numerous analytical tasks such as artificial intelligence art
creation, text generation, and speech recognition [1]. Yet,
on a large data set, training a deep learning model could
last several days to several months [2], [3], [4], [5], [6], [7]
even if a cluster of tensor processing unit (TPU) or graphics
processing unit (GPU) nodes is used. Throughout this long
period, it would be helpful to display a progress indicator,
which continually projects the percentage of model training
work accomplished as well as the outstanding model training
time (see Fig. 1). Providing this information can facilitate
workload management and make model training more user
friendly [8], [9], [10].

FIGURE 1. A progress indicator displayed in training a deep learning
model.

We formerly invented the first progress estimation method
that allows early stopping for training deep learning mod-
els [10], [11]. This method assumes that the input data
to the deep learning model have been preprocessed before
model training starts. In other words, we only do offline
data preprocessing [12]. This is a limitation. In practice,
part or all of the data preprocessing is often integrated into
the model as online data preprocessing [12] and done as
part of the end-to-end model training. Examples of online

data preprocessing include rotating images, adjusting image
contrast, adjusting image brightness, normalizing images,
and embedding the tokens in textual documents. When
online data preprocessing is used, it commonly takes a large
percentage of model training time, e.g., 30% for an average
deep learning job running in Google’s data centers [13].
Ignoring online data preprocessing costs can cause our
former progress estimation method to produce inaccurate
estimates.

More specifically, in our former progress estimation
method [10], [11], all operations in the deep learning model
training job are assumed to be done on the same type of
computer chips: central processing units (CPUs), GPUs,
or TPUs. We define U , a unit of work, as the mean
amount of work it requires to handle a training instance
once during model training, which involves one forward
and one backward propagation in the model. A validation
instance is a data instance in the validation set. It can be
shown that under the above assumption, the mean amount
of work it requires to handle a validation instance once is
U /3, which involves one forward propagation in the model.
This result is the base for our former method to produce
progress estimates. Yet, this result becomes invalid when
online data preprocessing is used. In this case, handling a
training instance once involves online data preprocessing as
well as one forward and one backward propagation in the
model. Handling a validation instance once typically involves
both online data preprocessing and one forward propagation
in the model. The online data preprocessing operation is
often the same in handling either a training or a validation
instance and can be done on CPUs. Forward and backward
propagation in the model can be done on GPUs/TPUs. CPUs
andGPUs/TPUs have vastly different processing speeds. This
makes it difficult to define only one type of unit of work U ,
convert U to time in a uniform way for both the training
and the validation instances, and produce good progress
estimates.

To illustrate this point, we give a concrete example. During
deep learning model training, we alternate between the
training cycle and the validation cycle. In the training cycle,
we handle the training instances and calculate changes to the
model’s parameter values. In the validation cycle, we handle
the validation instances and calculate on the validation set
the model’s error rate. Each training and each validation
cycle can take quite some time to run. For instance, when
using one Nvidia Titan Xp GPU and the ImageNet-1k data
set [14] to train the NASNet-A-Large model [15], it takes
about 15 minutes to run one validation cycle [16]. When
online data preprocessing is used and the model training job
is the only job being executed in the system, the mean amount
of time to handle a validation instance once can differ greatly
from 1/3 of that to handle a training instance once. If we
keep using U /3 as the mean amount of work it requires to
handle a validation instance once, the speed of model training
measured during the validation cycle can differ greatly from
that measured during the training cycle. Consequently, during

VOLUME 12, 2024 18659



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

a typical validation cycle, the projected outstanding model
training time can differ greatly from the genuine outstanding
model training time.

B. OUR CONTRIBUTIONS
To address our former progress estimation method’s [10],
[11] limitation, we come up with a novel progress estimation
method for end-to-end training of deep learning models with
online data preprocessing. In our new method, we define
two types of unit of work, one for handling the training
instances and the other for handling the validation instances.
For handling the training instances, we use the type of unit
of work for it to compute its speed and estimate its cost and
outstanding time. Handling the validation instances is done in
a similar way. The outstanding model training time is = the
outstanding time for handling the training instances+ that for
handling the validation instances.

We need to overcome two technical difficulties to
complete the remaining parts of our new progress esti-
mation method. First, when online data preprocessing
is used, end-to-end model training is often done using
asynchronous pipelining. There, multiple batches of train-
ing/validation instances appear at different stages of the
processing pipeline simultaneously. This makes it non-
trivial to gauge both the latest speed of handling train-
ing instances and that of handling validation instances.
To address this problem, we enumerate all possible cases
that ≥2 batches of training/validation instances appear at
distinct stages of the pipeline simultaneously. For each
such case, we design a distinct speed estimation approach
tailored to it.

Second, our former progress estimation method [10], [11]
inserts additional points of validation between the raw points
of validation to more rapidly acquire decently good progress
estimates. This insertion is controlled by several parameters,
two of which are n0 and V ′. Our former progress estimation
method sets the ratio of the mean amount of work required to
handle a training instance once to that to handle a validation
instance once to 3. This ratio is used to compute n0 and V ′.
But when online data preprocessing is used, this ratio often
differs greatly from 3 and is hard to compute. To address
this problem, we show that regardless of this ratio’s actual
value, we can keep using a ratio of 3 to compute n0 and
V ′ without incurring any major performance problem for
progress estimation.

We did a coding implementation of our new progress
estimation method in the open-source software package Ten-
sorFlow [17]. We report our experimental results of training
a transformer-based model, a convolutional neural network,
and a recurrent neural network that all integrate online data
preprocessing. Our results unveil that in comparison with our
former progress estimation method [11], our proposed new
method produces more stable progress estimates for model
training and on average lowers the error of the predicted
outstanding model training time by 16.0%.

C. PAPER STRUCTURE
The remainder of this paper has the following structure.
Section II recaps our former progress estimation method.
Section III reviews online data preprocessing. Section IV
presents our new progress estimationmethod. SectionV gives
the experimental results. Section VI goes over the related
work. Section VII lists some possible directions to do future
work. Section VIII concludes this paper.

II. RECAP OF OUR FORMER PROGRESS ESTIMATION
METHOD
This section first presents some concepts and notations the
remainder of the paper will use, and then gives a summary
of our former progress estimation method [10], [11]. In the
remainder of this paper, wherever we mention GPUs, the
same also applies to TPUs.

A. SOME CONCEPTS AND NOTATIONS
The user training the deep learning model sets 3 positive
integers g, B, and me and an early stopping condition. During
model training, all training instances are handled for one or
more rounds termed epochs. We train the model in batches.
In every batch, we handle B training instances and compute
changes to the model’s parameter values.Whenever g batches
of model training are done, we arrive at a raw point of
validation. There, we handle the validation instances and
calculate on the whole validation set the model’s error rate
termed the validation error. We then evaluate whether the
early stopping condition is satisfied. If so, we are done with
model training. me is the greatest number of epochs that
we allow in training the model. If upon finishing the me-th
epoch, we still have not fulfilled the early stopping condition,
we force model training to end. Accordingly, the greatest
number of batches that we allow in training the model is

bmax =me × the number of data instances the training set
contains / B.

The greatest number of raw points of validation that we allow
in training the model is

vmax = ⌊bmax/ g⌋.

⌊⌋ is the floor function, e.g., ⌊5.7⌋ = 5.
Like our prior work [10], [11], this work does not aim

to handle every existing early stopping condition. Rather,
we attend to a widely adopted early stopping condition [1],
[18]. We do a case study on it to show that by explicitly
addressing online data preprocessing, we can obtain better
progress estimates for end-to-end training of deep learning
models. Using a preset positive number called the patience
p and a preset nonnegative number called the min_delta
δ, this condition is satisfied at the first place where the
validation error decreases by < δ for p sequential raw points
of validation. That is, we stop model training at the k-th raw
point of validation if we have ek−p – ei < δ for every i from k
– p + 1 to k . Here, ej stands for the model’s validation error
that we compute at the j-th raw point of validation.

18660 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

B. SUMMARY OF OUR FORMER PROGRESS ESTIMATION
METHOD
This section gives a summary of our former progress
estimation method for training deep learning models [10],
[11]. The forecasted cost of model training is measured inUs.
Each unit of work U is defined as the mean amount of work
it requires to handle a training instance once during model
training, which involves forward and backward propagation
in the model in the absence of online data preprocessing.
We start with a typically inaccurate guess of the cost of model
training. Duringmodel training, we regularly collect statistics
and use them to revise the progress estimates for it. We keep
computing the latest speed of model training = the quantity
of Us finished per second in the previous K = 10 seconds.
Each time we arrive at a point of validation, we use
the information obtained at this and the prior points of
validation to recompute the forecasted cost of model training.
We keep predicting the outstanding model training time
= the forecasted cost of model training left / the latest
speed of model training. Every several seconds, the progress
indicator is refreshed with the newest estimates. As model
training continues, we keep gathering more accurate statis-
tics of it and tend to obtain increasingly better progress
estimates.

The raw points of validation could be sparse, causing a long
delay to gather information at enough points of validation
and obtain decently good progress estimates. To address
this issue, we carefully insert additional points of validation
between the raw points of validation. To reduce the progress
estimation overhead, at each inserted point of validation,
we evaluate the model’s error rate, i.e., the validation error,
on a subset randomly sampled from the whole validation
set. In both the above paragraph and the remainder of
this paper, wherever we speak of points of validation,
we always refer to both inserted and raw points of validation
unless we explicitly mention inserted or raw points of
validation.

In the following, we review some details of how our former
progress estimation method forecasts the cost of model
training and inserts additional points of validation between
the raw points of validation. These details are needed later to
describe our new progress estimation method. We refer the
reader to our prior papers [10], [11] for the other details of
our former progress estimation method.

1) FORECASTING THE COST OF MODEL TRAINING
The cost of model training is roughly = the total cost of
handling the training instances+ the total cost of handling the
validation instances. The total cost of handling the training
instances is

= themean amount of work it requires to handle a training
instance once × the quantity of training instances that
we handle in each batch × the quantity of batches it
takes to train the model

= B × the quantity of batches it takes to train the
model.

The total cost of handling the validation instances is

= the cost of handling the validation instances at the
raw points of validation + the cost of handling the
validation instances at the inserted points of validation.

We define the training-validation (T-V) cost ratio r = the
mean amount of work it requires to handle a training instance
once / the mean amount of work it requires to handle a
validation instance once. As the numerator is 1 U , the
denominator is = U / r . Let V stand for the quantity of
data instances the whole validation set contains. The cost
of handling the validation instances at the raw points of
validation is

= the mean amount of work it requires to handle
a validation instance once × the quantity of data
instances the whole validation set contains × the
quantity of raw points of validation it takes to train the
model

= V / r × the quantity of raw points of validation it takes
to train the model.

At each inserted point of validation, we employ a subset
randomly sampled from the whole validation set. LetV ′ stand
for the fixed count of data instances this subset contains. The
cost of handling the validation instances at the inserted points
of validation is

= V ′ / r × the number of inserted points of validation it
takes to train the model.

When training the deep learning model in the absence of
online data preprocessing, most of the training cost is spent
on doing multiplication operations. We handle a training
instance once by doing one forward and one backward
propagation in the model. We handle a validation instance
once by doing one forward propagation in the model. It takes
about two times the quantity of multiplication operations
to do one backward propagation than to do one forward
propagation. Accordingly, we set the T-V cost ratio to 3.

In forecasting the cost of model training, the key is to
project the quantity of raw points of validation it takes to
train the model. We use the information obtained at the
points of validation, maximum likelihood estimation, and
Monte Carlo simulation to project this number. Unless early
stopping occurs earlier, we can refine our initial and typically
inaccurate estimate of this number for the first time only after
we have obtained information from 4 points of validation.

2) INSERTING ADDITIONAL POINTS OF VALIDATION
BETWEEN THE RAW POINTS OF VALIDATION
We use several parameters to control howwe insert additional
points of validation between the raw points of validation.
In this section, we review how we set two of these parameters
that are also used in describing our new progress estimation
method.

Setting n0
The first parameter to set is n0, the number of points

of validation to be inserted ahead of the first raw point

VOLUME 12, 2024 18661



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

of validation. When setting n0, we attempt to meet two
requirements if possible:

1) Requirement 1: Upon exiting the 4th point of valida-
tion, we have spent a cost of model training of ≤ C
Us. C is a prechosen number whose default value is
the quantity of CPUs or GPUs employed to train the
model × 20,000. We adopt Requirement 1 to limit the
amount of elapsed time before we wrap up at the 4th
point of validation to refine our initially guessed cost
of model training for the first time.

2) Requirement 2: From the model training start time to
the time of exiting the first raw point of validation,
we incur a cost of ≤ c0P1 to compute validation errors
at the inserted points of validation. P1 is a prechosen
percentage with a default value of 5%. c0 stands for
upon exiting the first raw point of validation, the
cost of model training that we have spent ignoring
the overhead that the progress indicator has brought
to compute validation errors at the inserted points
of validation. We adopt Requirement 2 to limit this
overhead.

As it is not always possible to fully meet both requirements,
we treat them as soft requirements.

Setting V ′

The second parameter to set is V ′, the fixed quantity of data
instances that the subset of the whole validation set employed
at each inserted point of validation contains. V ′ has to be
≤ V , the number of data instances the whole validation set
contains. To make one approximation used in our former
progress estimation method accurate, we require V ′ to be ≥

a threshold Vmin. Recall that r stands for the T-V cost ratio.
When setting V ′, we attempt to meet the aforementioned
Requirement 2 and set V ′

= min(max(⌊rc0P1 / n0⌉,
Vmin), V ).

III. ONLINE DATA PREPROCESSING
In this section, we review online data preprocessing. In offline
data preprocessing, the raw data are preprocessed and written
to disk before we start training the deep learning model.
The preprocessed data are usually as large as or several
times larger than the raw data. During model training,
the preprocessed data are read from disk and inputted to
the model. When the raw data set (e.g., the 18-terabyte
Open Images data set [19], [20], [21]) is large, writing the
preprocessed data to and reading them from disk would
incur high costs. To address this issue, one can do online
data preprocessing. There, the raw data are preprocessed and
then directly inputted to the model without being written
to disk. No disk input/output is needed for handling the
preprocessed data. Major deep learning software packages
such as TensorFlow [17] and PyTorch [22] all support online
data preprocessing.

Online data preprocessing can include one or more steps.
Forward and backward (if any) propagation in the deep
learning model is another step. One can do all these steps
for each batch of data instances one by one. For instance,

given a batch of training instances, we first normalize all
training instance in it and then do forward and backward
propagation for them in the model. After we finish handling
one batch of training instances, we start handling the next
batch. Alternatively, one can use asynchronous pipelining
(see Fig. 2), a common approach to improve parallelism [23].
There, after a step is completed for a batch of data instances,
we start this step for the next batch once the previous step is
completed for the next batch.

FIGURE 2. An example of handling training instances by doing all of the
steps one by one vs. using asynchronous pipelining.

Online data preprocessing can be done on CPUs, GPUs,
or a combination of both [24], [25]. In the last case, some
online data preprocessing steps are done on CPUs, whereas
the other online data preprocessing steps are done on GPUs.

IV. OUR NEW PROGRESS ESTIMATION METHOD
This section presents our new progress estimation method
for end-to-end training of deep learning models with online
data preprocessing. As in our prior paper [11], our presen-
tation focuses on deep learning classification. Section IV-A
shows how to predict the outstanding model training time.
Section IV-B explains why we can keep using a T-V cost ratio
of 3 to compute n0 and V ′, two parameters used to control
how we insert additional points of validation between the raw
points of validation. Section IV-C presents the other changes
made to our former progress estimation method [10], [11].

A. PREDICTING THE OUTSTANDING MODEL TRAINING
TIME
1) OVERALL APPROACH
To address the limitation of our former progress estimation
method [10], [11] when online data preprocessing is used,
we separately estimate the progress of handling the training
instances and the progress of handling the validation
instances. Thenwemerge these estimates to obtain the overall
progress estimates of model training.

More specifically, we use the same approach in our former
progress estimationmethod [10], [11] to estimate the quantity
of training instances and the quantity of validation instances
needing to be handled to train the model. We define two types
of unit of work:

18662 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

(1) U for handling the training instances. As in our former
progress estimation method [10], [11], each U is the
mean amount of work it requires to handle a training
instance once during model training.

(2) W for handling the validation instances. EachW is the
mean amount of work it requires to handle a validation
instance once during model training.

For handling the training instances, we use U to compute
its speed and estimate its cost and outstanding time. Let
st stand for the latest speed of handling training instances
measured by the quantity of Us finished per second. The
predicted outstanding time for handling the training instances

= the forecasted remaining cost of handling the training
instances / st

= the forecasted quantity of training instances that remain
to be handled to train the model counting multiplicity /
st .

For handling the validation instances, we useW to compute
its speed and estimate its cost and outstanding time. Let sv
stand for the latest speed of handling validation instances
measured by the quantity of W s finished per second.
The predicted outstanding time for handling the validation
instances

= the forecasted remaining cost of handling the
validation instances / sv

= the forecasted quantity of validation instances that
remain to be handled to train the model counting
multiplicity / sv.

At any time, the predicted outstanding model training time
= the predicted outstanding time for handling the training

instances+ the predicted outstanding time for handling
the validation instances.

Online data preprocessing can include applying data
augmentation such as randomly flipping images to training
instances. In this case, usually in each epoch, one augmented
training instance is produced from every raw training
instance. Only the augmented training instance is used to
do forward and backward propagation in the deep learning
model. After the forward and backward propagation is done
for the augmented training instance, we count that one
training instance has been handled.

Some data augmentation methods like CutMix [26] and
MixUp [27] take multiple raw training instances as input
to produce an augmented training instance. For instance,
CutMix replaces a region in an image with a patch from
another image. When such a data augmentation method is
used, in each epoch, every raw training instance serves as the
base and is combined with some other raw training instances
to produce an augmented training instance exactly once. Only
the augmented training instance is used to do forward and
backward propagation in the deep learning model. After the
forward and backward propagation is done for the augmented
training instance, we count that one training instance has been
handled.

Ideally, we should compute the latest speed of handling
training instances st and the latest speed of handling

validation instances sv once every K = 10 seconds. When
only training but no validation instances were handled in
the previous K seconds, we compute st as the quantity of
Us finished per second in the previous K seconds. When
only validation but no training instances were handled in the
previous K seconds, we compute sv as the quantity of W s
finished per second in the previous K seconds. In addition,
we need to handle the following 3 cases:

1) Estimate st when no training instance was handled in
the previous K seconds.

2) Estimate sv when no validation instance was handled in
the previous K seconds.

3) Estimate st and sv when both training and validation
instances were handled in the previous K seconds.

In the following, we discuss these 3 cases one by one.

2) ESTIMATING st WHEN NO TRAINING INSTANCE WAS
HANDLED IN THE PREVIOUS K SECONDS
When no training but only validation instances were handled
in the previousK seconds, we use the most recently estimated
speed of handling training instances as the estimated latest
speed of handling training instances. Taking this approxi-
mation will not greatly lower the accuracy of the predicted
outstanding model training time. Typically, the training
set is much larger than the validation set. For example,
the ImageNet-1k data set contains ∼1.3 million training
instances and 50,000 validation instances [14]. During model
training, we need to handle many more training instances
than validation instances. Handling a training instance once
takes more work than handling a validation instance once,
as the former involves one forward and one backward
propagation in the model, whereas the latter involves one
forward propagation in the model. Due to these two factors,
the time taken to handle the validation instances is much
less than that taken to handle the training instances. In other
words, the former is only a small fraction of the model
training time. Only when we are handling the validation
instances at a point of validation, the approximation used to
estimate the latest speed of handling training instances will
lead to estimation error in the predicted outstanding time
for handling the training instances. But this will not last
long. After a relatively short amount of time, we will finish
handling the validation instances at the point of validation
and move on to handling the training instances. At that
time, we will recompute the correct latest speed of handling
training instances.

3) ESTIMATING sv WHEN NO VALIDATION INSTANCE WAS
HANDLED IN THE PREVIOUS K SECONDS
When no validation but only training instances were handled
in the previousK seconds, we use the most recently estimated
speed of handling validation instances as the estimated
latest speed of handling validation instances. This is an
approximation that will not greatly lower the accuracy of
the predicted outstanding model training time. As explained
above, the time taken to handle the validation instances

VOLUME 12, 2024 18663



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

is only a small fraction of the model training time. The
approximation will lead to estimation error in the predicted
outstanding time for handling the validation instances. Yet,
this estimation error will have only a small impact on the
predicted outstanding model training time. When we predict
that model training still needs quite some time to finish, the
impact is by a small percentage. When we predict that model
training is close to finish, the impact is by a small number.

By default, model training begins with handling the
training instances. Before reaching the first point of valida-
tion, no estimated speed of handling validation instances is
available, making it impossible to estimate the outstanding
time for handling the validation instances. To address this
issue, when model training begins, we first randomly sample
validation instances with replacement to obtain 5 batches
of validation instances. Then we handle them to compute
an initial estimated speed of handling validation instances.
We set the number of batches to 5 to strike a balance between
obtaining a relatively well estimated speed of handling
validation instances and reducing the progress estimation
overhead. When online data preprocessing is used, end-
to-end model training is often done using asynchronous
pipelining. When computing the initial estimated speed of
handling validation instances in this case, we start the timer
when the first batch of validation instances all exits the
pipeline and do not count this batch. In this way, the latency
resulting from initially filling in the pipeline would not
negatively impact the precision of this speed computation.

4) ESTIMATING st AND sv WHEN BOTH TRAINING AND
VALIDATION INSTANCES WERE HANDLED IN THE PREVIOUS
K SECONDS
Recall that st stands for the latest speed of handling training
instances. sv stands for the latest speed of handling validation
instances. This section describes our approach to estimate
st and sv when both training and validation instances were
handled in the previous K seconds. We first give an overview
of our approach. Then we add some details needed in our
approach.

a: OVERVIEW OF OUR SPEED ESTIMATION APPROACH
When training the deep learning model, we alternate between
handling training instances and handling validation instances.
When we run into the case that both training and validation
instances were handled in the previous K seconds, if only a
few training (or validation) instances were handled in these
K seconds (see Fig. 3), it can be hard to use these instances
to well estimate the latest speed of handling training (or
validation) instances.

To address this issue, we use a special speed estimation
approach, in which we intentionally use no new parameter
that needs to be set to an ad hoc number. We describe our
approachmainly for the case of switching from handling vali-
dation instances to handling training instances in the previous
K seconds (see Fig. 3(a) and 3(b)). The case of switching
from handling training instances to handling validation

FIGURE 3. The 4 distinct scenarios in which only a few training or
validation instances were handled in the previous K seconds.

FIGURE 4. The two possible cases of switching from handling validation
instances to handling training instances in the previous K seconds.

instances in the previous K seconds (see Fig. 3(c) and 3(d))
can be handled similarly. Our approach includes two steps:

1) Step 1:As shown in Fig. 4, there are two possible cases:
a) Case 1: We reached the most recent point of

validation over K seconds ago (see Fig. 4(a)).
In this case, the most recently estimated speed
of handling validation instances was computed
based on a K -second time window, in which only
validation instances were handled. We use that
estimated speed as the estimated latest speed of
handling validation instances. As that estimated
speed was computed only K seconds ago, it is
usually a good estimate of the latest speed of
handling validation instances.

b) Case 2: We reached the most recent point of
validation K seconds ago (see Fig. 4(b)). In this
case, we estimate the latest speed of handling
validation instances
= the quantity of validation instances handled in

the previous K seconds / the time spent on
handling these validation instances

= the quantity of validation instances handled
in the previous K seconds / (the time of
exiting the most recent point of validation –
the starting time of K seconds ago).

2) Step 2:A timer is adopted to time the sliding time win-
dow employed to compute the speed of handling data

18664 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

instances. When we switch from handling validation
instances to handling training instances, we restart the
timer (see Fig. 4). This ensures that no other possible
case needs to be considered in Step 1.

b: ADDITIONAL DETAILS OF STEP 2 FOR HANDLING THE
CASE OF SWITCHING FROM HANDLING VALIDATION
INSTANCES TO HANDLING TRAINING INSTANCES IN THE
PREVIOUS K SECONDS
In this case, in Step 2, we do not restart the timer immediately
upon switching from theprevious roundofhandlingvalidation
instances to the current round of handling training instances.
When online data preprocessing is used, end-to-end model
training is often done using asynchronous pipelining. In this
case, the first training instance in the current round enters the
pipeline before the last validation instance in the previous
round exits the pipeline. To let estimating the latest speed
of handling training instances not impacted by the last few
validation instances in the previous round in the pipeline,
we do not restart the timer until the first batch of training
instances in the current round all exits the pipeline. When
computing the latest speed of handling training instances, this
batch of training instances is not counted.

To make speed computation doable, we need to ensure that
≥2 batches of training instances are handled between any two
sequential points of validation. For this purpose, we only need
to fulfill the requirement that ≥2 batches of model training
are done before the first inserted point of validation, as our
former progress estimation method [11] inserts more points
of validation ahead of the first raw point of validation than
between any two sequential raw points of validation. Recall
that n0 stands for the number of points of validation to be
inserted ahead of the first raw point of validation. g stands
for the count of batches of model training that are done
between two sequential raw points of validation. To fulfill the
requirement, we ensure that n0 is ≤ ⌊g / 2 – 1⌋. We do this
by reusing the n0 computed in our former progress estimation
method [11] unless that computed number is > ⌊g / 2 – 1⌋,
in which case we set n0 to ⌊g / 2 – 1⌋.

c: ADDITIONAL DETAILS OF STEP 2 FOR HANDLING THE
CASE OF SWITCHING FROM HANDLING TRAINING
INSTANCES TO HANDLING VALIDATION INSTANCES IN THE
PREVIOUS K SECONDS
In this case, in Step 2, we do not restart the timer immediately
upon switching from the previous round of handling train-
ing instances to the current round of handling validation
instances. Instead, we restart the timer when the first batch of
validation instances in the current round all exits the pipeline.
When computing the latest speed of handling validation
instances, this batch of validation instances is not counted.

To make speed computation doable, we need to ensure
that ≥2 batches of validation instances are handled at each
point of validation. For this purpose, we only need to fulfill
the requirement that ≥2 batches of validation instances are
handled at each inserted point of validation. Recall that at

each inserted point of validation, we use a subset of the whole
validation set. Vmin stands for the smallest count of validation
instances demanded in this subset. To fulfill the requirement,
we ensure that Vmin is ≥ 2 × the number of validation
instances handled in each batch. That is, we set Vmin to
max(the Vmin computed in our former progress estimation
method [11], 2 × the number of validation instances handled
in each batch).

B. WHY WE CAN KEEP USING A T-V COST RATIO OF 3 TO
COMPUTE n0 AND V’
Recall that the T-V cost ratio is = the mean amount of work
it requires to handle a training instance once / the mean
amount of work it requires to handle a validation instance
once. We use the parameters n0 and V ′ to control how we
insert additional points of validation between the raw points
of validation. In our former progress estimation method [10],
[11], we set the T-V cost ratio to 3 and compute n0 and V ′

accordingly. But when online data preprocessing is used, the
actual T-V cost ratio can differ greatly from 3. In our new
progress estimation method, we keep using a T-V cost ratio
of 3 to compute n0 and V ′. This can cause two issues if the
actual T-V cost ratio is < 3:

1) A longer time is needed before we can refine our
initially guessed cost of model training for the first
time.

2) The progress indicator incurs a higher runtime over-
head.

Neither issue is amajor one. In the following, for each of these
two issues, we explain why it can occur but is not a major one.

1) A LONGER TIME IS NEEDED BEFORE WE CAN REFINE
OUR INITIALLY GUESSED COST OF MODEL TRAINING FOR
THE FIRST TIME
Recall that we can refine our initially guessed cost of
model training for the first time only after we have obtained
information from 4 points of validation. Upon exiting the 4th
point of validation, we strive to incur a cost of model training
of ≤ C Us (see Requirement 1 in Section II-B.2). When the
actual T-V cost ratio is < 3 but we keep using a T-V cost ratio
of 3, we underestimate the mean amount of work it requires to
handle a validation instance once and subsequently the cost
of handling validation instances at each point of validation.
Thus, upon exiting the 4th point of validation, we could have
spent a cost of model training of > C Us. This leads to the
issue that a longer time is needed before we can refine our
initially guessed cost of model training for the first time. This
issue is not a major one because the T-V cost ratio has a lower
bound of one, limiting the extent to which we underestimate
the cost of model training that we would have spent upon
exiting the 4th point of validation.

More specifically, when online data preprocessing is
used, handling a training instance once involves online data
preprocessing as well as one forward and one backward
propagation in the model. Handling a validation instance
once typically involves both online data preprocessing and

VOLUME 12, 2024 18665



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

one forward propagation in the model. The online data
preprocessing steps for a training instance are often the same
as those for a validation instance, but could include additional
steps such as adjusting image contrast to add noise. Thus, the
mean cost of doing online data preprocessing for a training
instance is ≥ that for a validation instance. The T-V cost ratio

= (the mean cost of doing online data preprocessing for a
training instance + the mean cost of doing one forward
propagation in the model + the mean cost of doing one
backpropagation in themodel) / (themean cost of doing
online data preprocessing for a validation instance +

the mean cost of doing one forward propagation in the
model)

> 1.
The T-V cost ratio has a lower bound of one. Thus, whenwe

use a T-V cost ratio of 3, the actual cost of handling validation
instances at each point of validation is < 3 × our estimated
cost of doing that. Upon exiting the 4th point of validation,
we have handled both training and validation instances with
an expected cost of ≤ C Us (see Requirement 1 in Section II-
B.2). The actual cost of model training that we have spent is
usually < 3 × that cost, i.e., 3C Us. As is the case with C ,
3C is a moderate number. Hence, the elapsed time before we
wrap up at the 4th point of validation to refine our initially
guessed cost of model training for the first time is relatively
short, even if it is longer than what we initially expected.

2) THE PROGRESS INDICATOR INCURS A HIGHER RUNTIME
OVERHEAD
When the actual T-V cost ratio is < 3 but we keep using
a T-V cost ratio of 3, the actual cost of handling validation
instances at each inserted point of validation is larger than
our estimated cost of doing that. This leads to the issue that
the progress indicator incurs a higher runtime overhead than
what we initially expected.

This issue is not amajor one. As explained before, whenwe
use a T-V cost ratio of 3, the actual cost of handling validation
instances at each inserted point of validation is < 3 × our
estimated cost of doing that. As reviewed in Section II-B.2,
we set P1 to 5% as the greatest permitted percentage rise in
the cost of model training caused by the progress indicator
between the model training start time and the time of exiting
the first raw point of validation. In the worst case, the progress
indicator incurs a rise of < 3 × 5% = 15% in the cost of
model training. In practice, the actual rise is usuallymuch less
than 15%. For example, according to the computation done in
our prior paper [11], in the case that at most 50 raw points
of validation are allowed in training the model and model
training ends at the 20th raw point of validation, we expect
the progress indicator to incur a rise of ∼1.2% in the cost of
model training. The actual rise is < 3.7%.

C. OTHER CHANGES MADE TO OUR FORMER PROGRESS
ESTIMATION METHOD
In this section, we present the other two changes made to our
former progress estimation method [11]. In Section IV-C.1,

we show how to set the parameter C . In Section IV-C.2,
we discuss how to display the progress estimates.

1) SETTING THE PARAMETER C
Upon exiting the 4th point of validation, we hope to have
spent a cost of model training of ≤ C Us (see Requirement
1 in Section II-B.2). This helps limit the elapsed time before
we can refine our initially guessed cost of model training for
the first time. In our former progress estimation method [11],
we assume that all operations in the deep learning model
training job are done on either CPUs or GPUs, but not both.
C is set to be the quantity of CPUs or GPUs employed to
train the model × 20,000. When online data preprocessing
is used, the end-to-end model training job can be done on a
combination of CPUs and GPUs. In this case, we set C to be
the total number of CPUs and GPUs employed to train the
model × 20,000.

2) DISPLAYING THE PROGRESS ESTIMATES
In our former progress estimation method [11], at any time,
we display one cost of model training and one speed of
model training. In our new progress estimation method,
we have one set of progress estimates for handling the
training instances and another set of progress estimates for
handling the validation instances.We display certain progress
estimates in a different way from that in our former progress
estimation method.

a: COSTS
We display two costs, one of handling the training instances
and the other of handling the validation instances.

b: PROCESSING SPEEDS
We display two speeds, one of handling training instances
and the other of handling validation instances.When handling
the training instances, we show the latest speed of handling
training instances and leave the speed of handling validation
instances empty. When handling the validation instances,
we show the latest speed of handling validation instances and
leave the speed of handling training instances empty.

c: PERCENTAGE OF MODEL TRAINING WORK
ACCOMPLISHED
The percentage of model training work accomplished is
computed as the model training work accomplished so far
/ the estimated cost of model training. The cost of model
training

= the cost of handling the training instances + the cost of
handling the validation instances

= the cost of handling the training instances in U + the
cost of handling the validation instances inW / the T-V
cost ratio.

The actual T-V cost ratio is hard to estimate. For computing
the percentage of model training work accomplished, we use
a T-V cost ratio of 3 as an approximation to calculate both
the model training work accomplished so far and the cost

18666 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

of model training. The T-V cost ratio is > 1. Typically, the
training set is much bigger than the validation set. Hence,
the cost of handling the training instances is much larger
than the cost of handling the validation instances. In this case,
using the approximation will not greatly degrade the accuracy
of the computed accomplished percentage of model training
work.

V. PERFORMANCE
This section shows the experimental results of our new
progress estimation method. We did a coding implementation
of this method in Version 2.9.0 of TensorFlow, a major
open-source deep learning software package [17]. In every
test, our progress indicators gave useful estimates updated
once per 10 seconds with a small overhead. This meets the
3 progress estimation goals listed in our previous paper [8]:
small overhead, reasonable pacing, and continuous updates.

A. EXPERIMENT DESCRIPTION
We ran TensorFlow and did experiments on a Digital Storm
workstation. This workstation has a GeForce RTX 2080 Ti
GPU, an 8-core Intel Core i7-9800X 3.8 GHz CPU, 64 GB
memory, a 3 TB SATA disk, and a 500 GB solid-state drive
and runs the Ubuntu 18.04.02 operating system.We used both
the CPU and the GPU to train each deep learning model on
an unloaded computer.

TABLE 1. The data sets we employed to test the progress estimation
method.

The Amazon reviews polarity data set [28] and ImageNet-
1k [14] are two popular benchmark data sets. For each of
them, we used a subset of it to do our tests (see Table 1).
From the Amazon reviews polarity data set’s training set,
we randomly sampled 135,000 data instances. We used
130,000 of them as a training set and the other 5,000 as a
validation set for our tests. For ImageNet-1k, we used a subset
of it called ImageNet-100 [29]. This subset contains 130,000
training instances and 5,000 validation instances.

For the early stopping condition, we set the patience p to 9,
an integer chosen from [3], [10] randomly, and the min_delta
δ to 0.00820, a number chosen from [0, 0.01] randomly.

We tested 3 major deep learning models:
1) Bidirectional Encoder Representations from Trans-

formers (BERT) [5], a transformer-basedmodel trained
on the subset of the Amazon reviews polarity data set.

2) ResNet50 [30], a convolutional neural network model
trained on ImageNet-100.

3) A Long Short-Term Memory (LSTM) model [31]
trained on the subset of the Amazon reviews polarity
data set.

1) BERT MODEL
When training the BERT model, we started from Version
2 of the pretrained bert_en_uncased_L-8_H-256_A-4 [32]
model [33]. We used a given learning rate of 2 × 10−5

and the adaptive moment estimation with decoupled weight
decay (AdamW) optimization algorithm [34]. We handled
100 training instances in each batch and allowed at most
25 epochs. We set all other hyper-parameters to their default
values [32].
In each epoch, we did the following online data preprocess-

ing steps:
1) We used the CPU to shuffle the training instances [35].
2) We used the GPU to do the default prepro-

cessing steps in Version 1 of TensorFlow Hub’s
bert_en_uncased_preprocess model [36] to transform
the text in each data instance to a set of numeric vectors.

2) RESNET50 MODEL
When training the ResNet50 model, we handled 50 training
instances in each batch and allowed at most 100 epochs.
We tested 4 major optimization algorithms: classical
stochastic gradient descent (SGD) [37], root mean square
propagation (RMSprop) [38], adaptive moment estimation
(Adam) [39], and adaptive gradient (AdaGrad) [40]. For
each optimization algorithm, we tested 3 learning rate decay
approaches: exponential decay, step decay, and employing a
given learning rate. In the exponential decay approach, the
k-th epoch (k ≥ 1) uses a learning rate of r0e−(k−1)ρ . ρ is a
positive constant specifying the decay speed of the learning
rate. r0 is the starting learning rate that is > 0. We set ρ to
0.05 and r0 to 10−3. In the step decay approach, we reduced
the learning rate from 10−3 to 10−4 when the 20th epoch
began and then to 10−5 when the 40th epoch began. We set
all other hyper-parameters to their default values [41].
In each epoch, we used the CPU to do the following online

data preprocessing steps:
1) We shuffled the training instances [35].
2) We replaced each image in the training set with a

224 × 224 pixels patch randomly cropped from the
image to obtain an augmented training instance.

3) We replaced each image in the validation set with a
224 × 224 pixels patch cropped from the center of the
image to obtain an augmented validation instance.

4) In each patch, we normalized its pixels to have a mean
of 0 and a variance of 1.

In the second and third steps, if the height (or width) of the
original image is < 224 pixels, we increased the height (or
width) to 224 pixels before we did the cropping.

3) LSTM MODEL
In the LSTM model, we put a fully connected layer on top
of 3 stacked bidirectional LSTM layers. We set each LSTM

VOLUME 12, 2024 18667



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

cell’s output dimension to 1,024 and the dimension of each
token’s embedding vector to 128. When training the LSTM
model, we used the exponential decay approach to control the
learning rate and set ρ to 0.05 and r0 to 2 × 10−5. We used
Adam, handled 100 training instances in each batch, and
allowed at most 25 epochs.

In each epoch, we did 3 online data preprocessing steps:
1) We used the CPU to shuffle the training instances [35].
2) We used the CPU to tokenize the text of each data

instance.
3) We used the GPU to map each token to an embedding

vector.

In this section, we give all experimental results of training
the BERT model and those of training the ResNet50
model using Adam. The experimental results of training the
ResNet50 model using the other 3 optimization algorithms
are given in Section A of the Appendix. The experimental
results of training the LSTM model are given in Section B
of the Appendix.

B. ACCURACY MEASURE
As in Chaudhuri et al. [42], we employed the average
prediction error to assess the accuracy of the progress
estimates. The average prediction error is = the area of the
space between a diagonal and a curve / the area of the triangle
formed by the x-axis, the y-axis, and the diagonal (see Fig. 5).
The diagonal depicts the genuine outstanding model training
time. The curve depicts the forecasted outstanding model
training time over time. The bigger the average prediction
error, the worse the progress estimates are.

FIGURE 5. The areas of the spaces used to compute the average
prediction error.

C. COMPARISON OF OUR FORMER AND NEW PROGRESS
ESTIMATION METHODS
We compared the accuracy of the progress estimates given
by our former [11] and new progress estimation methods.
We did 14 tests, one for every (deep learning model, learning
rate decay approach, optimization algorithm) combination
listed in Section V-A. In every test, we trained the model
5 times, each in a different run. In every run, we employed
each of our former and new progress estimation methods to
give progress estimates. For every test, Table 2 lists for each
of the two methods the mean and the standard deviation of

the average prediction error over the 5 runs. There, we mark
in bold the smaller mean between the two methods. Our
new progress estimation method outperformed our former
progress estimation method in every test. In comparison with
our former method, on average our proposed new method
cuts the error of the predicted outstanding model training
time by 16.0%.

For each of the 14 tests, Table 3 lists the mean and the
standard deviation of our new progress estimation method’s
runtime overhead, which is represented by the percentage
rise in the model training time induced by the progress
indicator. The mean runtime overhead across all tests
is 4.69%.

In Section V-D, Section V-E, and the Appendix, we present
the estimated outstanding model training time given by
both our former and new progress estimation methods,
as well as the other progress estimates given by our
new progress estimation method. In each of the 14 tests,
we trained the model 5 times. We randomly chose one of
them and present the progress estimates given over time
there.

D. EXPERIMENTAL RESULTS OF TRAINING
THE BERT MODEL
This test employed a given learning rate as well as AdamW
to train the BERT model. Fig. 6 displays the cost of handling
the training instances forecasted over time by our new
progress estimation method, with the horizontal dotted line
marking the genuine cost of handling the training instances.
Fig. 7 displays the cost of handling the validation instances
forecasted over time by our new progress estimation method,
with the horizontal dotted line marking the genuine cost of
handling the validation instances. Within several hundred
seconds after model training began, both forecasted costs
became relatively accurate.

FIGURE 6. Cost of handling the training instances forecasted over time
(employing a given learning rate as well as AdamW to train the BERT
model).

Fig. 8 displays both the speed of handling training
instances and the speed of handling validation instances
estimated by our new progress estimation method over time.
Both estimated speeds were decently stable throughout the
whole model training process.

18668 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

TABLE 2. For each combination of one of the 14 tests and one of our former and new progress estimation methods, the mean and the standard deviation
of the average prediction error over the 5 runs.

TABLE 3. For each of the 14 tests, the mean and the standard deviation of our new progress estimation method’s runtime overhead over the 5 runs.

Fig. 9 and 10 display the outstanding model training
time forecasted over time by our new and former progress
estimation methods, respectively, with the dashed line
marking the genuine outstanding model training time. For
the reason given in the introduction, the outstanding model
training time forecasted by our former progress estimation
method often differs greatly from the genuine outstanding
model training time. Our new progress estimation method
does not have this problem.

Fig. 11 displays the accomplished percentage of model
training work estimated by our new progress estimation
method over time. The curve depicting the forecasted
accomplished percentage is decently near the dotted diagonal
that joins the lower left and the upper right corners.

E. EXPERIMENTAL RESULTS OF TRAINING THE RESNET50
MODEL
1) EXPERIMENTAL RESULTS OF EMPLOYING A GIVEN
LEARNING RATE
This test employed a given learning rate as well as Adam
to train the ResNet50 model. Fig. 12 displays the cost
of handling the training instances forecasted over time by
our new progress estimation method, with the horizontal
dotted line marking the genuine cost of handling the training
instances. Fig. 13 displays the cost of handling the validation
instances forecasted over time by our new progress estimation
method, with the horizontal dotted line marking the genuine
cost of handling the validation instances. When model
training just started, both forecasted costs diverged notably

VOLUME 12, 2024 18669



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 7. Cost of handling the validation instances forecasted over time
(employing a given learning rate as well as AdamW to train the BERT
model).

FIGURE 8. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as AdamW to train the BERT model).

FIGURE 9. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
AdamW to train the BERT model).

from the genuine costs. Once we reached the 4th point of
validation and was able to refine our initially guessed costs
within 243 seconds, both forecasted costs becamemuchmore
accurate.

Fig. 14 displays both the speed of handling training
instances and the speed of handling validation instances
estimated by our new progress estimation method over time.

FIGURE 10. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
AdamW to train the BERT model).

FIGURE 11. Accomplished percentage forecasted over time (employing a
given learning rate as well as AdamW to train the BERT model).

FIGURE 12. Cost of handling the training instances forecasted over time
(employing a given learning rate as well as Adam to train the ResNet50
model).

Both estimated speeds were decently stable throughout the
whole model training process.

Fig. 15 and 16 display the outstanding model training
time forecasted over time by our new and former progress
estimation methods, respectively, with the dashed line
depicting the genuine outstanding model training time. For
the reason given in the introduction, the outstanding model
training time forecasted by our former progress estimation
method often differs greatly from the genuine outstanding

18670 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 13. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as Adam to train the
ResNet50 model).

FIGURE 14. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as Adam to train the ResNet50 model).

FIGURE 15. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
Adam to train the ResNet50 model).

model training time. Our new progress estimation method
does not have this problem.

Fig. 17 displays the accomplished percentage of model
training work estimated by our new progress estima-
tion method over time. The curve depicting the fore-
casted accomplished percentage is decently near the dotted
diagonal that joins the lower left and the upper right
corners.

FIGURE 16. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
Adam to train the ResNet50 model).

FIGURE 17. Accomplished percentage forecasted over time (employing a
given learning rate as well as Adam to train the ResNet50 model).

FIGURE 18. Cost of handling the training instances forecasted over time
(employing the exponential decay approach to control the learning rate
as well as Adam to train the ResNet50 model).

2) EXPERIMENTAL RESULTS OF EMPLOYING THE
EXPONENTIAL DECAY APPROACH TO CONTROL THE
LEARNING RATE
This test employed the exponential decay approach to control
the learning rate as well as Adam to train the ResNet50
model. Fig. 18-23 display this test’s results. Overall, our
new progress estimation method produced relatively good
estimates of the cost of handling the training instances, the

VOLUME 12, 2024 18671



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

cost of handling the validation instances, and the outstanding
model training time. Compared to our former progress
estimation method, our new progress estimation method
provided more stable estimates of the outstanding model
training time.

FIGURE 19. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as Adam to train the ResNet50 model).

FIGURE 20. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as Adam
to train the ResNet50 model).

FIGURE 21. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay approach
to control the learning rate as well as Adam to train the ResNet50
model).

FIGURE 22. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay approach
to control the learning rate as well as Adam to train the ResNet50 model).

FIGURE 23. Accomplished percentage forecasted over time (employing
the exponential decay approach to control the learning rate as well as
Adam to train the ResNet50 model).

3) EXPERIMENTAL RESULTS OF EMPLOYING THE STEP
DECAY APPROACH TO CONTROL THE LEARNING RATE
This test employed the step decay approach to control the
learning rate as well as Adam to train the ResNet50 model.
We reduced the learning rate from 10−3 to 10−4 when the
20th epoch began and then to 10−5 when the 40th epoch
began. Early stopping occurred between the 20th epoch and
the 40th epoch. Fig. 24-29 display this test’s results. In each
of these figures, we use a dash-dotted vertical line to show
when the learning rate dropped. Overall, our new progress
estimation method produced relatively good estimates of the
cost of handling the training instances, the cost of handling
the validation instances, and the outstanding model training
time. Compared to our former progress estimation method,
our new progress estimation method provided more stable
estimates of the outstanding model training time.

VI. RELATED WORK
This section briefly goes over the related work. Our prior
paper [8] discusses the related work in detail.

A. ADVANCED PROGRESS INDICATORS
Several researchers have designed advanced progress indi-
cators for program compilation [43], software model check-

18672 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 24. Cost of handling the training instances forecasted over time
(employing the step decay approach to control the learning rate as well
as Adam to train the ResNet50 model).

FIGURE 25. Cost of handling the validation instances forecasted over
time (employing the step decay approach to control the learning rate as
well as Adam to train the ResNet50 model).

FIGURE 26. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the step
decay approach to control the learning rate as well as Adam to train the
ResNet50 model).

ing [44], static program analysis [45], automatic machine
learning model selection [46], [47], MapReduce jobs [48],
[49], database queries [9], [42], [50], [51], [52], and subgraph
queries [53]. We have also designed advanced progress
indicators for building several types of machine learning
models like neural network, decision tree, and random
forest [8], [10], [11], [54].

FIGURE 27. Outstanding model training time forecasted by our new
progress estimation method (employing the step decay approach to
control the learning rate as well as Adam to train the ResNet50 model).

FIGURE 28. Outstanding model training time forecasted by our former
progress estimation method (employing the step decay approach to
control the learning rate as well as Adam to train the ResNet50 model).

FIGURE 29. Accomplished percentage forecasted over time (employing
the step decay approach to control the learning rate as well as Adam to
train the ResNet50 model).

B. PREDICTING THE DEEP LEARNING MODEL TRAINING
TIME
To predict an epoch’s runtime before one starts training a deep
learning model, Justus et al. [55] designed a meta learning
method. This method uses several features of the current
model, the training data set adopted to build another deep
learning model, and the computing resources, but predicts

VOLUME 12, 2024 18673



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 30. Cost of handling the training instances forecasted over time
(employing a given learning rate as well as RMSprop to train the
ResNet50 model).

FIGURE 31. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as RMSprop to train the
ResNet50 model).

FIGURE 32. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as RMSprop to train the ResNet50 model).

neither the time nor the number of epochs it takes to train
the current model.

To predict the time needed to train a deep learning model
before one starts training the model, multiple researchers
have designed a Bayesian optimization method [56] as well
as several meta learning methods using multivariate adaptive
regression splines [57], polynomial regression [58], and
support vector regression [59], respectively. The numbers
predicted by these methods are often inaccurate, can differ
a lot from the genuine time taken to train the model on a
loaded computer, and are not revised continuously. In com-
parison, when our progress estimation method predicts the
outstanding deep learning model training time, we consider
the load on the computer and keep revising our predicted
numbers.

FIGURE 33. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
RMSprop to train the ResNet50 model).

FIGURE 34. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
RMSprop to train the ResNet50 model).

FIGURE 35. Accomplished percentage forecasted over time (employing a
given learning rate as well as RMSprop to train the ResNet50 model).

C. COMPLEXITY ANALYSIS FOR NEURAL NETWORK
TRAINING
Multiple researchers have computed the time complexity
of building a neural network model [60], [61], [62]. But,
this information can neither give us an estimated model
training time on a loaded computer nor help us create a
progress indicator. Usually, time complexity disregards the
data properties that affect the cost of model training and the
lower order terms and the coefficients needed to predict that
cost. During model training, a non-trivial progress indicator
should keep revising its predicted cost of model training.

VII. POSSIBLE DIRECTIONS TO DO FUTURE WORK
This section lists several possible directions to do futurework.

This work derives no upper bounds on the error of the
predicted cost of handling the training instances and that of

18674 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 36. Cost of handling the training instances forecasted over time
(employing a given learning rate as well as SGD to train the ResNet50
model).

FIGURE 37. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as SGD to train the
ResNet50 model).

FIGURE 38. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as SGD to train the ResNet50 model).

FIGURE 39. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
SGD to train the ResNet50 model).

handling the validation instances. In the future, we could
adopt an approach akin to what Chaudhuri et al. [63] used

FIGURE 40. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
SGD to train the ResNet50 model).

FIGURE 41. Accomplished percentage forecasted over time (employing a
given learning rate as well as SGD to train the ResNet50 model).

FIGURE 42. Cost of handling the training instances forecasted over time
(employing a given learning rate as well as AdaGrad to train the ResNet50
model).

for database query progress estimation to compute such upper
bounds.

As a case study, both this work and our prior work [10],
[11] employ the same early stopping condition to show
that we can create advanced progress indicators for deep
learning model training. There are many other early stopping
conditions [1], [64], [65], [66]. In the future, we will
examine how to extend our current progress estimation
techniques to accommodate other commonly used early
stopping conditions.

This work addresses deep learning classification and uses
error rate as a model performance metric. Deep learning is
also used for regression, where mean squared error is used as
a model performance metric. In the future, we will extend our
current progress estimation techniques to handle that case.

VOLUME 12, 2024 18675



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 43. Cost of handling the validation instances forecasted over
time (employing a given learning rate as well as AdaGrad to train the
ResNet50 model).

FIGURE 44. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing a given
learning rate as well as AdaGrad to train the ResNet50 model).

FIGURE 45. Outstanding model training time forecasted by our new
progress estimation method (employing a given learning rate as well as
AdaGrad to train the ResNet50 model).

VIII. CONCLUSION
This paper presents a new progress estimation method to
handle end-to-end deep learning model training with online
data preprocessing. This new method overcomes our former
progress estimation method’s limitation of ignoring online
data preprocessing, which commonly takes a large percentage
of model training time. Our tests show that when online data
preprocessing is used and in comparison with our former
method, our proposed new method produces more stable
progress estimates for model training and on average lowers
the error of the predicted outstanding model training time by
16.0%.

FIGURE 46. Outstanding model training time forecasted by our former
progress estimation method (employing a given learning rate as well as
AdaGrad to train the ResNet50 model).

FIGURE 47. Accomplished percentage forecasted over time (employing a
given learning rate as well as AdaGrad to train the ResNet50 model).

FIGURE 48. Cost of handling the training instances forecasted over time
(employing the exponential decay approach to control the learning rate
as well as RMSprop to train the ResNet50 model).

APPENDIX
A. OTHER EXPERIMENTAL RESULTS OF TRAINING THE
RESNET50 MODEL
1) EXPERIMENTAL RESULTS OF EMPLOYING A GIVEN
LEARNING RATE
a: EMPLOYING RMSPROP
This test employed a given learning rate as well as
RMSprop to train the ResNet50 model. Fig. 30-35 display
the experimental results, which resemble those displayed in
Fig. 12-17.

18676 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 49. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as RMSprop to train the ResNet50 model).

FIGURE 50. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as
RMSprop to train the ResNet50 model).

FIGURE 51. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay approach
to control the learning rate as well as RMSprop to train the ResNet50
model).

b: EMPLOYING SGD
This test employed a given learning rate as well as
SGD to train the ResNet50 model. Fig. 36-41 display the
experimental results, which resemble those displayed in
Fig. 12-17.

c: EMPLOYING ADAGRAD
This test employed a given learning rate as well as
AdaGrad to train the ResNet50 model. Fig. 42-47 display
the experimental results, which resemble those displayed in
Fig. 12-17.

FIGURE 52. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay approach
to control the learning rate as well as RMSprop to train the ResNet50
model).

FIGURE 53. Accomplished percentage forecasted over time (employing
the exponential decay approach to control the learning rate as well as
RMSprop to train the ResNet50 model).

FIGURE 54. Cost of handling the training instances forecasted over time
(employing the exponential decay approach to control the learning rate
as well as SGD to train the ResNet50 model).

2) EXPERIMENTAL RESULTS OF EMPLOYING THE
EXPONENTIAL DECAY APPROACH TO CONTROL THE
LEARNING RATE
a: EMPLOYING RMSPROP
This test employed the exponential decay approach to control
the learning rate as well as RMSprop to train the ResNet50
model. Fig. 48-53 display the experimental results, which
resemble those displayed in Fig. 18-23.

b: EMPLOYING SGD
This test employed the exponential decay approach to control
the learning rate as well as SGD to train the ResNet50 model.
Fig. 54-59 display the experimental results, which resemble
those displayed in Fig. 18-23.

VOLUME 12, 2024 18677



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 55. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as SGD to train the ResNet50 model).

FIGURE 56. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as SGD to
train the ResNet50 model).

FIGURE 57. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay approach
to control the learning rate as well as SGD to train the ResNet50 model).

c: EMPLOYING ADAGRAD
This test employed the exponential decay approach to control
the learning rate as well as AdaGrad to train the ResNet50
model. Fig. 60-65 display the experimental results, which
resemble those displayed in Fig. 18-23.

3) EXPERIMENTAL RESULTS OF EMPLOYING THE STEP
DECAY APPROACH TO CONTROL THE LEARNING RATE
In each test that employed the step decay approach to control
the learning rate to train the ResNet50 model, we reduced
the learning rate from 10−3 to 10−4 when the 20th epoch
began and then to 10−5 when the 40th epoch began. Early
stopping occurred between the 20th epoch and the 40th
epoch. In each figure displayed in this section, we employ

FIGURE 58. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay approach
to control the learning rate as well as SGD to train the ResNet50 model).

FIGURE 59. Accomplished percentage forecasted over time (employing
the exponential decay approach to control the learning rate as well as
SGD to train the ResNet50 model).

FIGURE 60. Cost of handling the training instances forecasted over time
(employing the exponential decay approach to control the learning rate
as well as AdaGrad to train the ResNet50 model).

FIGURE 61. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as AdaGrad to train the ResNet50 model).

a dash-dotted vertical line to show when the learning rate
dropped.

18678 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 62. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as
AdaGrad to train the ResNet50 model).

FIGURE 63. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay approach
to control the learning rate as well as AdaGrad to train the ResNet50
model).

FIGURE 64. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay approach
to control the learning rate as well as AdaGrad to train the ResNet50
model).

a: EMPLOYING RMSPROP
This test employed the step decay approach to control the
learning rate as well as RMSprop to train the ResNet50
model. Fig. 66-71 display the experimental results.

b: EMPLOYING SGD
This test employed the step decay approach to control the
learning rate as well as SGD to train the ResNet50 model.
Fig. 72-77 display the experimental results.

c: EMPLOYING ADAGRAD
This test employed the step decay approach to control the
learning rate as well as AdaGrad to train the ResNet50model.

FIGURE 65. Accomplished percentage forecasted over time (employing
the exponential decay approach to control the learning rate as well as
AdaGrad to train the ResNet50 model).

FIGURE 66. Cost of handling the training instances forecasted over time
(employing the step decay approach to control the learning rate as well
as RMSprop to train the ResNet50 model).

FIGURE 67. Cost of handling the validation instances forecasted over
time (employing the step decay approach to control the learning rate as
well as RMSprop to train the ResNet50 model).

FIGURE 68. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the step
decay approach to control the learning rate as well as RMSprop to train
the ResNet50 model).

Fig. 78-83 display the experimental results, which resemble
those displayed in Fig. 72-77.

VOLUME 12, 2024 18679



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 69. Outstanding model training time forecasted by our new
progress estimation method (employing the step decay approach to
control the learning rate as well as RMSprop to train the ResNet50
model).

FIGURE 70. Outstanding model training time forecasted by our former
progress estimation method (employing the step decay approach to
control the learning rate as well as RMSprop to train the ResNet50
model).

FIGURE 71. Accomplished percentage forecasted over time (employing
the step decay approach to control the learning rate as well as RMSprop
to train the ResNet50 model).

FIGURE 72. Cost of handling the training instances forecasted over time
(employing the step decay approach to control the learning rate as well
as SGD to train the ResNet50 model).

FIGURE 73. Cost of handling the validation instances forecasted over
time (employing the step decay approach to control the learning rate as
well as SGD to train the ResNet50 model).

FIGURE 74. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the step
decay approach to control the learning rate as well as SGD to train the
ResNet50 model).

FIGURE 75. Outstanding model training time forecasted by our new
progress estimation method (employing the step decay approach to
control the learning rate as well as SGD to train the ResNet50 model).

FIGURE 76. Outstanding model training time forecasted by our former
progress estimation method (employing the step decay approach to
control the learning rate as well as SGD to train the ResNet50 model).

18680 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 77. Accomplished percentage forecasted over time (employing
the step decay approach to control the learning rate as well as SGD to
train the ResNet50 model).

FIGURE 78. Cost of handling the training instances forecasted over time
(employing the step decay approach to control the learning rate as well
as AdaGrad to train the ResNet50 model).

FIGURE 79. Cost of handling the validation instances forecasted over
time (employing the step decay approach to control the learning rate as
well as AdaGrad to train the ResNet50 model).

FIGURE 80. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the step
decay approach to control the learning rate as well as AdaGrad to train
the ResNet50 model).

FIGURE 81. Outstanding model training time forecasted by our new
progress estimation method (employing the step decay approach to
control the learning rate as well as AdaGrad to train the ResNet50 model).

FIGURE 82. Outstanding model training time forecasted by our former
progress estimation method (employing the step decay approach to
control the learning rate as well as AdaGrad to train the ResNet50 model).

FIGURE 83. Accomplished percentage forecasted over time (employing
the step decay approach to control the learning rate as well as AdaGrad
to train the ResNet50 model).

FIGURE 84. Cost of handling the training instances forecasted over time
(employing the exponential decay approach to control the learning rate
as well as Adam to train the LSTM model).

VOLUME 12, 2024 18681



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

FIGURE 85. Cost of handling the validation instances forecasted over
time (employing the exponential decay approach to control the learning
rate as well as Adam to train the LSTM model).

FIGURE 86. The speed of handling training instances and the speed of
handling validation instances estimated over time (employing the
exponential decay approach to control the learning rate as well as Adam
to train the LSTM model).

FIGURE 87. Outstanding model training time forecasted by our new
progress estimation method (employing the exponential decay approach
to control the learning rate as well as Adam to train the LSTM model).

B. EXPERIMENTAL RESULTS OF TRAINING THE LSTM
MODEL
This test employed the exponential decay approach to control
the learning rate as well as Adam to train the LSTM model.
Fig. 84-89 display the experimental results. Overall, our
new progress estimation method produced relatively good
estimates of the cost of handling the training instances, the
cost of handling the validation instances, and the outstanding

FIGURE 88. Outstanding model training time forecasted by our former
progress estimation method (employing the exponential decay approach
to control the learning rate as well as Adam to train the LSTM model).

FIGURE 89. Accomplished percentage forecasted over time (employing
the exponential decay approach to control the learning rate as well as
Adam to train the LSTM model).

model training time. Compared to our former progress
estimation method, our new progress estimation method
provided more stable estimates of the outstanding model
training time.

ACKNOWLEDGMENT
The authors would like to thank Brian Kelly for useful
discussions.

AUTHORS’ CONTRIBUTIONS
The author Qifei Dong participated in the study design, wrote
the initial draft of the paper and the computer code, and did
the literature review and the experiments. The author Gang
Luo participated in the study design and rewrote the entire
paper. Both authors read and approved the final version of
the paper.

REFERENCES
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,

MA, USA: MIT Press, 2016.
[2] C. Li. OpenAI’s GPT-3 Language Model: A Technical Overview

Lambda. Accessed: Dec. 10, 2023. [Online]. Available:
https://lambdalabs.com/blog/demystifying-gpt-3

[3] R. Schwartz, J. Dodge, N. Smith, and O. Etzioni, ‘‘Green AI,’’ Commun.
ACM, vol. 63, no. 12, pp. 54–63, Dec. 2020.

18682 VOLUME 12, 2024



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

[4] K. Ni, R. Pearce, K. Boakye, B. Van Essen, D. Borth, B. Chen, and
E. Wang, ‘‘Large-scale deep learning on the YFCC100M dataset,’’ 2015,
arXiv:1502.03409.

[5] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
NAACL-HLT, vol. 2019, pp. 4171–4186.

[6] J. Hui. How to Scale the BERT Training with Nvidia GPUs? Nvidia.
Accessed: Dec. 10, 2023. [Online]. Available: tps://medium.com/nvidia-
ai/how-to-scale-the-bert-training-with-nvidia-gpus-c1575e8eaf71

[7] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, ‘‘Revisiting unreasonable
effectiveness of data in deep learning era,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 843–852.

[8] G. Luo, ‘‘Toward a progress indicator for machine learning model building
and data mining algorithm execution: A position paper,’’ ACM SIGKDD
Explorations Newslett., vol. 19, no. 2, pp. 13–24, Nov. 2017.

[9] G. Luo, J. F. Naughton, and P. S. Yu, ‘‘Multi-query SQL progress
indicators,’’ in Proc. Adv. Database Technol.-(EDBT), 10th Int. Conf.
Extending Database Technol., Mar. 2006, pp. 921–941.

[10] Q. Dong and G. Luo, ‘‘Progress indication for deep learning model train-
ing: A feasibility demonstration,’’ IEEE Access, vol. 8, pp. 79811–79843,
2020.

[11] Q. Dong, X. Zhang, and G. Luo, ‘‘Improving the accuracy of progress
indication for constructing deep learning models,’’ IEEE Access, vol. 10,
pp. 63754–63781, 2022.

[12] A. Klimovic. Rethinking Data Storage and Preprocessing for ML
ACM SIGARCH. Accessed: Dec. 10, 2023. [Online]. Available:
tps://www.sigarch.org/rethinking-data-storage-and-preprocessing-for-
ml

[13] D. G. Murray, J. Šimša, A. Klimovic, and I. Indyk, ‘‘tf.data: A machine
learning data processing framework,’’ in Proc. VLDB Endowment, vol. 14,
no. 12, Jul. 2021, pp. 2945–2958.

[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
‘‘ImageNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[15] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[16] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, ‘‘Benchmark analysis
of representative deep neural network architectures,’’ IEEE Access, vol. 6,
pp. 64270–64277, 2018.

[17] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine
learning,’’ inProc. 12th USENIXConf. Operating Syst. Design Implement.,
Mar. 2016, pp. 265–283.

[18] tf. Keras. Callbacks. EarlyStopping TensorFlow. Accessed: Dec. 10, 2023.
[Online]. Available: https://www.tensorflow.org/versions/r1.15/
api_docs/python/tf/keras/callbacks/EarlyStopping

[19] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari,
‘‘The open images dataset V4,’’ Int. J. Comput. Vis., vol. 128, no. 7,
pp. 1956–1981, Jul. 2020.

[20] Open Images Dataset V7 and Extensions.
Accessed Dec. 10, 2023. [Online]. Available:
https://storage.googleapis.com/openimages/web/index.html

[21] Open Images Dataset GitHub. Accessed: Dec. 10, 2023. [Online].
Available: tps://github.com/cvdfoundation/open-images-dataset

[22] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance deep
learning library,’’ in Proc. Adv. Neural Inf. Process. Syst., Dec. 2019,
pp. 8024–8035.

[23] M. A. Franklin and T. Pan, ‘‘Clocked and asynchronous instruction
pipelines,’’ inProc. 26th Annu. Int. Symp.Microarchit., 1993, pp. 177–184.

[24] tf. Data: Build TensorFlow Input Pipelines TensorFlow. Accessed:
Dec. 10, 2023. [Online]. Available: tps://www.tensorflow.org/guide/data

[25] Nvidia Data Loading Library Nvidia. Accessed: Dec. 10, 2023. [Online].
Available: tps://developer.nvidia.com/dali

[26] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo, and J. Choe, ‘‘CutMix:
Regularization strategy to train strong classifiers with localizable fea-
tures,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6022–6031.

[27] H. Zhang, M. Cissè, Y. N. Dauphin, and D. Lopez-Paz, ‘‘Mixup: Beyond
empirical risk minimization,’’ in Proc. ICLR, May 2018, pp. 1–13.

[28] X. Zhang, J. J. Zhao, and Y. LeCun, ‘‘Character-level convolutional
networks for text classification,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2015, pp. 649–657.

[29] A. Shekhar, ImageNet100: A Sample of ImageNet Classes,
Kaggle. Accessed: Dec. 10, 2023. [Online]. Available:
tps://www.kaggle.com/datasets/ambityga/imagenet100

[30] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[31] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[32] Bert/Bert-En-Uncased-L-8-H-256-A-4 Kaggle/Models.
Accessed: Dec. 10, 2023 [Online]. Available:
tps://www.kaggle.com/models/tensorflow/bert/frameworks/
tensorFlow2/variations/bert-en-uncased-l-8-h-256-a-4/versions/2

[33] TensorFlow Hub Tensorflow. Accessed: Dec. 10, 2023. [Online]. Avail-
able: tps://www.tensorflow.org/hub

[34] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,’’ in
Proc. ICLR, Jul. 2019, pp. 1–18.

[35] tf. data. Dataset/shuffle Tensorflow. Accessed: Dec. 10, 2023. [Online].
Available: tps://www.tensorflow.org/api_docs/python/tf/data/Datasetshuffle

[36] Bert/En_Uncased_Preprocess Kaggle. Accessed: Dec. 10, 2023. [Online].
Available: tps://www.kaggle.com/models/tensorflow/bert/frameworks/
tensorFlow2/variations/en-uncased-preprocess/versions/1

[37] L. Bottou, ‘‘Large-scale machine learning with stochastic gradient
descent,’’ in Proc. 19th Int. Conf. Comput. Statist., vol. 2010, pp. 177–186.

[38] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
2016, arXiv:1609.04747.

[39] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. ICLR, 2015, pp. 1–15.

[40] J. Duchi, E. Hazan, and Y. Singer, ‘‘Adaptive subgradient methods for
online learning and stochastic optimization,’’ J. Mach. Learn. Res., vol. 12,
pp. 2121–2159, Feb. 2011.

[41] tf. Keras. Applications. Resnet50. ResNet50
TensorFlow. Accessed: Dec. 10, 2023. [Online].
Available: tps://www.tensorflow.org/api_docs/python/tf/
keras/applications/resnet50/ResNet50

[42] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, ‘‘Estimating progress of
execution for SQL queries,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, Jun. 2004, pp. 803–814.

[43] G. Luo, T. Chen, and H. Yu, ‘‘Toward a progress indicator for program
compilation,’’ Software: Pract. Exper., vol. 37, no. 9, pp. 909–933,
Jul. 2007.

[44] K. Wang, H. Converse, M. Gligoric, S. Misailovic, and S. Khurshid,
‘‘A progress bar for the JPF search using program executions,’’ in Proc.
Java PathFinder Workshop ESEC/FSE, 2018, pp. 1–6.

[45] W. Lee, H. Oh, and K. Yi, ‘‘A progress bar for static analyzers,’’ in Proc.
21st Int. Symp. (SAS), 2014, pp. 184–200.

[46] G. Luo, ‘‘PredicT-ML: A tool for automating machine learning model
building with big clinical data,’’Health Inf. Sci. Syst., vol. 4, no. 1, pp. 1–6,
Dec. 2016.

[47] G. Luo, B. L. Stone, M. D. Johnson, P. Tarczy-Hornoch, A. B. Wilcox,
S. D. Mooney, X. Sheng, P. J. Haug, and F. L. Nkoy, ‘‘Automating
construction of machine learning models with clinical big data: Proposal
rationale and methods,’’ JMIR Res. Protocols, vol. 6, no. 8, p. e175,
Aug. 2017.

[48] K. Morton, M. Balazinska, and D. Grossman, ‘‘ParaTimer: A progress
indicator for MapReduce DAGs,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, Jun. 2010, pp. 507–518.

[49] K. Morton, A. Friesen, M. Balazinska, and D. Grossman, ‘‘Estimating the
progress of MapReduce pipelines,’’ in Proc. IEEE 26th Int. Conf. Data
Eng. (ICDE), Mar. 2010, pp. 681–684.

[50] K. Lee, A. C. König, V. Narasayya, B. Ding, S. Chaudhuri, B. Ellwein,
A. Eksarevskiy, M. Kohli, J. Wyant, P. Prakash, R. Nehme, J. Li, and J.
Naughton, ‘‘Operator and query progress estimation in Microsoft SQL
server live query statistics,’’ in Proc. Int. Conf. Manage. Data, Jun. 2016,
pp. 1753–1764.

[51] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke, ‘‘Increasing
the accuracy and coverage of SQL progress indicators,’’ in Proc. 21st Int.
Conf. Data Eng. (ICDE), 2005, pp. 853–864.

[52] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke, ‘‘Toward
a progress indicator for database queries,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data, Jun. 2004, pp. 791–802.

VOLUME 12, 2024 18683



Q. Dong, G. Luo: Progress Estimation for End-to-End Training of Deep Learning Models

[53] X. Xie, Z. Fan, B. Choi, P. Yi, S. S. Bhowmick, and S. Zhou, ‘‘PIGEON:
Progress indicator for subgraph queries,’’ in Proc. IEEE 31st Int. Conf.
Data Eng., Apr. 2015, pp. 1492–1495.

[54] G. Luo, ‘‘Progress indication for machine learning model building:
A feasibility demonstration,’’ ACM SIGKDD Explorations Newslett.,
vol. 20, no. 2, pp. 1–12, Dec. 2018.

[55] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, ‘‘Predicting the
computational cost of deep learning models,’’ in Proc. IEEE Int. Conf. Big
Data, Dec. 2018, pp. 3873–3882.

[56] J. Snoek, H. Larochelle, and R. P. Adams, ‘‘Practical Bayesian optimiza-
tion of machine learning algorithms,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 2960–2968.

[57] T. Doan and J. Kalita, ‘‘Predicting run time of classification algorithms
using meta-learning,’’ Int. J. Mach. Learn. Cybern., vol. 8, no. 6,
pp. 1929–1943, Dec. 2017.

[58] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell, ‘‘OBOE: Collaborative
filtering for AutoML model selection,’’ in Proc. 25th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jul. 2019, pp. 1173–1183.

[59] M. Reif, F. Shafait, and A. Dengel, ‘‘Prediction of classifier training time
including parameter optimization,’’ in Proc. KI, Adv. Artif. Intell. 34th
Annu. German Conf. AI, 2011, pp. 260–271.

[60] R. Livni, S. Shalev-Shwartz, and O. Shamir, ‘‘On the computational
efficiency of training neural networks,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 855–863.

[61] L. L. Fredenslund. Computational Complexity of Neural
Networks. Accessed: Dec. 10, 2023. [Online]. Available:
https://lunalux.io/computational-complexity-of-neural-networks

[62] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical
Foundations. New York, NY, USA: Cambridge Univ. Press, 2002.

[63] S. Chaudhuri, R. Kaushik, and R. Ramamurthy, ‘‘When can we trust
progress estimators for SQL queries?’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, Jun. 2005, pp. 575–586.

[64] M. Mahsereci, L. Balles, C. Lassner, and P. Hennig, ‘‘Early stopping
without a validation set,’’ 2017, arXiv:1703.09580.

[65] D. Duvenaud, D. Maclaurin, and R. P. Adams, ‘‘Early stopping as
nonparametric variational inference,’’ in Proc. Artif. Intell. Statist.
(AISTATS), 2016, pp. 1070–1077.

[66] L. Prechelt, ‘‘Early stopping-but when?’’ in Neural Networks: Tricks of the
Trade. Berlin, Heidelberg, Germany: Springer, 1996, pp. 55–69.

QIFEI DONG received the B.S. degree in
electrical engineering from Zhejiang University,
Hangzhou, Zhejiang, China, in 2016, and the M.S.
degree in electrical and computer engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2018. He is currently pursuing the Ph.D.
degree in biomedical informatics and medical
education with the University of Washington,
Seattle, WA, USA.

Since 2018, he has been a Research Assistant
with the Clinical Learning, Evidence and Research Center forMusculoskele-
tal Disorders, University of Washington. His research interests include
machine learning, computer vision, natural language processing, and clinical
informatics.

GANG LUO received the B.S. degree in com-
puter science from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 1998, and the Ph.D.
degree in computer science from the Univer-
sity of Wisconsin–Madison, Madison, WI, USA,
in 2004.

From 2004 to 2012, he was a Research Staff
Memberwith the IBMThomas J.WatsonResearch
Center, Hawthorne, NY, USA. From 2012 to 2016,
he was an Assistant Professor with the Department

of Biomedical Informatics, The University of Utah, Salt Lake City, UT, USA.
He is currently a Professor with the Department of Biomedical Informatics
and Medical Education, University of Washington, Seattle, WA, USA. He is
the author of more than 90 articles. His research interests include machine
learning, information retrieval, database systems, and health informatics.

18684 VOLUME 12, 2024


