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ABSTRACT Preprocessing electroencephalographic (EEG) signals during computer-mediated Cognitive
Load tasks is crucial inHuman-Computer Interaction (HCI). This process significantly influences subsequent
EEG analysis and the efficacy of Artificial Intelligence (AI) models employed in Cognitive Load
Assessment. Consequently, it stands as an indispensable procedure for developing dependable systems
capable of adapting to users’ cognitive capacities and constraints. We systematically analyzed fifty-seven
(57) research papers on computer-mediated Cognitive Load EEG experiments published between 2018 and
2023. The preprocessing methods identified were multiple, controversial, and strongly dependent on the
particularities of each experiment and the derived experimental dataset. Our investigation involved the
meticulous classification of preprocessing methods based on distinct parameters, namely the degree of user
intervention, the noise level, and the subject pool size. Particular attention was paid to semi-automated
denoising technology since conventional methods, advanced approaches, and standardized pipelines
overwhelm research, but no optimum solution is available yet. This survey is anticipated to provide a valuable
contribution to the rising demand for an efficient and fully automated preprocessing approach in EEG-based
computerized Cognitive Load experiments.

INDEX TERMS Cognitive load, denoising, electroencephalography, preprocessing, real-time human
cognitive modelling, user studies, working memory.

I. INTRODUCTION
Preprocessing is a vital step in analyzing EEG signals,
enhancing the quality and reliability of the experimental
data before further analysis and interpretation. It involves a
series of carefully designed procedures to prepare raw data
for further processing and remove noise, artifacts, and other
elements that may obscure the underlying neural activity of
interest. By preparing the signal in this manner, researchers
can improve the accuracy of subsequent feature extraction
techniques and the overall performance of the AImodels used
in Cognitive Load Assessment.

Consequently, preprocessing involves data organization
and denoising, that is, cleaning data from noise without
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distorting the actual signal triggered by neuronal activ-
ity [1]. Preprocessing is a flexible process combining
several techniques with advantages and disadvantages. Many
standardized semi-automated and fully automated pipelines
have been suggested in the literature [2], [3], [4], [5], [6],
[7], [8], [9], [10]; however, there is no consensus on the
optimal approach, method, or protocol. In light of the strong
dependency of preprocessing on the nature of the problem and
its variations across different research areas, we undertake a
comprehensive analysis of Cognitive Load assessment within
the HCI field.

Similarly, the definition of artifacts and noise also depends
on the nature of the problem [11]. In general, artifacts are
non-neuronal factors that degrade the quality of EEG signals,
obscure analysis, and bias interpretations. In particular, they
can eliminate the classification accuracy, distort BCI devices,
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and make the diagnosis of brain disorders difficult [12]. They
can be classified into internal and external artifacts [13].
Internal artifacts originate from unwanted physiological

signals. In this study, ocular and myogenic artifacts prevailed.
Ocular artifacts, such as eye blinks, eye saccades, and
eye movements, are captured mostly by frontal electrodes.
Muscle artifacts originate from any type of body muscle.
Head and body movements such as clenching, chewing,
swallowing, talking [12], scratches on the head, sneezes [14],
and cardiac pulse (1,2 Hz) comprise muscle movements.
Myogenic artifacts contaminate Cognitive Load experiments,
and their removal is challenging [15]. Other internal artifacts
include respiration and sweating.
External artifacts are triggered by environmental factors.

They incorporate electromagnetic interference such as line
noise 50/60 Hz, radio frequency from nearby devices [12],
[16], equipment malfunction artifacts such as improper con-
tact of the EEG leads, positional drift of the leads with time,
slow drifts at the skin/electrolyte/electrode interface [17],
impedance variations [18], and high-impedance electrodes
that result in strong fluctuations and bad channels [19].
To describe the level of mental effort while process-

ing information, the terms ‘‘Cognitive Load’’, ‘‘Mental
Workload’’, and ‘‘Cognitive Workload’’ are often used
interchangeably. They are all interrelated but are placed
in different contexts and stem from different theories.
‘‘Cognitive Load’’ stems from the Cognitive Load Theory
(CLT), a learning theory whose objective is to elucidate
how the load of learning tasks can impact students’
capacity to comprehend new information and effectively
construct knowledge. When processing new information,
students handle it differently from information already stored.
Intrinsic and extraneous are the two basic types of Cognitive
Load. Intrinsic cognitive load is the essential load required
for learning and cannot be altered. Conversely, extraneous
cognitive load is unproductive for learning and can be
modified, for instance,by environmental distractions [20].

The terms ‘‘Mental workload’’ and ‘‘Cognitive workload’’
are employed by the Multiple Resource Theory (MRT),
which centers around workplace performance and engage-
ment in multitasking activities within a working environment.
This theory presents a cube model that illustrates the mental
resources needed, their intersections, and their distribu-
tion across different stages, codes, modalities, and visual
channels [21].
EEG preprocessing approaches have been discussed across

various contexts exploring the functioning of the brain, such
as neuroscience and cognitive science [22], [23], [24], [25],
[26], [27]. The performance of a range of preprocessing
methods has been evaluated in bench-marking studies [10],
[28], [29], [30]. Some reviews have been particularly focused
on removing movement [31], muscle [15], or physiological
(ocular, muscle, cardiac) artifacts [12]. Moreover, noise
decontamination research in the Brain-Computer Interface
(BCI) domain is broad [32]. Comprehensive reviews on the
entire EEG signal analysis, specifically on the assessment of

Cognitive Load [33], described in detail the preprocessing
stage [34], [35]. However, to the best of our knowledge,
none of the documented works is specified in reviewing
the EEG preprocessing approaches in the context of the
cognitive effort required by a user to accomplish a specific
computerized task.

This paper begins by presenting the background theory
concerning EEG signal preprocessing methods. A two-tier
categorization of signal preprocessing methods for Cognitive
Load assessment is adopted, specifically a) semi-automated
preprocessing and b) fully-automated preprocessing. Given
the significance of the semi-automated preprocessing,
we comprehensively examined it across three dimensions:
a) basic preprocessing methods, b) advanced denoising
methods encompassing the time-frequency domain, spatial
domain, Blind Source Separation algorithms, deep learning
algorithms, and hybrid denoising techniques, and c) stan-
dardized preprocessing approaches. Next, we discuss the
motivation for conducting this survey and outline research
questions. A thorough analysis of the findings for each
research question is then introduced. The paper concludes
with a comprehensive discussion of the main findings, future
directions, and limitations.

II. THEORETICAL BACKGROUND
A. SEMI-AUTOMATED PREPROCESSING
The semi-automated preprocessing protocol is shaped by
the researcher’s input. The researcher possesses a significant
degree of autonomy to visually inspect the recorded EEG
signals and define the necessary steps and parameters
for their unique preprocessing pipeline. Semi-automated
preprocessing extends from a fundamental cleaning and
organization of raw EEG data to sophisticated denoising
solutions that operate beyond basic cleaning and remove
complex patterns. Filtering, segmentation, manual noise
rejection, and averaging are some of the methods employed
to perform basic preprocessing. More advanced approaches,
such as Blind Source Separation (BSS), Empirical Mode
Decomposition (EMD), Deep learning, and hybrid solutions,
have enriched the quiver of denoising options, resulting in
a higher signal-to-noise ratio. Yet, standardized solutions
greatly contribute to the overall semi-automated preprocess-
ing of the EEG signal. In essence, the researcher’s individual
choices determine the signal quality and affect interpre-
tations in subsequent analysis. Although semi-automated
preprocessing is subjective, time-intensive, and requires
experience and experimentation, it has played a prominent
role in Cognitive Load research. Next, we provide a
concise overview of commonly employed semi-automated
preprocessing techniques.

1) SEMI-AUTOMATED BASIC PREPROCESSING
Several conventional methods exist that organize the raw
EEG data, such as resampling, re-referencing, and seg-
mentation. Researchers use resampling to either increase
(upsampling) or decrease (downsampling) the number of data
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points in EEG data. This is done to facilitate frequency recon-
struction for further analysis or to reduce computer resource
demands related to storage and processing speed [36].Re-
referencing is employed to improve the interpretation of
recorded EEG signals. After data acquisition, the reference
site can be altered to give the researcher a different option.
Any other channel or scheme can be selected for re-reference.
The new reference signal is calculated and subsequently
subtracted from each channel [17]. The most popular
re-referencing approach is the Common Average Reference
(CAR), which is the average of all the channels. According
to an experiment cited by Lahane et al., CAR is the optimal
reference and achieves a high classification accuracy [1].
Moreover, a study assessing functional Brain-Heart Interplay
(BHI) compared CAR with mastoid average, Laplacian
reference, Cz reference, and the Reference Electrode Stan-
dardization Technique (REST) and concluded that CAR was
more consistent. It is independent of specific scalp regions
and experimental alterations [37]. Furthermore, it is reliable
for identifying artifacts that equally influence all channels,
such as line noise [3]. In addition to its dependence on the
number and position of the active electrodes, CARmay affect
the spectral analysis. Nevertheless, it is proposed as the most
appropriate choice among the existing methods [37].Segmen-
tation divides the original EEG data into segments. These
segmented portions, referred to as epochs, have different
durations and alignments on specific events, depending on
the experimental design. They may overlap and encompass
events within their time frame, such as stimulus presentations
or participants’ responses. They can be created by combining
channels from various brain regions [38]. Segmentation is
commonly used as it makes the signal more amenable to
analysis.

In addition to organizing EEG data, traditional denoising
approaches are employed to clean the EEG data. These
approaches include manual denoising, filtering, baseline
correction, detrending, interpolation, regression, and aver-
aging. Manual denoising is cumbersome and subjective,
and it may lead to the loss of valuable data segments
and reduction of the statistical power of the data [39].
However, it contributes significantly to preprocessing [40,
Chapter 7]. Researchers visually examine signal waveforms,
spectrograms, and topographic maps to identify artifacts.
Eye blinks and saccades induce large and transient artifacts
with high amplitude in the signal. EEG activity in the
gamma band (30-100Hz) can cause similar effects, leading to
misinterpretations [19]. Ocular artifacts, such as eye blinks,
eye saccades, and eye movements, are primarily captured
by frontal electrodes. Cardiac activity results in small and
constant artifacts [33]. Muscle artifacts affect EEG signals
differently depending on the muscle, its contraction level,
and the participant’s sex. They exhibit a wide frequency
spectrum [28]. The firing of muscle fibers may induce
frequencies from 7 to 20Hz [19], striated muscles can
extend from 20Hz to 300Hz, and the temporal, masseter, and

frontalis muscles may range from [40-80Hz], [50-60Hz], [30-
40Hz] respectively [15] (for a very informative presentation,
see [41]). For noisy epochs, the thresholds are determined
based on the amplitude, time, or standard deviation from the
mean. Other types of thresholds are used to determine bad
channels or noisy participants’ data.
Filtering has been thoroughly examined for denois-

ing [29]. Using the percentage of significant channels as a
data quality metric, filtering is evaluated as the most impor-
tant preprocessing step [10]. This can improve the Signal-to-
Noise ratio and facilitate analysis [42]. Filtering is necessary
for Event-Related Potentials (ERPs). Disregarding filtering
may decrease the statistical power [40, Chapter 4]. Various
filtering approaches have been proposed in the literature.
Common approaches, such as the Median filter, Savinsky-
Golay Filter, and adaptive filtering, have been frequently
applied to smooth noisy EEG signals. A Median Filter is a
non-linear filter that is effective for denoising. It is easy to
implement and has low area and power requirements [43].
The Savinsky-Golay Filter uses convolution to smooth the
signal by determining the window size and polynomial-order
parameters [44]. Moreover, Wiener filters eliminate the mean
square error between the desired signal and its estimate [22].
It requires calibration, and it is not adequate for online
applications [22]. Yet, no reference signal is required [24].
Contrariwise, adaptive filtering uses a reference signal and
subtracts it from the raw EEG signal. The least mean square
(LMS) method and recursive least square (RMS) method
are popular adaptive filtering algorithms. [24]. However,
it performs worse than the Wiener filter. In addition, multi-
step filtering is an interesting approach. It includes nine
band-pass filters followed by spatial filtering. Recently,
a motor imagery experiment used a refined two-step filtering
method based on gradient-weighted class activation mapping
(Grad-CAM). In the first step, raw EEG data were fed
into a Convolutional Neural Network (CNN). The resulting
Grad-CAM data were used to determine filtered frequencies.
In the second stage, the filtered data were fed into the
CNN. More stable training data were extracted, and the
classification performance was high. Moreover, it was proved
robust among different subjects. This promising denoising
approach was proposed for denoising EEG signals across
contexts because the filtering range is determined by the
performance of the network [45]. In general, filtering strongly
impacts the signal and requires further consideration. It may
distort the signal [42] and cause misinterpretations [40].
EEG data vary across participants [10] and experiments
requiring different filtering implementations. Filter design
and customization are time-consuming and require expertise.
An effective denoising filter requires the specification of
various parameters, such as the domain of the filter response,
type of impulse response (FIR/IIR), type of frequency
response, transition bandwidth, roll-off, filter order, and
cut-off frequency [42]. An optimal and automated filtering
procedure across studies remains an ongoing debate [29].

23468 VOLUME 12, 2024



K. Kyriaki et al.: Comprehensive Survey of EEG Preprocessing Methods for Cognitive Load Assessment

Baseline correction often focuses on correcting DC offset.
Usually, a time interval, often before stimulus presentation,
is specified as a baseline and used to correct the waveform
upward or downwards [46], [40, Chapter 2.7]. The effective-
ness of baseline correction in data quality is disputed. It may
not result in a higher data quality and may be substituted by
a high-pass filter [10]. Another simple denoising technique
is Detrending, where a smoothing function is fitted and
subtracted from the signal. By determining the function
parameters, researchers can select the type of trends they
want to reject [17]. The rejection of contaminated data
portions may lead to discontinuities and loss of essential
information [11]. A solution is Interpolation, which recreates
a rejected portion of the data from the remaining healthy data
[40, Chapter 7.5]. A threshold is necessary to differentiate
the data segments for either rejection or interpolation.
The interpolation of channels with a threshold of four
standard deviations more line noise than the average line
noise of all channels improved the overall quality of the
EEG signal [10]. Another classical denoising technique is
Regression. It involves the calculation of artifact propagation
coefficients, which are subsequently subtracted from the
raw signal to mitigate their impact. Regression algorithms
are simple but require one or more reference channels
and suffer from bidirectional contamination. One limitation
is that it is effective for denoising the EEG signal only
from ocular artifacts [12], [23], [47]. Averaging is another
commonly employed denoising technique. It diminishes
random fluctuations caused by noise and enhances the signal-
to-noise ratio when noise overlaps with the signal of interest.
Several studies have integrated it into their preprocessing
pipelines, primarily to extract features such as ERPs by
recording repeated trials of the same task and then averaging
the extracted epochs. It does not depend on thresholding like
signal decomposition methods. However, time misalignment
and individual differences resulting in different epochs can
minimize the accuracy of the averaging method [48], [49].

2) SEMI-AUTOMATED ADVANCED DENOISING TECHNIQUES
a: TIME-FREQUENCY DOMAIN
Wavelet Transform (WT) is an advanced denoising method
that decomposes the EEG signal into wavelet coefficients
in the time-frequency domain by shifting and dilating the
mother wavelet function. The artifactual signal is rejected
using a threshold, and the clean signal is reconstructed.
The user must specify the mother wavelet function, the
threshold algorithm, and the level of decomposition [26].
For a cognitive task, the Discrete Meyer (dmey) function
proved its denoising efficiency among forty-six (46) mother
wavelet functions [50]. Regarding thresholding, there is no
consensus. Hard thresholding causes discontinuity, while
soft thresholding suffers from deviation issues. Hence, novel
approaches, such as grand-based adaptive algorithms and
functions related to the decomposition level, have been
introduced [51], [52]. Particularly for cognitive tasks, Rigsure

hard thresholding demonstrated optimal performance [50].
Various decomposition levels, between 1 and 9, have been
employed [53], [54], [55]. In EEG denoising, the Discrete
Wavelet Transform (DWT) has been frequently applied [24].
In this method, the signal is decomposed at different levels,
and the mother wavelet function is dilated by powers of
two [26].
Empirical Mode Decomposition (EMD) is a data-driven

denoising method. It decomposes the signal into intrinsic
mode functions (IMFs), applying a sifting process. The
extraction of an IMF is an iterative procedure where upper
and lower envelopes are constructed through interpolation
of minimum and maximum points. The mean of the
envelopes is subtracted from the input signal. When the
minimum and maximum points are equal or differ by one,
and the mean of the envelopes at all points is zero, the
iteration stops, and an IMF is extracted and subtracted
from the input signal. The algorithm ends when the signal
becomes a monotonic function [56]. EMD is flexible and
efficient and performs better than WT. The Cubic Spline
Interpolation and the Akima Spline Interpolation have been
performed highly for eye blink removal. However, EMD is
not recommended for signals that exhibit abrupt changes
or sudden shifts [26]. In addition, it is not recommended
for real-time scenarios, especially for large datasets, due to
the computer demands during interpolating data points and
constructing the envelopes [56].

b: SPACIAL DOMAIN
Signal Space Projection (SSP) decomposes signal into sepa-
rate spacial components. The amplitude of these components
may change in the time domain, but their spatial characteris-
tics remain constant. The method is based on the hypothesis
that the subspace of the true EEG signal differs from the noisy
subspace. PCA has been widely used to calculate the noisy
subspace. SSP causes spacial distortions that may obstruct
further analysis. Source Informed Reconstruction (SIR) has
been effectively used to minimize such distortions [12], [57].
Beamforming is a robust, spatial filtering denoising tech-

nique offered by various EEG analysis software toolboxes.
Beamforming algorithms calculate the contribution of a
specific location to the space where measurements are done
by strengthening the signal of this specific location and
weakening the signal of the remaining areas. A vector
beamformer calculates output along the three directions,x,
y, and z, whereas a scalar beamformer calculates output
only for the orientation identified by the forward field. For
EEG data, the Common Average Reference is recommended.
The beamforming technique is a data-driven method that
does not require a priori specification of the location or
configuration of artifacts. It performs highly when artifacts
have different spatial characteristics from the signal of
interest. In addition, it is efficient in denoising signal
from external artifacts. Yet, beamforming is ineffective
for correlated sources, and choosing the most appropriate
algorithm remains elusive [12], [58], [59].
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c: BLIND SOURCE SEPARATION (BSS)
A substantial section in the field of denoising is Blind
Source Separation (BSS) algorithms. They can denoise
signals without prior knowledge of the source and traits
of each artifact [60] but require data from many channels.
Yet, some single-channel versions, such as single-channel
ICA, have been explored [61]. The dominant BSS algo-
rithms are Independent Component Analysis (ICA), Principal
Component Analysis (PCA), Canonical Correlation Analysis
(CCA), Morphological Component Analysis (MCA) [12],
[24], [47], Artifact Subspace Reconstruction (ASR) [11], and
Spatio-Spectral Decomposition (SSD). The optimal choice is
defined by the type of captured data [15].
ICA decomposes EEG signal into temporally independent

sources (Independent Components - ICs). Noisy ICs are
manually or automatically detected and rejected or corrected.
ICA performs well, and it has been widely adopted across
contexts. However, it requires a large amount of data and may
result in valuable data loss owing to the removal of whole
artifactual ICs [26]. Moreover, the manual detection and
removal of ICs is time-consuming, subjective, and requires
expert knowledge [11]. Even when automated algorithms
are employed for the detection and rejection/correction
of ICs, ICA has certain limitations. If there are more
time-independent sources than the active electrodes, signal
decomposition into ICs is not applicable [39]. In addition,
they may have under- or over-clean artifacts [62]. Manual
detection and rejection or correction of noisy ICs is
cumbersome. To address this, a range of algorithms have been
developed for automatic detection (e.g., Infomax-Runica,
FastICA, SOBI, and AMICA) and rejection or correction
of ICs (e.g., ICLabel, Multiple Artifact Rejection Algorithm
(MARA)) [12]. Runica, namely the automated versions of
Infomax, FastICA, SOBI, AMUSE, and JADE, have similar
denoising performances for myogenic artifacts [15]. Overall,
AMICA is the most effective compared to Infomax (runica),
FastICA, and SOBI [10]. MARA is an automated and
efficient classifier that utilizes a binary linear classifier to
determine whether an IC is an artifact or a neuronal signal,
thereby enabling researchers to retain or reject it. MARA
has demonstrated a strong performance online and in various
experimental contexts. It handles effectively different types
of artifacts [63], particularly myogenic artifacts [3].
PCA decomposes the EEG signal into uncorrelated com-

ponents called Principal Components (PCs). A set of PCs
indicates artifacts, except for the case of similar amplitudes
in the same band between artifacts and signals. PCA is rarely
used for denoising [23], [39]. CCA calculates the correlation
between the true EEG signal and its time-delayed version.
These components are derived from uncorrelated sources.
It is less computationally demanding than ICA because it
uses second-order statistics [64]. In addition, it performs well
for muscle artifacts due to its low auto-correlation charac-
teristics [61].MCA extracts linearly combined morphological
components with different waveforms into dictionaries and
calculates the sparsest component. It may perform better

than the Wavelet transform, but it is recommended for
datasets with a variety of artifact morphology [12]. ASR
[65] can be performed offline or online. Initially, clean
epochs are defined as a reference. Then, it decomposes
the signal into PCs according to that reference. It aims
to minimize transient artifacts with a large amplitude. The
burst cut-off parameter is specified. A small value leads to
highly aggressive artifact removal, whereas a larger value
results in less aggressive artifact removal [29]. It is powerful,
with optimal cut-off parameters in the range of [20,30], and
removes more internal artifacts than neuronal activity [66].
Moreover, it requires less computational resources, is faster
than ICA, and is preferred for online denoising [11]. Finally,
SSD generates components by increasing the power at the
frequency of interest and minimizing the power and noise
at the neighboring frequencies. The SSD performs better
than the ICA-driven SOBI algorithm, requiring only a few
milliseconds to run. It is applicable even for 1:10 SNR [67].

d: DEEP LEARNING
Finally, the innovative application of deep learning on denois-
ing is promising. Deep Learning, computationally, imitates
the behavior of the brain to learn from a large amount of data.
It has gained a lot of attention in a variety of contexts, such
as image and language processing, motor imagery methods,
EEG reconstruction, and creation [68], automatic detection
of alcoholism [69], and epileptic seizures [70], because it
seems to outperform state-of-the-art methods [71]. Recently,
it has been effectively employed for denoising [72]. It is less
time-consuming and can handle much data [73]. Moreover,
it is flexible once trained and can cope with non-linear and
non-stationary artifacts [68]. A major limitation is the large
amount of data required for training [28].
Convolutional Neural Networks (CNNs), a subset of deep

learning models, are promising in the field of denois-
ing [74]. A CNN is a feed-forward network. It incorporates
convolutional layers that perform convolutions to identify
patterns, pooling layers for faster parameterization, and
fully-connected layers with full connections to the previ-
ous layer for high-level reasoning [71]. Given the high
performance of CNN architectures for image data, using
images extracted by sequential raw EEG data as an input
to a CNN constitutes a trend in EEG preprocessing [34],
[75]. These images are called topo-maps and preserve the
spatial and spectral traits of the signal, namely, the electrode
location and adequate frequency information [76]. A CNN
can effectively learn the most important features from a
particular task: it is fast, accurate, and effectively investigates
the spatiotemporal characteristics of the EEG signal [74],
[77]. However, without a robust and generalized framework
and appropriate performance metrics, CNN’s performance
depends on parameters defined by the user [77]. Moreover,
the CNN approach suffers from over-fitting [28].

Different CNN denoising approaches have been evaluated
and compared. A deep one-dimensional residual convolu-
tional neural network (1D-ResCNN), which has been applied
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to raw EEG signals, outperformed ICA, Fast Independent
Component Analysis (FICA), Recursive least squares(RLS)
filter, Wavelet Transform (WT), and Deep neural network
(DNN) denoising methods and maintained the non-linear
attributes of the signal [74]. CNN denoising approaches have
been suggested for the removal of ocular [28], [78] and myo-
genic artifacts [72]. MultiResUNet3+, a one-dimensional
convolutional neural network (1D-CNN), proved superior to
other CNN approaches, even for high-noise levels [68].
Recurrent Neural Networks (RNN) have also been applied

to denoising. They incorporate layers for pattern recognition.
These layers are recursive, meaning that their output influ-
ences their input in the following steps. An efficient type
of recurrent layer is the Long Short-term Memory (LSTM)
layer [79], [80]. RNN performs well for ocular artifacts but
not for myogenic artifacts [28].

e: HYBRID DENOISING TECHNIQUES
Researchers have developed hybrid denoising approaches
that blend two or more individual methods to achieve more
effective denoising outcomes. By doing so, they harness
the strengths of each while mitigating their respective
limitations [26]. The subsequent text outlines some of the
most widely adopted hybrid methods.

WT is often coupled with a BSS technique or vice
versa [26]. Usually, researchers employ the WT as the
preprocessing agent, followed by applying a BSS method
for further denoising [26]. For instance, WT has been
coupled with ICA to remove large movement artifacts [37].
In Multiscale Principal Component Analysis (MSPCA),
which showed remarkable results in experiments with healthy
participants [81], [82], [83], the signal was decomposed
initially with WT, and the wavelet coefficients were further
decomposed using PCA. PCs were retained or rejected by
applying the Kaiser rule. The Invert Wavelet Transform
(IWT) was then employed to reconstruct the clean signal,
which was submitted once more to PCA [83]. In other
studies, the signal was first decomposed with a BSS method,
the resulting components were further decomposed using
Wavelet Transform, the noisy components were removed by
thresholding, and the clean signal was reconstructed [12].
BSS techniques are also mixed with EMD. Specifically,

EMD decomposes the signal into IMFs, while the artifactual
components are removed using a BSS algorithm, or vice
versa [12], [26]. This approach was adopted in a few-channel
settings with promising results. A Multivariate Empirical
Mode Decomposition (MEMD) was employed to decompose
the signal into multivariate IMFs, which were further
decomposed with CCA [61].
Blending adaptive filtering with BSS, WT, or EMD

has also been suggested. In general, the signal is initially
decomposed with WT, BSS, or EMD, and the noisy com-
ponents are further processed and removed using adaptive
filtering [12]. Moreover, a two-step BSS for EEG denoising
has been documented. For instance, PCA was initially used

to eliminate the dimension problem and assist in further
denoising using ICA [26]. Finally, ICA mixed with a CNN
or a Support Vector Machine (SVM) is a promising hybrid
denoising technique [11], [24].

3) STANDARDIZED SEMI-AUTOMATED PREPROCESSING
PIPELINES
A plethora of standardized semi-automated preprocessing
pipelines are available. EEGLab’s preprocessing chain stands
out as a widely recognized solution, exhibiting superior
performance in comparison to Fieldtrip, Brainstorm, MNE,
and Harvard Automated Processing Pipeline for Electroen-
cephalography (HAPPE) [10].

Makoto’s preprocessing pipeline [6] is a constantly
updated approach. It generally suggests the following steps:
downsampling, high-pass filtering, rejection of bad channels
and interpolation, rereferencing to the CAR, cleanline
for line noise removal, epoch extraction, epoch rejection,
ICA, and bilateral dipole estimation. Inspired by Makoto’s
preprocessing pipeline, two pipelines are Danielle Gruber’s
pipeline with ASR and one without ASR [7].
Fieldtrip [84] recommends the following preprocessing

routine: trial definition, high-pass filter, low-pass filter, notch
filter, bad trials, and channel rejection.

Another chain, Brainstorm, suggests the following steps:
manual/ automatic detection/ rejection of bad trials and
channels, definition of events, baseline correction, frequency
filtering, resampling, averaging, and estimation of noise
statistics [9].

Furthermore, the MNE preprocessing routine includes
assessing data quality, identifying problematic channels,
applying low- and high-pass filters, extracting data segments
(epochs), employing ICA to correct artifacts, utilizing SSP
for artifact correction, generating artifact-free epochs from
ICA and SSP, and eliminating epochs based on peak-to-peak
(PTP) amplitudes [8].

Autoreject is another semi-automated solution. It auto-
matically detects noisy segments that the researcher decides
to accept or discard. It provides complete transparency in
the definition of parameters, and it has been suggested for
heterogeneous EEG setups [64].

B. FULLY AUTOMATED PREPROCESSING
A growing number of standardized, fully automated prepro-
cessing pipelines require zero user interaction. They were
developed to alleviate the cumbersome task of selecting and
combining various denoising methods and specifying their
parameters [64]. The preprocessing algorithms’ type, order,
and parameters are adjusted automatically. The following
automated preprocessing chains have been reported in the
literature for healthy young adults.

Automatic Artifact removal(AAR) is a fully automated
toolbox for artifact removal offered by EEGLab [85].
The EPOS is a holistic pipeline based on ICLabel.
It is inspired by Delorme and Makeig, but it is fully
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automated with machine-learning artifact detection [86].
Another ICLabel-based chain is the Reduction of Electroen-
cephalographic Artifacts (RELAX). The alpha frequency
band oscillations related to working memory have high
performance [62]. The PREP pipeline proposes regression for
line noise removal and re-reference of the signal to estimate
the actual average reference, detection, and interpolation
of bad channels [2]. It is based on robust statistics but
leaves contaminated channels that require manual inspection
afterward [5]. A novel pipeline based on PREP principles
is Automagic [87]. HAPPE is a highly cited solution that
can handle short recording lengths and data contaminated
with significant noise. Initially, it offers a semi-automated
setting to the user, but the final setting is fully automated.
HAPPE achieves high performance but is not recommended
for ERP preprocessing [3]. Over- or under-rejection of
data [62] and poor performance owing to automatic re-
referencing [10] were reported. For ERPs from large
datasets, the Automatic preprocessing pipeline (APP) has
been suggested [5]. Other automated preprocessing chains for
healthy adults include Computational Testing for Automated
Preprocessing (CTAP), Batch Electroencephalography Auto-
mated Processing Platform [86], and TAPEEG for the resting
state [5].
Fully automated preprocessing protocols appear to outper-

form many semi-automated methods. Specifically, HAPPE
was compared to four semi-automated preprocessing meth-
ods: ICA, manual segment rejection with ICA, ASR with
ICA, and Semiautomatic Selection of ICA (SASICA). The
HAPPE rejected 42% of the components and retained 67.8%
of the data variance after rejection. Moreover, the retained
components’ mean and median artifact probability were
0.13 and 0.1, respectively. The ICA rejected far more
components (86.3%) and retained significantly less data
variance (24.8 %). Regarding data quality, ICA had almost
double themean (0.23) andmedian artifact probability (0.15).
Manual Segment Rejection with ICA rejected significantly
more data segments (73.6%) and retained less data variance
(35.6%) than HAPPE did. The mean (0.26) and median
artifact probability (0.27) doubled those of the HAPPE. The
ASR with ICA rejected significantly more data segments
(76.25%) and retained less data variance (43.9%). The
mean (0.24) and median artifact probability (0.23) were
once more double compared to HAPPE. On the contrary,
SASICA did not differ significantly from HAPPE regarding
the rejection of data segments(29.5%) and the maintenance
of data variance (80.4%). However, Mean (0.33) and median
artifact probability (0.27) were almost triple compared to
HAPPE. Overall, ICA, manual segmentation with ICA, and
ASR with ICA rejected more EEG data and maintained
higher artifact levels, resulting in poor performance compared
with HAPPE. HAPPE outperformed SASICA because it
retained more EEG data but with higher levels of artifacts [3].
The fully-automated APP solution was compared to a

semi-automated preprocessing approach consisting of DC
correction, band-pass filtering [1, 40Hz], a 50 Hz Notch

filter, visual detection of bad epochs and bad channels,
interpolation of bad channels with 3D splines, and CAR.
For ERP data captured from healthy and schizophrenia
patients, the semi-automated pipeline rejected more trials
(5.16±1.53%) than the APP ( 3.62±2 % ). In addition,
it interpolated a similar number of channels (1.00±1%) as
APP (1.05±0.66%). For resting data, the semi-automated
pipeline rejected fewer trials (4.99±2.73% ) than APP
(8.32±2.24%) and interpolated a similar number of channels
(1.15±2.51%) as APP (1.2±1.87%). In general, it is claimed
that the two preprocessing solutions perform similarly [5].

III. MOTIVATION AND METHODOLOGY
A. RESEARCH MOTIVATION AND CONTRIBUTION
Due to the significant advancements and reduced costs of
EEG devices, there has been widespread interest in monitor-
ing human cognitive states, particularly the Cognitive Load.
However, challenges persist in preprocessing EEG signals
from cognitive load experiments, with existing literature
offering diverse suggestions lacking a consensus [65].
The widely used customized semi-automated prepro-

cessing protocols are based on experience, can be time-
consuming, and reduce statistical power. Recently, there
has been a surge in interest in automated protocols [29].
Although they are known for their reliability, they are not
tailored for Cognitive Load EEG Experiments. Only the
RELAX method has shown high performance concerning
WorkingMemory [62], a broader research area encompassing
Cognitive Load.

Achieving high accuracy in determining cognitive load
requires incorporating into the preprocessing protocols the
interaction modalities specific to the experiment medium,
such as Virtual Reality (VR), Extended Reality (XR),
Augmented Reality (AR), or a standard computer interface.
The different noise artifacts that are generated need to be
handled accordingly.

Our objective is to identify relevant preprocessing
attributes and provide recommendations to enable researchers
to make more informed decisions when selecting a pre-
processing approach, contributing to the standardization of
preprocessing methods in the evaluation of Cognitive Load
in EEG experiments.

B. RESEARCH QUESTIONS
We formulated the following research questions:

1) RESEARCH QUESTION (A)
Preprocessing varies significantly based on the specific task
and research questions. How can a diverse array of Cognitive
Load tasks be consolidated to offer valuable and applicable
guidelines to researchers? Moreover, in what context does
each task category find relevance and usefulness? Does
a universally accepted semi-automated denoising approach
exist when classifying tasks of low-noise and high-noise? Is
there a widely agreed-upon automated method for denoising
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when tasks are differentiated into low- and high-noise
categories?

2) RESEARCH QUESTION (B)
How do researchers decide whether a fully automated or
semi-automated preprocessing approach should be utilized?
Which data organization approaches are usually employed
from resampling, referencing, and segmentation? When
do researchers prefer basic denoising, combining manual
detection and rejection of noisy data, filtering, baseline
correction, or averaging? How do they manually detect
and reject artifactual data? When do they apply filtering,
in which range and type of impulse response? When are
more sophisticated algorithms, such as BSS and Deep
Learning, employed for preprocessing EEG signals? Do
they exist independently, or are they amalgamated, creating
hybrid approaches? Which BSS algorithm is suggested for
different types of artifacts? What are the types of deep
learning that have particular interest? How do researchers
parameterize deep learning algorithms to achieve the best
results? Which customized semi-automated preprocessing
pipeline is documented? Are standardized semi-automated
preprocessing pipelines applied in Cognitive Load EEG
experiments?

3) RESEARCH QUESTION (C)
To evaluate the effectiveness of the preprocessing methods,
researchers tested their approaches on datasets with many
subjects [88]. In the Cognitive Load domain, which are
the semi-automated and automated denoising methods that
have been proven effective in many subjects? Which are the
semi-automated and automated denoising methods that have
been proven effective in many subjects?

C. RESEARCH METHODOLOGY
We conducted a systematic search in the ACM and IEEE
databases using specific keywords, namely [‘‘EEG’’ and
‘‘Cognitive load’’], spanning from January 2018 toNovember
2023. We restricted our focus to this six-year window
to capture the most significant research developments and
advancements in EEG signal processing.

In particular, we applied the PRISMA method [89]. Our
search began in the ACM Digital Library, initially yielding
503 records within the specified time frame. We then
removed articles based on their title and abstract and
screened 140 records. Among these 117 records were deemed
ineligible for our survey. Ineligible were the studies if they
did not involve EEG experiments if the cognitive load was
measured using alternative techniques (e.g., eye-tracking),
if they explored different cognitive processes (e.g., attention),
if the participants did not fit the category of healthy young
adults, or if the primary task was not relevant to the field of
Human-Computer Interaction (HCI). This left us with a final
selection of 14 full-length articles. Additionally, we searched
IEEEXplore. This search retrieved 87 papers. After removing

duplicates and applying exclusion criteria,43 papers were
identified as eligible for inclusion. In this comprehensive
survey, we compiled a total dataset of 57 papers covering
January 2018 to November 2023.

IV. ANALYSIS OF RESULTS
A. RQ (A): CLASSIFICATION OF COGNITIVE LOAD
EXPERIMENTS BASED ON THE LEVEL OF NOISE
GENERATED FROM VARIOUS INPUT MODALITIES
The Cognitive Load research landscape is filled with a
plethora of tasks, ranging from single- or dual-standardized
tasks to workload and learning tasks, games, and presentation
tasks. Each task requires a distinct preprocessing approach,
which adds to the workload of researchers. We believe
categorizing those tasks based on the potential level of noise
they introduce is a valuable endeavor.

Single tasks, executed on a computer by just pressing
a mouse, were classified under the low-noise category.
Computerized tasks from cognitive psychology [90], [91],
[92], [93], such as N-back tasks [94], [95], [96], [97] and
Sternberg tasks [76], [98], [99], [100], [101], [102] were
considered low-noise. Computer games [85], [103], [104]
were included in the low-noise category. Data presentation
tasks, visual [105], [106], [107], [108] or auditory [109],
[110], [111], and multiple learning tasks [13], [18], [112],
[113], including code comprehension tasks [114], [115],
[116] and mathematical tasks [117], [118], [119], [120],
were categorized as low-noise ones. Additionally, dual tasks
with low noise were a Tetris game coupled with an oddball
task [121], a Stroop task coupled with an oddball task [122],
a SIMKAP task [123], and a threefold task performed on a
computer and a customized AR system [14].

On the other hand, tasks that engaged more muscles
than those typically employed to click and move the
mouse were classified as high-noise. We further divide this
category into two subcategories: reduced-high-noise and
elevated-high-noise.

Tasks classified as reduced-high-noise require participants
to activate multiple muscles beyond those required for simple
mouse movements and clicking while standing or sitting. For
instance, participants may need to speak, turn their heads,
or continuouslymove their armswhile performing such tasks.
A learning task that involved creating concept maps and
lists was categorized as reduced-high-noise because of the
requirement of writing with a keyboard [124]. Similarly,
code writing is considered as a reduced-high-noise task [38].
A simultaneous Interpretation task from Japanese to English
was classified as reduced-high-noise because it requiredmore
muscle movements for speaking [125]. Sketching in Auto-
CAD using a mouse and keyboard or speech and gestures
introduced significant contamination to the EEG signal, and
theywere considered reduced-high-noise tasks [126]. Driving
on a simulator [127], [128], [129], [130], [131], was also
classified as a reduced-high-noise task. A Robotic-Assisted
Surgery (RAS) task likely induced reduced-high noise due
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FIGURE 1. Using the PRISMA method, we conducted a systematic literature review that resulted in
57 final articles from an original count of 590.

to the robotic console’s manipulations [132]. VR tasks
were also considered reduced-high-noise tasks, given the
accompanying head movements [133], [134], [135], [136],
[137].
Elevated-high-noise tasks were characterized by the par-

ticipants being in motion. An oddball task performed while
sitting, standing, or walking on a treadmill was considered
elevated-high-noise owing to motion. The treadmill and
microcontroller likely caused additional noise [138]. Another
task, playing a puzzle while walking, was also included in this
category [139].
Apart from three low-noise tasks that were preprocessed

automatically [18], [85], [140], the majority employed
semi-automated pipelines customized by the researcher.
Particularly, low-noise tasks were preprocessed with simple
denoising methods in the time domain (baseline correction,
downsampling, re-referencing of CAR, and averaging),
followed by a band-pass Finite Impulse Response (FIR)
filter between 0.1-1 Hz and 30-45 Hz. Next, among BSS
techniques, methods guided by ICA prevailed, and PCA was
used to discard ocular artifacts. Afterward, one-second, non-
overlapping epochs around the stimulus presentation were
extracted. Epoch rejection with the amplitude range as a
threshold was common, compared to rejection of channels
and all participants’ data.

Researchers have built their semi-automated pipelines
to preprocess signals from reduced-high-noise tasks. After
downsampling, FIR or IIR-Butterworth filters with cut-off
frequencies in the range of 0.5-1 Hz and 45-100 Hz were
documented. Next, ICA was exclusively adopted. Finally,
epoching and manual rejection of noisy epochs, such as large
amplitudes, missing signals, and streamswith a fixed constant
value completed the EEG signal preprocessing.

Given that only two elevated-high-noise tasks were
documented, no safe preprocessing suggestions can be made.
Yet, it could be stated that Infinite Impulse Response (IIR)
Butterworth band-pass filters, the BSS techniques ICA or
ASR, epoching, and manual epoch rejection were present in
both studies.

B. RQ (B): STATE OF THE ART PREPROCESSING FOR
COGNITIVE LOAD ASSESSMENT
Studies have overwhelmingly favored using semi-automated
protocols despite the remarkable diversity of the available
fully automated preprocessing pipelines. Notably, only two
automated solutions, AAR by EEGLab [85] and BESA soft-
ware [18], [140], were mentioned. However, it is important
to highlight that some highly effective and influential fully
automated solutions within the research community, such as
EPOS, RELAX, HAPPE, and PREP, are notably absent from
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TABLE 1. Semi-automated basic preprocessing of low noise (L), reduced-high noise (R), and elevated-high noise (E) tasks in descending order by the
number of subjects.

VOLUME 12, 2024 23475



K. Kyriaki et al.: Comprehensive Survey of EEG Preprocessing Methods for Cognitive Load Assessment

the literature. Consequently, we delved into the analysis of
semi-automated approaches.

1) HOW WAS STANDARD PREPROCESSING EXECUTED IN
SEMI-AUTOMATED APPROACHES BY RESEARCHERS?
Exclusive standard preprocessing was frequently docu-
mented [13], [85], [90], [95], [98], [108], [109], [113], [118],
[119], [120], [125], [129], [132], [134], [136]. Despite the
advances in denoising techniques, standardmethods still have
their place in most preprocessing pipelines.

Specifically, resampling was reported in thirteen studies
(Table 1). Downsampling at about 250 Hz has been
frequently documented [99], [100], [113], [128], [135], [139].
Song et al. downsampled data from 3 channels to 250 Hz and
data from 28 channels to 40 Hz [109]. Upsampling to 256 Hz
after a 250 Hz recording sampling frequency was employed
by Vargas et al. [95].
Re-reference to the average mastoids was not common

[93], [135] compared to Common Average Reference (CAR)
[96], [99], [100], [106], [107], [116], [120], [123], [128],
[139]. If the contact of a channel becomes poor at any
single point during recording, the re-reference may generate
further noise [23]. To deal with this problem, Namakura et al.
detected and removed bad channels before re-reference to
CAR [139].
Averaging event trials [96], [112], [119], [121], [122],

[138] or frequency bands [134] were performed to eliminate
noise and obtain grand average ERPs. Havugimana et al.
selected a shallow CNN architecture for predicting Cognitive
Load and denoising. The available data were not sufficient
enough to train and test the model. Therefore, eigenspace-
based bootstrap sampling was employed, and ERPs were
calculated by averaging a participant’s single-trial EEG
signals, resulting in 44000 topo-maps fed into a shallow CNN
architecture [76], [102].

Regarding baseline correction, a short time interval during
fixation [110], the mean amplitude, a short time window
before stimulus presentation [112], [121], or after stimulus
presentation [109] were used as a baseline to remove
the influence of data drifts [107]. Moreover, the average
amplitude of each channel [99], [100], [141] before stimulus
presentation [96] has also been suggested. Detrending was
observed in three studies [93], [104], [117]. A few papers
reported interpolation [38], [116], [139]. Symmetrical elec-
trodes within a 5 cm radius were reported as an interpolation
scheme for channel reconstruction [106].
Segmentation and the manual rejection of epochs,

channels, and whole participant data are summarized in
Tables 2 and 3.
Segmentation was widely used but differed significantly

across contexts. Mostly, segments were constructed around
the task [93] or the task level [97], [135]. Another segmen-
tation was based on brain region dissociation, [38] or on
the peak of eye blinks [128]. Epoching in particular was
documented as an early step in preprocessing [14], [107],

[109], [110], [117], [129], yet most studies applied it as a
later step after basic filtering [101], [122], [138] or after
filtering and BSS algorithms [93], [94], [95], [96], [99],
[100], [106], [112], [121], [125], [126], [127], [135], [139],
[141]. Overlapping was rare, with an overlapping percentage
of 80% [38] or 50% [105]. Regarding the epoch duration,
short epochs of 1-second were preferred for rapid changes
in EEG data [96], [105], [112], [121], [122], [124], [138]
with a time interval approximately 200ms before stimulus
presentation until 800ms after stimulus presentation [14],
[96], [109], [121], [122], [138]. Epochs around 2 or 3 seconds
were the case in quite a few studies [93], [94], [95], [110],
[125], [126], [128], [135], and [139]. Epochs of 5 seconds
duration [38], [106], [119], 9-second epochs [99], [100],
and 10-second epochs were also reported [97], [117], [120],
[129].

The specification of a threshold was a trend during
manual epoch rejection. Several researchers have employed
an amplitude threshold [93], [96], [98], [103], [107],
[112], [128], [135]. Epochs with amplitudes exceeding
the range of [−70µV , 70µV ] [98], [−75µV , 75µV ] [96],
or [−100µV , 100µV ] [112] were discarded. Epochs with
amplitudes outside the range [−200µV , 200µV ] in any of
the frontal channels Fp1 and Fp2 were rejected due to their
correlation with heavy eye movement artifacts [93]. Another
common threshold type was the standard deviation (SD) of
the mean channel value. For a Tetris computer game, if any
channel during an epoch was out of the range of [−4, 4]
SD (standard deviation) from the mean channel value, this
epoch was discarded [121]. To play Puzzle 2048 on an
iPod while walking, Namakura et al. rejected epochs from
the [−5, 5] SD range from the mean channel value [139].
The EEGLab function pop_autorej was applied to eliminate
eye blinks by rejecting epochs with amplitudes outside the
range [−500µV , 500µV ] and SD out of the range of [−5, 5]
[128]. Other manual epoch rejections have been reported,
such as short windows with high peaks [134], trials with
large interruptions such as missing signals, large continuous
spikes, and streams of a fixed constant value [136], eyeblinks
detected using the EyeTribe [13], and occasional noise
spikes, namely sudden, short-duration fluctuations in the
voltage [132].
For the rejection of the entire channel, the threshold was

the correlation of a particular channel with its neighboring
channels. Namakura et al. removedwhole channels according
to a correlation threshold of 0.08 between one channel
and its neighboring channels. Specifically, they rejected
channels with less than 0.08 correlation [139]. Corrupted
EEG recordings [94], bad channels, and flat data [107], [116],
[134] were also manually discarded.
Rejection of all participant data was documented when

the participant could not cope with the task [98], [106].
Specifically, data from one participant with fewer than
30 trials left per task after denoising with baseline correction,
band-pass filtering, and ICA were excluded [138]. In a code
review task, the entire data set from one participant was
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TABLE 2. Segmentation and manual denoising of low-noise(L) tasks in descending order by the number of subjects.
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TABLE 3. Segmentation and manual denoising of reduced-high noise (R) and elevated-high noise (E) tasks in descending order by the number of subjects.

rejected because it contained many data points with very slow
or very high response times, which was translated into the
absence of code comprehension [115].

Below, we attempt to clarify the optimal filters and
their specifications for Cognitive Load applications (see
Tables 4 and 5).

The Median Filter was employed once by Gupta et al. in a
VR shape selection task to further denoise the signal after
manual denoising and averaging [134]. In their next study,
a Wiener filter was added to the semi-automated pipeline
to remove muscle artifacts caused by head turnings during
the VR experience [136]. The 3rd order parameter in a
Savinsky-Golay Filter was characterized as being optimal for
denoising [113].

Low-pass filters [38], [104], [116], [126], [128], [133],
high-pass filters [13], [38], [104], [112], [116], [123], [126],
[127], [128], [132], [142], and band-pass filters have been
constantly used [13], [14], [90], [93], [94], [96], [97],

[98], [99], [100], [101], [106], [110], [112], [115], [119],
[120], [121], [122], [125], [129], [130], [136], [137], [138],
[139], [141]. High-pass cut-off frequencies were clustered in
the range [0.1,1] Hz [13], [14], [38], [90], [93], [94],
[96], [97], [98], [99], [100], [106], [107], [110], [116],
[119], [120], [121], [122], [125], [128], [129], [130],
[135], [136], [137], [138], [139]. Low-pass cut-off
frequencies ranged mainly between 30Hz and 50Hz [13],
[14], [93], [94], [96], [97], [98], [99], [106], [110], [112],
[119], [120], [121], [122], [125], [126], [130], [136],
[138], [141]. Yet, several studies preferred higher values,
between 70 Hz and 100 Hz [38], [90], [107], [110], [116],
[129], [137].

FIR filtering was documented in many experimental
situations [14], [93], [95], [99], [100], [112], [115], [116],
[125], [126], [128], [141]. IIR filtering [132], particularly a
2nd-6th order Butterworth type, was also cited [38], [97],
[109], [120], [129], [130], [138], [139].
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TABLE 4. Filtering of low-noise (L) tasks in descending order by the number of subjects.

Power line interference was frequently removed from the
signal [123] using Notch filter [126], [133] surrounding the
frequencies of 50 Hz [38], [90], [95], [115], [116], [117],
[135] or 60 Hz [129]. The Cleanline procedure at 50 Hz
and 100 Hz was reported once [137].

2) HOW WAS THE UTILIZATION OF ADVANCED DENOISING
APPROACHES EXECUTED?
Despite the variety of sophisticated denoising algorithms,
only a few of those approaches were used in Cogni-
tive Load Experiments, namely BSS and a few deep

learning techniques. DiscreteWavelet Transform (DWT) was
employed only by Beiramvand et al. employed a Discrete
Wavelet Transform (DWT), who defined db4 as the mother
wavelet due to its resemblance with blinking [97]. Other
advanced algorithms such as EMD, SSP, and Beamforming
that have proved their efficiencywere completely absent from
the Cognitive Load domain.

a: BLIND SOURCE SEPARATION METHODS (BSS)
ICA (see Table 6) was a popular BSS denoising approach.
Infomax(rubica) [93], [99], [100], [112], [116], [138], [141],
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TABLE 5. Filtering of reduced-high-noise (R) and elevated high-noise (E) tasks in descending order by the number of subjects.

FastICA [38], and AMICA were used to extract ICs. The
detection and rejection of noisy ICs has been performed
manually [93], [94], [104], [110], [112], [126], [130] based
on the ICs’ scalp topography [93], [99], [100], [116], [141],
time course [93], [116], spectral properties [93], [99], [100],
[116], [122], [138], [141], location of source foci [99],
[100], [141], dipole estimations [99], [100], [139], [141], and
other statistical criteria such as range, linearity, probability,
and kurtosis [122], [138]. In one study, artifact detection
and rejection/correction were completely automated by
employing the MARA approach [137]. Noisy ICs were also
rejected automatically [115].ICLabel and a modified version
of the BLINKER algorithm were employed [128].
ICA was selected mostly to identify ocular artifacts

(eye blinks and eye movements) [14], [93], [94], [103],
[110], [112], [122], [126], [130], [135], [136], [138], muscle
artifacts [93], [94], [107], [107], [110], [116], [116], [126],
[128], [128], [138], cardiac artifacts [93], [128], and artifacts
caused by sweat and movements [138]. Ocular artifacts
were associated with concentrated signal distribution in
the occipital regions. In contrast, muscle movements were
associated with major signal distribution in specific brain

areas. Finally, movement artifacts were related to increased
power distribution in high-frequency regions [104].
Apart from ICA, three more BSS techniques were docu-

mented, namely PCA, ASR, and SSD. Specifically, despite
that PCA is nowadays rarely used directly in denoising [23],
some EEG experiments on Cognitive Load reported its use to
remove ocular artifacts [96], [106], [121], such as saccades
and blinks [99], [100], [141]. Ocular artifacts were associated
with the first PC [96]. In two studies, PCA was initially
applied to the continuous signal to correct ocular artifacts,
and ICA was then applied to the epoched data for further
denoising [99], [100]. To remove non-stationary or large
amplitude noise, ASR was employed [123]. Additionally,
ASR was applied to the continuous data to eliminate
non-stationary and prominent artifacts, while ICA was used
in a subsequent preprocessing stage to denoise the epoched
data [139]. A notable approach was the SSD algorithm. It was
applied in the range of [8Hz, 12Hz] for the extraction of
alpha oscillations and in the range of [3Hz, 7Hz] for the
extraction of theta oscillations. Thus, the noise outside the
alpha and theta band powers was decreased, and the SNRwas
optimized [105].
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TABLE 6. Blind Source Separation (BSS) of low-noise (L),reduced-high-noise (R), and elevated-high-noise (E) tasks in descending order by the number of
subjects.

b: DEEP LEARNING
Kuanar et al., after band-passing the signal and removing data
from three participants, combined a CNNwith three different
types of RNN to predict Cognitive Load (see Table 7). 2D

images were fed to a CNN with the following specifications:
four convolutional layers with 3×3 kernel size and 32 filters,
a max-pooling layer with 2×2 kernel size, four convolutional
layers with 3 × 3 kernel size and 64 filters, a max-pooling
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TABLE 7. Deep learning architectures, robust to signal noise and distortion, for Cognitive Load classification. Conv: Convolutional Layer; pool: Pooling
layer; FC: Fully Connected Layer; BiLSTM:Bidirectional.

layer with 2 × 2 kernel size, one convolutional layer with
3 × 3 kernel size and 128 filters, a max-pooling layer
with 2 × 2 kernel size and a fully-connected layer. ReLU
accompanied all the hidden layers. The output of the CNN
was fed into three different RNN architecture models: LSTM,
LSTM with 1D convolution, and bidirectional LSTM. Their
output was carried into a fully connected layer, and a 4-node
Softmax layer made the final Cognitive Load prediction. The
classification accuracies of the three models were 84.48%,
87.68%, and 92.5%, respectively; however, this is not an
appropriate metric for denoising performance [101].

3) STANDARDIZED SEMI-AUTOMATED PREPROCESSING
PIPELINES
EEGLab andMakoto’s preprocessing pipeline was employed
by Lim et al. [142], whose dataset was used by Zhu et al.
[123]. The EEGLab preprocessing pipeline was also used in
a Simultaneous Interpretation task [125]. MNE’s autoreject
package, coupled with a custom preprocessing script, was
used byVolmer et al. to remove noisy artifacts and reconstruct
them with interpolation [14].
Regarding software toolboxes, the EEGLab package was

preferred [90], [93], [99], [100], [104], [107], [108], [112],
[114], [115], [117], [121], [122], [123], [125], [126],
[128], [133], [135], [137], [138]. Additionally,ERPLab [122],
[138],a customized Graphical User Interface (GUI) in
MATLAB [113], MNE [14], [76], [102], BESA soft-
ware [18], [140], ABM B-Alert Live software [124], and
Fieldtrip were reported [106].

C. RQ (C): ON THE EFFICACY OF DENOISING
APPROACHES BASED ON THE NUMBER OF SUBJECTS
It is important to highlight that the efficiency of pre-
processing protocols is closely linked to the number of
subjects participating in the EEG experiment. A novel
classification framework that denoised signals usingMSPCA
and combined Variational Mode decomposition (VMD) with
Linear Regression (LR) and Cascade feed-forward Neural
Network (CFNN) showed the highest classification accuracy
for five subjects. Its effectiveness was confirmed using a large
database of 52 subjects [88]. Another robust framework that

combines MSPCA denoising methods along with Empirical
Fourier Decomposition (EFD) and a Feed-Forward Neural
Network (FFNN) proved its efficiency in four datasets
consisting of 5, 1,1, and 3 subjects [143].
Five low-noise tasks exceeded the threshold of 50 par-

ticipants. Specifically, ICA proved effective in denoising
EEG signal captured during a cognitive assessment task
performed by 127 university students [92]. A serious
computer game played by 82 university students proved that
manual epoch rejection of large artifacts and ICA are efficient
denoising techniques [103]. A sonification low-noise task
with 75 participants validated resampling to 1000 Hz
[111]. A Sternberg task with 65 participants validated
downsampling to 100 Hz, manual rejection of incorrect trials,
difficulty managing high cognitive load and amplitudes out
of the range of [−70µV , 70µV ], and band-pass filtering
with a high-pass cut-off frequency of 0.5Hz and a low-
pass cut-off frequency of 40 Hz [98]. Another low-noise
task of 50 participants proved the significance of CAR re-
referencing, high-pass filtering of 1 Hz, line noise removal,
and ASR algorithm [123].

A reduced-high-noise task was performed with 78 par-
ticipants, proving the efficiency of a band-pass filter with
0.5Hz high-pass frequency and 100Hz low-pass frequency of
CleanLine to reduce power line noise of 50 and 100 Hz and
MARA, an ICA-guided denoising approach [137]. Another
reduced-high-noise task on a driving simulator proved the
effectiveness of IIR band-pass filtering in the range of [0.1-
32] Hz, and ICA with the manual rejection of noisy ICs
related to eye blinks [130].

Elevated-high-noise tasks were performed with fewer
than 50 subjects, failing to validate the efficiency of the
preprocessing methods.

V. MAIN FINDINGS
A notable contribution of this study is the proposal of a
noise-oriented preprocessing approach for cognitive load
assessment (which is grounded on the artifacts stemming
from the user’s computer-mediated activity), along with a
comprehensive analysis of existing works that are founded
on this innovative approach. Accordingly, we classified
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tasks into two distinct categories: low-noise and high-noise,
primarily based on the potential for internal artifacts. Low-
noise tasks encompass activities where users interact with a
computer and involve relatively simple movements executed
by a mouse. Conversely, high-noise tasks entail substantial
muscle engagement, including walking, head movements,
mouse-based drawing, keyboard typing, and speech produc-
tion. We further subdivided this high-noise category into two
distinct subcategories: ‘‘reduced-high-noise’’ and ‘‘elevated-
high-noise’’.

This classification also considers the potential influ-
ence of external artifacts. Based on the aforementioned
noise-centered classification approach, we synthesized and
categorized tasks according to their likely noise levels.
The research on denoising low-noise tasks has reached a
satisfactory level. Similarly, denoising reduced-high-noise
tasks with stationary participants, such as VR, AR, and MR
tasks, has also seen sufficient progress.

The first finding is that semi-automated methods remain
in the foreground despite time and experience require-
ments. Simple and advanced preprocessing methods were
sequentially combined and parameterized according to the
particularities of each dataset. The prevailing denoising
approach is filtering, followed by a BSS approach, mostly
using ICA models. Automated ICA versions are a trend.
Moreover, novel and promising denoising approaches, such
as deep neural networks and fully automated solutions, have
not yet been investigated in computerized Cognitive Load
experiments. Their performance and reliability have been
demonstrated in the literature.We think that it is time to prove
their power and ease of use.

With regards to semi-automated preprocessing protocols,
we note that standard preprocessing mainly included resam-
pling methods, particularly downsampling to 250Hz for
recording frequencies greater than 500 Hz, re-referencing
to CAR, averaging event trials, baseline correction with
a short pre-stimulus portion of the signal (200ms to 1s),
segmentation, manual detection and correction/rejection of
artifacts, and filtering. The effects of baseline correction on
the signal are open to question. However, several studies
have included baseline correction in their semi-automated
processes.

The prevailing segmentation was epoching and was
performed mostly after the basic filtering and BSS methods.
Non-overlapping epochs related to the events were the norm.
The duration varied according to the task. One or two seconds
was usually sufficient. Longer tasks or trials resulted in
longer epochs. For tasks with a stimulus presentation, the
extracted epochswere extended to approximately 800ms after
the stimulus presentation. Before the stimulus presentation,
200ms was sufficient to identify the baseline. For any
level of noise, performing epoching at a later stage during
preprocessing is recommended. For the duration of each
epoch, it is preferable to use short epochs centered around
the presentation of the stimulus. In addition, it is advisable to
consider the rejection of epochs using an amplitude threshold.

Specifically, manual interventions and visual inspections
still have value for researchers. Manual detection and
rejection of epochs, channels, or whole participant data
were apparent in almost every study. Nevertheless, their
effectiveness is open to question and prone to data loss
and expert bias. Regarding the manual rejection of data,
the threshold for epoch rejection was mainly an ampli-
tude range, a standard deviation from the mean, or a
time threshold. However, diverse threshold values were
employed depending on the task and visually detected noise.
Two tasks with computer puzzle games similarly rejected
epochs. Almost equal threshold values for the standard
deviation from the mean were selected. However, the first
was a sitting task, and the second was a walking task.
In general, specific manual rejection techniques can differ
considerably, contingent on the characteristics of the task at
hand.

Regarding filtering,the Median filter, Savitzsky- Golay
filter, and Wiener filter were employed only once. Although
the Wiener filter is not recommended for motion situations
with a large amount of noise, it was selected for a VR task.
A 50Hz Notch filter was sometimes employed to remove
line noise. Concerning the design of the filters, FIR was the
dominant type of impulse response, and band-pass was the
dominant type of frequency response. The most cited high-
pass cut-off frequencies were 0.1 Hz, 0.5 Hz, or 1 Hz. The
low-pass cut-off frequencies varied significantly, yet 30 Hz
or 45 Hzwere the most popular values. Information regarding
transition band, roll-off, and filter order was extremely poor.
Because researchers are not always aware of the filtering
effects on the signal and choose filter designs that may distort
the signal, more detailed specifications are required.

The most prevalent advanced denoising option in
semi-automated preprocessing protocols was the BSS
algorithms and particularly ICA. To separate the signal into
ICs, Infomax and its automated version, Runica, stand out.
Many tools have been presented to detect noisy ICs manually.
Topographic maps, spectral properties, and dipole estimation
were common. Some general guidelines extracted were that
ocular artifacts were usually concentrated signals in the
occipital regions, whereas muscle artifacts were concentrated
in specific brain areas. Movement artifacts increased in
distribution in high-frequency regions. An ICA-guided
MARA was selected in one study to automatically detect
and remove/correct noisy ICs. PCA was typically used to
remove ocular contamination and may be coupled with ICA
to remove the signal from other artifacts further. ASR was
used alone or followed by ICA to remove non-stationary and
large amplitude artifacts. SSD, an eigenvalue decomposition
method, was an interesting and reliable approach to denoise
signals.

It should be noted that given the trend of using deep learn-
ing to denoise EEG, no such method was employed directly
in the works we studied. However, one work combined
CNN with RNN, particularly with different LSTM models,
to indirectly address noise issues. Despite the efficacy
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of deep learning on mental workload EEG classification
tasks [34], no clear assumptions can be safely deduced from
the denoising performance of this deep learning approach
in our review. Since this deep learning approach gave high
accuracy in predicting Cognitive Load, it could be inferred
that noise consisted of no obstacles and was effectively
eliminated during deep learning calculations.

Regarding the task noise level, the prevailing preprocessing
pipeline for low-noise tasks included epoching, manual
rejection of noisy epochs, a band-pass FIR filter ranging
from 0.5 Hz to 30 Hz, and ICA. Similarly, for reduced-
high-noise tasks and elevated-high-noise tasks, the dominant
preprocessing pipeline encompassed epoching, manual rejec-
tion of epochs, IIR Butterworth filter with a frequency range
of 0.5 Hz to 50 Hz, and ICA. These suggestions address the
lack of recommendations for denoising EEG signal captured
during different intensities of movement [31].

Regarding the number of subjects, there is a need to
conduct Cognitive Load experiments with more subjects.
Only seven out of 57 experiments were performed with more
than 50 subjects, which is considered a valid threshold for
proving the efficacy of the preprocessing methods.

In a global sense, despite the advances in denoising field
research, researchers of Cognitive Load in the realm of HCI
avoid novel techniques. Several experiments were found to
exclusively employ standard preprocessing, omitting more
advanced and efficient techniques such as BSS or WT.
Most studies used traditional filtering methods with BSS
methods followed by segmentation. Modern approaches such
as deep learning and semi-automated or fully-automated
pipelines remain in research and are rarely applied in real
experiments.

Effective EEG denoising for healthy subjects holds
significant implications across multiple research fields.
Within the realms of Human-Computer Interaction (HCI)
and Cognitive Neuroscience, robust EEG preprocessing
enhances technologies connected to the brain, enabling the
monitoring of various health and cognitive states, such
as emotions, attention, drowsiness, and workload, both
offline and in real-time scenarios. Furthermore, in the
rapidly expanding domain of Brain-Computer Interface
(BCI) research, a cleaner EEG signal is pivotal for the
development of more autonomous BCI applications and
devices. These applications span a wide range, including
affective computing, artistic applications, gaming BCIs,
industrial robotics, and auxiliary traffic monitoring systems
designed to assist drivers and pilots [15], [32]. Regarding
passive BCI, a cleaner EEG signal can facilitate the online
estimation of an operator’s workload and enhance higher
working performance and human safety [144]. Moreover,
in the dynamically developing scientific field of Biomedical
Engineering, a more effective denoising approach can lead
to better monitoring and analysis of biomedical data [25].
Finally, an optimal EEG preprocessing approach can enhance
interdisciplinary collaboration in the understanding of brain
activity.

VI. CONCLUSION AND FUTURE DIRECTION
The current study aimed to elucidate the trends in prepro-
cessing EEG data acquired during computerized Cognitive
Load experiments. We envisage an optimal fully automated
pipeline for all types of computerized Cognitive Load
experiments, severing the ties between the task and the
selected preprocessing methods.

We gathered studies spanning six years, from 2018 to 2023,
and compiled data on the semi-automated preprocessing
routines utilized.

We argue that in the future, well-structured EEG datasets
such as EEGdenoiseNet [28] are required for evaluating
denoising approaches. Regarding Cognitive Load, there are
publicly available EEG datasets for healthy adults, such as
EEGLearn, where 15 subjects performed a Sternberg task;
EEGMAT, where 66 subjects performed serial subtractions;
Hybrid EEG-NIRS, where 26 subjects performed standard-
ized cognitive tasks; and STEW,where 48 subjects performed
the SIMKAP task [33].
The EEGLearn dataset was used for a Custom Domain

Adaptation (CDA) approach for Cognitive Load predic-
tion [100], parameter-optimized CNN method for Cognitive
Load assessment [76], and center loss function deep-learning
model for Cognitive Load recognition [99]. Moreover, one
multitasking EEG experiment used the STEW dataset to
assess the Cognitive Load using graph methods [123].
Another EGG experiment employed Hybrid EEG-NIRS to
assess Cognitive Load through an audified EEG [111]. These
open-source datasets were not designed for studying EEG
denoising, and only EEGMAT enhanced their credibility by
recording EEG signal from more than 50 subjects. Thus, it is
a future challenge to provide the research community with
standardized EEG datasets, particularly for Cognitive Load,
which has been tested on many participants.

Typically, tasks are designed for laboratories and not for
real-world applications. In our review, an experiment targeted
Cognitive Load prediction during ambulation and different
postural tasks [138]. Another EEG experiment on gait cycle
variability was also related to activity [139]. Comfortable
and reliable EEG devices [13], [112], [121], [132] and
prototype caps [95], [111] are gaining ground. In conclusion,
our recommendation is to design ecologically valid tasks,
test the performance of the preprocessing methods in
real-time scenarios, give more emphasis on single-channel
approaches, and prefer novel and easy-to-apply EEG devices
for conducting experiments.

This study proposes a denoising framework tailored to the
EEG data and user interaction context, classifying tasks into
three noise levels. Our analysis yields valuable observations
and recommendations, particularly relevant for diverse digital
interactions such as VR, AR, mixed reality (MR), and
Metaverse.

Many denoising techniques achieve remarkable accuracy;
however, none of them completely solves the denoising
problems for diverse experiments. Approaches with robust
results in other fields and classification problems may be
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appropriate for denoising EEG signals. One solution is to
focus on geometrical features, as was done in research
on the diagnosis of depression [145]. Specifically, the
second-order differential plot (SODP) was employed to
extract 26 geometrical features, such as standard descriptors,
angles between consecutive vectors, and distances to coor-
dinate. After feature selection, classification was performed
using the K-Nearest Neighbors (KNN) and Support Vector
Machine (SVM) algorithms. A remarkable classification
accuracy of 98.79% was cited, significantly higher than the
classification based on features from the time, frequency,
or time-frequency domains. Furthermore, in a study to
identify epileptic seizures, four geometrical features were
extracted from the Poincaré plot of DWT coefficients [146].
Binary particle swarm optimization was employed to select
features, and KNN and SVM were used to classify subjects
as seizure or seizure-free to achieve an accuracy of 99.3
%. Moreover, geometrical features have been used to
detect alcoholism. After applying the phase space dynamic
technique, 34 geometrical features were extracted. After
selecting themost significant of these, 11 common classifiers,
such as neural network, multilayer neural network, recurrent
neural network, generalized regression neural network, and
feedforward neural network were evaluated, resulting in a
99.16% accuracy [69].

Conclusively, given the increased interest in HCI for
monitoring Cognitive Load with EEG across diverse com-
puter interaction domains, the preprocessing of EEG data is
rather challenging. Conventional approaches have probably
reached their performance limits, and novel approaches are
taking center stage. However, there is no consensus on a
standardized solution. Within this perspective, the suggested
three-tier noise-oriented preprocessing approach offers a
structured alternative, providing information for developing
an optimized protocol for computerized Cognitive Load EEG
experiments.
Limitations: Previous reviews on EEG classification

included denoising but focused on ‘‘Cognitive Workload’’,
extracting works more related to the workplace [33],
[34]. This study is a portion of bigger research regarding
working memory; therefore, the keywords for extracting
papers targeted the broad concept of Working Memory
EEG experiments. Hereby, the portion related to one basic
concept of Working Memory, Cognitive Load, was used.
Since the term ‘‘Cognitive Load’’ stems from a learning
theory [20], the keywords ‘‘EEG’’ AND ‘‘Cognitive load’’
adopted by our study may elicit works more related to
learning. In the future, to overcome this issue, more precise
keywords would enrich our study. Specifically, the terms
‘‘Mental Workload’’ and ‘‘Cognitive Workload’’ that stem
from a workplace theory [21] could extract more prepro-
cessing approaches targeting the working environment and
performance.

EEG preprocessing and Cognitive Load are multidis-
ciplinary topics. Related reviews extracted articles from
multidisciplinary databases, such as Web of Science [15],

[34], Scopus [22], PubMed [34], and Google Scholar [22],
[24]. Our research was conducted in two libraries, IEEE
Xplore and ACM Digital Library, addressing more computer
scientists and electrical engineers. Thus, neuroscientists and
clinicians might be skeptical about adopting suggested tech-
niques. An additional search in other digital databases would
enrich our study with impactful preprocessing techniques
from other disciplines, such as biomedical engineering.

Another limitation is that we focused on gathering prepro-
cessing strategies from the last six years to encompass the
recent developments. Thus, there may be older noteworthy
approaches in the field of HCI that might have been
overlooked. Numerous novel EEG preprocessing method-
ologies have originated as variations or amalgamations
of pre-existing approaches. Therefore, a comprehensive
understanding of the current landscape could elicit promising
future solutions. So we conclude that in future a wider time
window could prove beneficial.
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