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ABSTRACT In the context of Enhanced Remote Area Communications (ERAC), Radio over Fiber (RoF)
technology plays a crucial role in extending reliable connectivity to underserved and remote areas. This
paper explores the significance of fifth-generation (5G) Digital Predistortion (DPD) role in mitigating
non-linearities in Radio over Fiber (RoF) systems for enhancing communication capabilities in remote
regions. The seamless integration of RoF and 5G technologies requires robust linearization techniques
to ensure high-quality signal transmission. In this paper, we propose and exhibit the effectiveness of
a machine learning (ML)-based DPD method for linearizing next-generation Analog Radio over Fiber
(A-RoF) links within the 5G landscape. The study investigates the use of an optimized recurrent neural
network (ORNN) based DPD experimentally on a multiband 5G new radio (NR) A-RoF system while
maintaining low complexity. The ORNN model is evaluated using flexible-waveform signals at 2.14 GHz
and 5G NR signals at 10 GHz transmitted over a 10 km fiber length. The proposed ORNN-based machine
learning approach is optimized and is compared with conventional generalized memory polynomial (GMP)
model and canonical piecewise linearization (CPWL) methods in terms of Adjacent Channel Power Ratio
(ACPR), Error Vector Magnitude (EVM), and in terms of computation complexity including, storage, time
and memory consumption. The findings demonstrate that the proposed ORNNmodel reduces EVM to below
2% as compared to 12% for non-compensated cases while ACPR is reduced by 18 dBc, meeting 3GPP limits.

INDEX TERMS Digital predistortion, fiber nonlinearity, radio over fiber, error vector magnitude, recurrent
neural network.

I. INTRODUCTION
Presently numerous research consortiums across the world
are recommending use cases and outlining requirements
for next-generation mobile networks such as beyond
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fifth-generation (5G) networks [1]. One significant appli-
cation scenario, known as enhanced remote area communi-
cations (eRAC) [2], has gained considerable interest. The
objective of this scenario is to offer broadband connectivity
in isolated and rural regions, which is not supported by the
new radio (NR) technology. In the realm of enhanced remote
area communications, Radio over Fiber (RoF) enables the
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extension of wireless access to remote locations by lever-
aging the benefits of optical fiber for signal transmission.
This is particularly valuable for areas where establishing
traditional wired or wireless communication infrastructure is
challenging or economically unviable [1], [2]. By utilizing
optical fiber links, RoF technology overcomes the limi-
tations associated with long-distance signal transmissions,
such as high attenuation and signal degradation [2], [3].
Nevertheless, the successful implementation of eRAC faces
several challenges, including technological barriers, as well
as deployment and maintenance costs. Thus, it is necessary
to identify cost-effective solutions for providing the required
infrastructure in remote areas.

In this regard, several technologies, such as the centralized
radio access network (C-RAN) with analog radio over fiber
(A-RoF) for optical front haul, can play pivotal roles in this
challenging operating scenario.

For instance, A-RoF can be utilized for transporting down-
link signals from the base band unit (BBU) to a simplified
remote radio head consisting of radiofrequency (RF) filters,
an optical-to-electrical converter, and power amplifier (PA),
thereby reducing network deployment costs and improv-
ing its reach [3]. Lastly, C-RAN can significantly reduce
deployment costs by utilizing a software-defined radio (SDR)
approach to employ the entire BBU in the central office
(CO) [4].

Signal impairment and losses, also known as RoF link non-
linearities, are a significant issue in Radio over Fiber (RoF)
systems. These impairments can be caused by various factors,
including fiber dispersion, laser nonlinearities, photodiode
nonlinearities, and optical noise [5], [6]. Dispersion leads
to signal distortion and degradation, particularly for high-
frequency signals, while nonlinear effects such as four-wave
mixing, and self-phase modulation can generate additional
frequencies that interfere with the original signal [7].
To address these nonlinearities, several linearization tech-

niques have been proposed, with Digital Predistortion (DPD)
being the most widely used in the last couple of years. Table 1
presents the overview of the most influential articles covering
DPD methodologies for RoF links with advantages and their
limitations [2], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51].

DPD approach considers the impairments in RoF as an
unknown entity and aims to identify the inverse nonlinear
response to this unknown entity [8], [9], [10], [11], [12], [13].
When multiple instances of this approach are combined in
a cascade, the overall response becomes linear, effectively
eliminating all these impairments [16], [17].
The DPD operation applies a correction function to the

input signal to pre-distort it, compensating for the system’s
distortions at the output. DPD can be implemented in soft-
ware or hardware and designed to adapt to changes in the
RoF system’s operating conditions [11], [12], [13], [19],

[20], [21], [22], [23], [24]. However, accurate modelling is
a challenge in such situation.

A recent development in the field of linearization
techniques is the Direct Digital Predistortion Technique
(DPDT)that is a model-based behavioural method proposed
in studies [28]. DPDT expands on the concept introduced
by Meslener et al., which recognizes the cumulative impacts
resulting from the combination of fiber chromatic disper-
sion and laser chirp as the dominant nonlinear impairments
that require linearization for long haul fiber lengths [40].
Traditional DPD methods are capable of mitigating impair-
ments in the laser and RoF link, but they often necessitate
a substantial volume of training data and are characterized
by high complexity. Additionally, these methods have the
added disadvantage of requiring an analog-digital converter
(ADC) as the first block of the predistorter. The cost of an
ADC is directly linked to its performance capabilities, with
higher sampling rates leading to higher costs. However, the
sampling rate is limited by the bandwidth of the modulating
signal andmodulation rate, making it less practical for certain
use cases [27], [28], [29], [30].

An alternative approach which offers a simplified version
of the Generalized Memory Polynomial (GMP) architecture
is referred asMemory Polynomial (MP) [24], [26], [27], [28],
[29], [30], [31]. However, compared to the GMP architecture,
the MP architecture is less flexible in its capabilities. The MP
architecture provides an alternative approach that simplifies
the GMP architecture [8], [9], [10], [11], [12], [13], [14],
[15], [16], [26], [27], [28], [29], [30], [31]. The Canonical
Piecewise Linearization (CPWL) architecture is an alterna-
tive method employed to approximate the nonlinear transfer
function of a radio frequency (RF) in RoF systems [31], [34],
[40], [42], [43], [44]. While this architecture exhibits good
performance, it is associated with high complexity. Recently,
a hybrid Memetic algorithm has been utilized for parameter
estimation of the DPD in RoF links [42]. The methodology
results in a substantial performance improvement with a chal-
lenging complexity. The Magnitude Selective Affine (MSA)
method, while effective, has high complexity. To address this,
combining stages into a single stage using a flexible DPD
technique like GMP can reduce MSA complexity.

Recently, a new DPD technique that combines Volterra
series with deep neural networks was proposed to improve the
linearization performance of RoF systems [14]. The proposed
DPD technique can accurately capture the nonlinearity of
high-power amplifiers and improve the overall system perfor-
mance. The proposed DPD technique requires a large amount
of training data and may have higher computational complex-
ity compared to traditional DPD techniques. Similarly, Xiao-
ran Xie et al. proposed a hybrid DPD technique that combines
the analog and digital pre-distortion methods to improve
the efficiency and accuracy of RoF systems [15]. Recently,
Jacopo Nanni et al. suggested short-λ-VCSELs DPD over
pre-existent G-652 Infrastructures Radio over Fiber sys-
tems for a 2Km transmission distance [16]. The proposed
technique can reduce the number of digital-to-analog and
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TABLE 1. Most influential literature items for Radio over Fiber Digital Predistortion.

analog-to-digital conversions required, thus improving the
system’s overall efficiency. The proposed technique requires
additional analog components, which can increase the overall
cost and complexity of the system. Similarly, adaptive DPD
algorithm for RoF links that utilizes the least-mean-square
(LMS) algorithm to dynamically adjust the DPD coefficients
based on the input signal power level was discussed in a recent
survey paper [17]. The discussed schemes can reduce the
computational complexity and improve the accuracy of DPD
systems [17]. The proposed algorithm may require additional
hardware to implement, which can increase the overall cost
and complexity of the system.

A novel DPD technique, integrating Volterra series with
deep neural networks, has been proposed to enhance the
linearization performance of RoF systems [14].

This technique accurately captures the nonlinearity of
high-power amplifiers, contributing to an overall improve-
ment in system performance. However, it necessitates a
substantial amount of training data and may exhibit higher
computational complexity compared to conventional DPD
techniques.

Similarly, Xiaoran Xie et al. introduced a hybrid DPD
technique that combines analog and digital pre-distortion

methods to enhance the efficiency and accuracy of RoF
systems [15]. In another context, Jacopo Nanni et al. rec-
ommended short-λ-VCSELs DPD for existing G-652 Infras-
tructures Radio over Fiber systems with a 2 km transmission
distance [16]. This proposed technique aims to reduce the
number of required digital-to-analog and analog-to-digital
conversions, thereby enhancing the overall system efficiency.
However, it introduces additional analog components, poten-
tially elevating the system’s overall cost and complexity.

Likewise, a recent survey paper discussed an adaptive
DPD algorithm for RoF links utilizing the least-mean-square
(LMS) algorithm to dynamically adjust DPD coefficients
based on the input signal power level [17]. The discussed
schemes demonstrate potential in reducing computational
complexity and enhancing the accuracy of DPD systems.

However, the implementation of the proposed algorithm
may require additional hardware, contributing to potential
increases in the overall cost and complexity of the system.

Machine learning (ML) approaches have gained increased
attention due to the demand for enhanced lineariza-
tion to achieve superior outcomes [33], [35], [37], [39],
[41], [42], [43]. This growing interest is underscored by
recent research conducted by Pereira et al., who explored
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ML algorithms for linearizing electrically amplified Radio
over Fiber (RoF) systems [44]. Specifically, their study pro-
posed and compared the performance of a memory recurrent
neural network (RNN) linearization against a memoryless
multilayer perceptron linearization. Encouraging results were
observed, particularly when the RNN memory depth equaled
or exceeded that of the amplified RoF system.

Furthermore, advancements in the field include an over-
the-fiber-based DPD approach employing reinforcement
learning, resulting in a remarkable 60% reduction in bit
errors [45]. However, these approaches have primarily
focused on single-channel scenarios, with limited evalua-
tion against standardized third-generation partnership project
(3GPP) metrics like error vector magnitude (EVM) and
adjacent channel power ratio (ACPR) [17], [37], [46], [47],
[48], [49], [50]. Earlier integration of Analog RoF into
fiber wireless networks achieved success, but without lin-
earization, limited to 64 quadrature amplitude modulation
(QAM) at 25 Gbauds, showcasing the need for performance-
enhancing techniques [51].

Addressing nonlinearities in RoF systems, ML approaches
using neural networks have emerged, targeting challenges
such as fiber nonlinearity, modulation issues, laser chirp,
and laser nonlinearities in DPD. DPD aims to develop a
highly effective model for compensating system nonlinearity,
resulting in a linear output signal while minimizing compu-
tational requirements. However, challenges like overfitting
and ill-conditioning during DPD coefficient training have
prompted a focus on reducing dimensionality, extracting rel-
evant features, and decreasing complexity in DPD—an area
of significant exploration.

The problem statement in this context revolves around
the challenges and limitations associated with linearizing
RoF systems, particularly focusing on the application of
DPD techniques. The challenges identified include the need
for additional linearization in ML approaches since these
approaches are being increasingly explored for linearizing
RoF systems, yet there is a recognized need for additional lin-
earization to achieve improved outcomes. Existing methods,
such as over-the-fiber-based DPD with machine learning,
have primarily been tested in single-channel scenarios. How-
ever, there is a gap in evaluating these methods against
standardized performancemetrics like error vectormagnitude
(EVM) and adjacent channel power ratio (ACPR), crucial
for assessing their effectiveness in practical applications. The
training process of DPD coefficients faces challenges, includ-
ing overfitting and ill-conditioning. Similarly, complexity
analysis haven’t been explored in detail. These challenges
highlight the need for research into methods that can reduce
complexities, extract relevant features, and decrease com-
plexity in DPD.

A. CONTRIBUTIONS
With an aim to cover eRAC scenarios for sub 6 GHz and
above 6 GHz range, we present:

1. An experimental realization of 5G NR- multiband for
Radio over Fiber connection using 5G NR signals at 10 GHz
and flexible-waveform signals at 2.14 GHz transmitted over
a 10 km fiber length. The utilization of multi band frequency
carrier targeting sub-GHz and above 6 GHz is a unique
frequency that will evaluate the efficacy of the proposed
solutions in the given range.

2. An optimized recurrent neural network (ORNN) based
DPD approach is proposed that is able to provide a substantial
improvement in terms of performance.

3. The proposed ORNN method is optimized so that the
complexity of the system is reduced substantially and is
comparable to other DPD methods.

4. The article also includes the implementation of conven-
tional methods and provides a comparison of the proposed
ORNN with these methods in terms of performance metrics.
This is a novel comparison where multiband frequency car-
rier eRAC use-case has been evaluated for traditional DPD
methods and proposed AI methods.

5. The comparisons are presented in the form of per-
formance as well as complexity. Authors have used 3GPP
standardized performance evaluation metrics such as error
vector magnitude (EVM) or adjacent channel power ratio
(ACPR). The complexity is assessed in terms of coeffi-
cients, number of multiplications, storage, time and memory
consumption. The proposed ORNN aims to improve the per-
formance of the RoF networkwhile keeping the complexity at
a minimum. This indicates that it will also result in a decrease
in the number of coefficients required. This helps to make the
model more efficient and simpler to use.

The remainder of the paper is divided in 7 sections. The
proposed DPD integration based on ORNN are discussed in
section II while section III presents the conventional meth-
ods including GMP and CPWL. The experimental testbed
realization are discussed in section IV while the presentation
of the proposed ORNN methods optimization is discussed in
sectionV. SectionVI discusses the experimental results of the
proposed ORNN with comparative architectures in terms of
performance and complexity. The conclusions and prospects
for future work are discussed in section VII.

II. DPD INTEGRATION BASED ON ORNN
We utilized the optimized recurrent neural network that we
will refer to as ORNN from onwards. It allows us to assess
the impact of memory.

A. ARCHITECTURE
The ORNN architecture consists of an input layer, L hidden
layers, and an output layer. Each layer contains Oℓ neurons,
with ℓ ranging from 0 to L + 1, denoting the corresponding
layer number. The neurons in sequential layers are densely
interconnected, with additional connections pointing back-
wards, as illustrated in Fig. 1.

To strike a balance between complexity and performance,
our proposed ORNN DPD architecture utilizes 2 neurons in
both layers (input and output) while we used three hidden
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FIGURE 1. Illustration of a recurrent neural network architecture having two hidden
layers. each layer has OL neurons per layer. Green color shows Real (R) and blue shows
Imaginary (I) baseband parts of the input for training.

layers. Using many hidden layers can hinder the training
process of the neural network due to the increasing number
of hyperparameters and the potential for the fading gradient
dilemma. To address this problem, activation functions that
exhibit more linear and non-saturating behavior can be used,
but this may come at the expense of reducing the neural
network’s capacity to represent nonlinear behaviors.

However, the 3 hidden layers were sufficient to capture
the non-linearities of the RoF link. To estimate the matrices
of weights (Wp) and (Wv), we employed the backpropaga-
tion algorithm and ran the training process for 125 epochs.
However, if the early stop criterion (with a patience hyperpa-
rameter of 50) was met, training would cease. This criterion
was based on observing a mean-squared error (MSE) varia-
tion of less than 10−7 for 125 consecutive epochs.
The loss function (LMSE ) is defined as follows:

LMSE =

NTraining∑
N=0

(
xN − x̂N

)2
NTraining

(1)

Here NTraining represents the training samples. The data
sample consists of 892,100 samples where the validation split
of data is 0.7 to 0.3 i.e., 70% training (24470 samples) and
30% (67630 samples) data has been kept for testing. The
activation function, optimizer and number of layers decision
was made after the optimziation carried out as discussed in
detail in Sec. V.

The baseband signal (xn) generated by the vector signal
generator (VSG) becomes an input to the RoF link. The com-
bined response of fibre and photodiode (PD) is unit impulse
response that is given as r (n) = δ(n). The signal at the output
of PD is given by yn:

f (n) = x (n) ∗ r (n) = y(n) (2)

The convolution operation is represented by the symbol ∗.

B. DPD TRAINING
The output signal y(n) is gain adjusted such that z (n) =
y(n)
G and is fed to DPD block for training. For training,
we employ x̂(n) as the desired label and z(n) as the input
of the ORNN. This approach enables the ORNN to learn the
system post-inversion response, which is subsequently used
for pre-distorting the baseband signal.

The block schematic is shown in Fig. 2 that signifies the
cycle of training. This method consists of the following two
fundamental phases:

1. The initial step involves establishing a feedback loop
that allows training to obtain an input signal capable of
being classified as a DPD waveform signal.

2. Following this, the subsequent phase entails the compu-
tation of the DPD model parameters. The predistorted
signal x̂ (t) is given as:

x̂ (t) =

∏ (
z (t)Wp + V (t − 1)Wv + b

)
(3)

FIGURE 2. An illustration of a link training scheme for RoF is presented,
designed to be compatible with various architectures such as ORNN,
GMP, and CPWL. This scheme aims to facilitate efficient training and
optimization of the RoF link, regardless of the specific architecture
employed.
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where
∏
(·) represents the nonlinear activation function. Set-

ting theQM hyperparameter is critical in defining thememory
depth of the ORNN and optimizing it can greatly improve the
linearization performance.

In (3), z (t) denotes the input matrix at QM |t . Similarly,
the previous output of QM |t−1 is given as V (t − 1) while b is
the bias vector. Once the ORNNs have been trained, the DPD
scheme can be utilized to linearize the A-RoF system.

III. COMPARATIVE ARCHITECTURE
The GMP technique has shown effectiveness in achieving
linearization of PAs. Previous studies have also demonstrated
the application of DPD for linearizing the RoF link [16], [18].
In the upcoming sections, we will compare the performance
of GMP with the Volterra series, with a specific emphasis on
GMP due to its documented superiority over MP [16], [18].

x̂ (n) =

ka−1∑
k=0

Qa−1∑
q=0

z (n− q) ckq |z (n− q)|k

+

kb∑
k=1

Qb−1∑
q=0

Rb∑
r=1

z (n− q)dkqr |z (n− q− r)|k

+

kc∑
k=1

Qc−1∑
q=0

Rc∑
r=1

|z (n− q+ r)|k ekqrz (n− q) (4)

where x̂(n) and z(n) are the DPD block output and input
respectively. ckq represents complex coefficients associated
with the signal’s envelope, dkqr signifies complex coef-
ficients related to the signal’s lagging envelope and ekqr
signify the complex coefficients associated with the signal’s
leading envelope. Ka,Kb,Kc represent maximum nonlinear-
ity coefficients, Qa,Qb,Qc shows memory depths. q, r and
k highlights memory and nonlinearity index whereas Rc
shows the leading and Rb shows the lagging delay tap lengths
respectively.

A topic is always made more intriguing by the ‘‘out of
the box’’ approach that can produce superior results. It was
demonstrated in [16], [18], and [19] that the CPWL technique
outperforms other models, including the MP and GMP. Due
to the performance improvement, it offers, CPWL is a clear
choice, although it has a lot of complexity and overheads. The
CPWL model is denoted by [16]:

x̂ (n)

=

∑M

m=0

∑K

k=0

∑L

l=1
c(1)m,k,l

∣∣∣|z (n− k)|2 − βl

∣∣∣
× z (n− m− k)

+

∑M

m=1

∑K

k=0

∑L

l=1
c(2)m,k,l

∣∣∣|z (n− k)|2 − βl

∣∣∣
× z2 (n− k) z∗(n− m− k)

+

∑M

m=1

∑K

k=0

∑L

l=1
c(3)m,k,l

∣∣∣|z (n− k)|2 − βl

∣∣∣
× z (n− k) |z (n− m− k)|2

+

∑M

m=1

∑K

k=0

∑L

l=1
c(4)m,k,l

∣∣∣|z (n− k)|2 − βl

∣∣∣
× z∗ (n− k) z2 (n− m− k) (5)

The input baseband signal is denoted by z(n), while the
output baseband signal is denoted by x̂ (n). K represents the
length of the FIR filter,M represents the memory depth, and
L represents the CPWL partitions. βl indicates the threshold,
and c(1)m,k,l, c

(2)
m,k,l, c

(3)
m,k,l, c

(4)
m,k,l are themodel coefficients. The

expression in (9) contains multiple multiplications and addi-
tions, which can significantly increase the complexity and
hardware resource utilization during DPD implementation,
particularly with regards to dedicated hardware adders and
multipliers.

IV. EXPERIMENTAL SETUP AND EVALUATION
The experimental testbed used for this work is shown in
Fig. 3. The experimental setup is divided into sections that
are discussed below.

A. OPTICAL LINK BENCH
A Mach Zehnder Modulator (MZM) with a 1550 nm laser is
connected to an optical fiber of 10 km which is a standard
single mode fiber (SSMF) type, and an R402 PIN photode-
tector are utilized for converting optical back to the electrical
domain. The signals are separated by a diplexer and sent to
separate vector signal analyzers.

B. TIME SYNCHRONIZATION
Time synchronization is achieved via Channel State Informa-
tion Reference Signal (CSI-RS) 20 MHz/106 resource blocks
following 3GPP recommendations. By seeing the power
delay profile (PDP), the first path of arrival is established by
correlating the received and input waveforms.

C. TRAINING AND TESTING
This technique consists of three steps and utilizes 5G NR
with fc1 10 GHz (20 MHz) and fc2 2.14 GHz (20 MHz) in a
multiband 5G NR setup. Firstly, the pre-distorted signals are
upconverted to their respective fc by VSGs and then delivered

FIGURE 3. Schematic of the experimental block diagram illustrating the
setup used for the linearization study.
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TABLE 2. Experimental bench parameters.

in optical domain. The photodiode output signal is subjected
to processing through a diplexer (DPX), which serves to
separate the multiband signals before they are transmitted
to the DPD block for the training phase. Once training is
achieved, the trained DPD coefficients are ready to be applied
to the input signal that is called as predistorted signal at this
stage.

During the validation stage, the switches are reversed to
accommodate the use of real waveforms frames for confirm-
ing the efficacy of the predistortion. The DPD technique is
used to evaluate the proposed ORNN method and compare
it to other validated DPD techniques including GMP and
CPWL methods [15], [16], [17], [21]. As RoF impairments
typically change slowly due to factors such as component
aging and thermal effects, real-time adaptation of DPD coef-
ficients is not necessary [21], [26]. For this study, an inhouse
MATLAB-based simulator is used, that operates on an
Optiplex Intel(R) processor core (TM) i9-10900K CPU @
3.70GHz 3.70 GHz, with RAM of 128 GB, and 32 GB GPU
Processor. Research simulations are conducted over a dedi-
cated standalone computer so that all the complexity analysis
are legitimate and valid. For reference, Table 3 presents a
outline in this experimental study.

D. PERFORMANCE EVALUATION METRICS
The performance of the experimental bench with proposed
and conventional methods is assessed with two metrics
namely EVM and ACPR. In addition, we assess the optimiza-
tion of the proposed ORNN architecture with ACPR only.
This is due to the fact that optimization is more sensitive to
adjacent channel leakages as compared to other metrics. The
EVM is a performancemetric used by the 3GPP. It determines
the optimum constellation location for each received symbol.
The EVM is defined as [52]:

EVM (%) =

√√√√ 1
M

∑M
m=1

∣∣Sm − S0,m
∣∣2

1
M

∑M
m=1 |Sm|

2
(6)

In the given equation, ‘‘M ’’ represents the constellation
symbol, ‘‘Sm’’ corresponds to the real symbol associated with
the symbol ‘‘m’’, and ‘‘S0,m’’ refers to the real symbol linked
with ‘‘Sm’’. The standardized limit for EVM in 3GPP for
the 256 QAM modulation type is set at 3.5% [53].

The Adjacent Channel Power Ratio also called ACPR that
determines the channel leakages and impairment is defined
as [52]:

ACPRdBc= 10 log10

[∫ adu
adl

P (f ) df∫ ubu
ubl

P (f ) df

]
(7)

In the given equation, ‘‘P (f )’’ represents the Power Spec-
tral Density (PSD), ‘‘adu’’ and ‘‘adl’’ denote the upper and
lower adjacent channel frequency bounds, respectively, while
‘‘ubl’’ and ‘‘ubu’’ refer to the upper and lower frequency
useful bands of the output signal.

V. ORNN OPTIMIZATION
In the respective sections, we first discuss the ORNN archi-
tecture optimization before we compare it with the other
conventional methods. The results for the experimental bench
(ORNN vs conventional methods) are discussed in addition
to the optimization of the ORNN architecture. The optimiza-
tion process plays a vital role in enhancing the performance
of neural network models. This involves fine-tuning hyper-
parameters and selecting suitable optimization techniques.
In the case of ORNN, the analysis included training and
validation error analysis, as well as experimentation with
activation functions, optimizers, and the number of layers.

A. TRAINING AND VALIDATION ERROR ANALYSIS
The analysis involved a thorough examination of training and
validation errors, which provides insights into the model’s
learning and generalization capabilities.Monitoring the train-
ing error over time reveals the model’s ability to learn from
training data. Simultaneously, the validation error assists in
assessing overfitting or underfitting tendencies. To mitigate
overfitting or underfitting, we employed L1 regularization.
Fig. 4 shows the training and validation errors as a function
of accuracy and loss.

B. VARIATION OF ACTIVATION FUNCTIONS
Activation functions introduce non-linearity, enabling the
ORNN to model complex relationships within sequential
data. Experimenting with different activation functions helps
uncover their impact on network performance. Various activa-
tion functions, such as sigmoid, tanh, ReLU, or their variants,
were tested as shown in Fig. 5. Each activation function pos-
sesses unique characteristics influencing the ORNN’s ability
to capture temporal dependencies. Sigmoid and tanh func-
tions limit input values to a bounded range, while ReLU
and variants promote faster convergence and alleviate the
vanishing gradient problem.

By evaluating the model’s performance with different
activation functions, the optimal choice can be determined.
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FIGURE 4. Training and validation errors for (a) accuracy vs epochs
(b) loss vs epochs.

FIGURE 5. Activation function comparison for optimizing ORNN
performance.

However, it is important to note that the optimal activation
function may vary depending on the task, as no single acti-
vation function suits all scenarios. Based on the comparison
done, ReLu was selected as it had the least ACPR.

C. VARIATION OF OPTIMIZERS
Optimizers are crucial for updating network parameters dur-
ing training, aiming to minimize training errors and improve
overall performance. The analysis involved experimenting
with different optimizers to assess their impact on ORNN
convergence and accuracy.

Commonly used optimizers, such as stochastic gradient
descent (SGD), Adam, RMSprop, and Adagrad, were con-
sidered as shown in Fig. 6. Each optimizer employs a distinct
algorithm to update weights and biases, affecting conver-
gence speed and quality. SGD updates parameters based on
the loss function’s gradient, while Adam combines adaptive

FIGURE 6. Optimizers comparison for optimizing ORNN performance.

learning rates with momentum. By comparing ORNN per-
formance using different optimizers, the optimal choice can
be determined. However, similar to activation functions, the
selection depends on factors such as the dataset, network
architecture, and problem domain. On the basis of perfor-
mance with the least ACPR, ADAM was chosen.

D. VARIATION IN THE NUMBER OF LAYERS
The number of layers in the ORNN architecture significantly
influences its performance. Experimenting with different
layer configurations helps assess the network’s depth and its
ability to capture complex temporal patterns and hierarchical
dependencies. The goal is to identify the optimal number of
layers that balances the model’s expressive power and gen-
eralization ability. The optimal configuration depends on the
task’s complexity, data nature, and available computational
resources.

Fig. 7 represents the surface plot representing the ACPR
values concerning the RF input power and number of layers.
The x-axis represents the power values, while the y-axis
corresponds to the layer number and the ACPR values are
displayed as the z-axis. The plot reveals important insights
into the system’s performance, particularly in terms of ACPR.
Upon examining the plot, it becomes apparent that three
specific numbers of layers exhibit the best optimum ACPR
values.

E. HYPERPARAMETER TUNING
Systematic hyperparameter tuning is essential for optimizing
the ORNN. This involves optimizing not only the number of

TABLE 3. ORNN architecture hyperparameters.
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TABLE 4. Complexity comparisons for the conventional and proposed architecture.

FIGURE 7. Variation in the number of layers vs RF input power and ACPR
for optimizing ORNN performance.

layers but also other hyperparameters such as learning rate,
batch size, regularization techniques, and sequence length.
Random search techniques were used to find the best combi-
nation of architectural choices. The aim is to strike a balance
between computation complexity and performance. Table 3
presents the hyperparameter tuning.

VI. EXPERIMENTAL RESULTS
The proposed ORNN-DPD technique is used with specific
parameters and compared to the GMP and CPWL method
with parameters given as K = L = 4, M = Q = 3 that were
used in our previous study as well [16], [17], [21], [22], [23],
[24], [25], [26]. We compare our previous work [18] to GMP
approaches as a baseline architecture.

A. PERFORMANCE COMPARISON
The evaluation of the ORNN-DPD technique encompasses
the assessment of spectral regrowth, ACPR and EVM. The
primary objective of the ORNN-DPD method is to stream-
line the process and enhance performance in comparison to
earlier approaches like CPWL, GMP, and the absence of DPD
methods.

Fig. 8 shows the spectral regrowth commonly known as
power spectral density (PSD) of the proposed ORNN DPD
technique in comparison to GMP and CPWL methods. The
PSD shows that the ORNN results in a reduced spectral
regrowth to −40 dB/Hz as compared to −25 dB/Hz achieved
with GMP and −32 dB/Hz with CPWL respectively.
In addition to evaluating PSD, the EVM is displayed in

Fig. 9(a) that shows that the ORNN-based DPD method

FIGURE 8. Illustration of power spectral density (PSD)/ spectral regrowth
comparing ORNN, GMP and CPWL performance efficacy.

outpaces the conventional methods. ORNN achieves a better
reduction as compared to CPWL, however, a slight change
is seen at RF input power of 5 dBm where CPWL has 3.5%
EVM while ORNN has 3.8% EVM as compared to 4.8% of
GMP and 11.4 % of EVM without DPD.

This performance can be improved by having a higher
number of neurons per layer, however, the 5 dBm RF input
power is quite high as the operating power is somewhere
below 0 dBm in most of the use cases.

Similarly, the ACPR is evaluated in Fig. 9 (b). The ACPR is
illustrated for various RF input power levels, showing that the
ORNN-DPDmethod reduces the ACPR by 18 dB to -46 dBc,
in comparison to the no DPD case, which is below -45 dBc
set by 3GPP [53], [54].

This is evident that ORNNhas achieved better performance
in comparison to traditional architectures.

B. COMPLEXITY COMPARISONS
Complexity is a critical consideration in digital predistortion
(DPD) for Radio over Fiber (RoF) systems. While tradi-
tional DPD methods have achieved significant performance
improvements, they often come at the cost of increased com-
plexity.

This is where the recent development of the ORNNmethod
stands out. ORNN reduces the complexity of the DPD pro-
cess while still delivering superior performance making it a
much more attractive option for designers of RoF systems,
especially in applications where memory and computational
resources are limited.
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FIGURE 9. Comparison showing with and without DPD performance for (a) EVM and (b) ACPR.

FIGURE 10. Comparative analysis of performance and complexity in DPD
architectures: (a) Storage (b) Memory (c) Time Computations.

Despite the demonstrated elevated performance of the
ORNNmethod compared to the efficient CPWL conventional
methods, the key advantage of ORNN lies in its significantly
lower complexity. The ORNN requires a fewer multiplication

operations due to which it has lesser complexity as com-
pared to CPWL, which can be seen in Table 4. Particularly,
the ORNN-DPD requires 249 multiplications lesser than the
CPWL technique.

Moreover, statistics like the condition number and time
consumption reveal that ORNN-DPD is a more optimized,
simpler, and efficient method compared to MSA and GMP.
This is further highlighted when compared to previous work
using DPD with machine learning (ML) methods. While the
proposed ORNN still performs well, its key advantage lies in
its significant reduction in complexity. The complexity of the
ORNN-based algorithm is a significant factor that needs to
be considered.

The comparison highlights that ORNN has lower com-
plexity yet comparable performance. This demonstrates that
there is a trade-off between performance and complexity
when choosing a DPD method. Fig. 10 and Table 4 shows
a comparison between ORNN, CPWL and GMP in terms of
storage utilization, memory consumption and time complex-
ities. In many cases, the complexity of a DPD algorithm is
directly proportional to its performance. The more complex
the algorithm, the better the performance it can deliver.

However, this increase in performance comes at a cost.
The more complex the algorithm, the greater the demand for
memory and computational resources. This can make it diffi-
cult to implement the DPD algorithm in real-world systems,
especially in cases where these resources are limited. This
is why the development of the ORNN method is so impor-
tant. It provides a way to achieve performance improvements
while reducing complexity. By balancing performance and
complexity, ORNN offers a flexible and effective solution to
the challenges of nonlinear distortion in RoF systems. The
ability to achieve high performance with low complexity is
essential for the continued development and implementation
of RoF systems. In conclusion, complexity is a crucial con-
sideration in DPD for RoF systems. While traditional DPD
methods have achieved significant performance improve-
ments, their increased complexity can make them difficult to
implement in real-world systems. However, ORNN methods
offers a solution to this challenge by balancing performance
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TABLE 5. Performance and complexity summary.

and complexity, making it a more attractive option for RoF
systems.

The ability to achieve high performance with low com-
plexity is essential for the continued development and imple-
mentation of RoF systems. Table 4 provides an overview
of the performance outcomes at 0 dBm, showcasing how
the ORNN-DPD technique achieves a complexity reduction
while preserving comparable performance to the GMP and
CPWL methods.

VII. CONCLUSION
The article introduces an experimental realization of ML
based ORNN DPD method that improves the linearization
performance of a 5G new radio signals for a multiband
RoF link carrier signal for eRAC use cases. The proposed
ORNN-DPD method optimization is evidenced and has
been experimentally verified to transmit 5G NR signals at
2.14 GHz and 10 GHz over a 10 km fiber distance. The
proposed ORNN method leads to an EVM of 1.65% for
5G NR waveform as compared to 3% of GMP and 8%
without linearization while ORNN leads to an ACPR reduc-
tion of 18 dBc. Similarly, ORNN carries considerably lower
complexity than the previously proposed conventional DPD
methods such as GMP and CPWL, leading to better perfor-
mance. Additionally, the ORNN-DPDmethod requires fewer
multiplication operations, requires lesser memory and time
for training making it more robust. To the authors’ knowl-
edge, this is the first instance of improving and comparing
the performance of multiband 5G NR-based optical fronthaul
using a proposed ORNN and comparing it with other compet-
itive DPD architectures.
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