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ABSTRACT Unmanned aerial vehicles (UAVs) substantially rely on the utilization of global positioning
systems (GPS) to navigate. A simulator for commercial GPS applications with false GPS signals can lead
to the deviation of a GPS-guided drone from its planned path. As a result, an anti-spoofing technology is
required to assure UAV operating safety. Several approaches have been developed to detect GPS spoofing,
however, predominantly such methods rely on additional hardware. Using additional hardware might not
be an ideal solution for small and low-capacity UAVs. Detecting signal spoofing attacks in small UAVS
has significant importance. This study presents a stacked ensemble approach to detect GPS signal spoofing
within the context of small UAVs. The initial phase involves outlining the sequential procedures for obtaining
and preparing the GPS signal dataset, including details about the UAV hardware, blocker, data collection
timing, environmental factors, and the utilization of z-score normalization for preprocessing. Then controlled
simulation tests with varying experimental conditions are conducted and the model is built using a support
vector machine and convolutional neural network. Additionally, a comprehensive comparative assessment
is conducted to analyze the efficacy of the proposed model against traditional machine learning models.
Experimental results demonstrate notably good performance by the proposed model with a 99.74% accuracy,
showing its superior performance in the context of GPS signal spoofing in small UAVs.

INDEX TERMS Unmanned aerial vehicles, autonomous vehicles, GPS spoofing, cybersecurity, ensemble
machine learning.

I. INTRODUCTION

Small unmanned aerial vehicles (UAVs) commonly integrate
a variety of sensor types, where global positioning system
(GPS) receivers hold paramount significance. These receivers
play a pivotal role in establishing the precise position,
spatial coordinates, and altitude of the UAV by receiving
signals transmitted from satellites. The acquired GPS signals
contribute to enhancing the UAV’s navigation accuracy,
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consequently elevating its efficacy in executing missions [1].
In summation, GPS technology stands as a pivotal component
within the realm of small UAVs. Nonetheless, the vulnerabil-
ity of GPS signals to spoofing introduces a substantial risk,
particularly in sectors like aviation, military, navigation, and
civil safety, where disruptions to synchronization and naviga-
tion can result in severe consequences. Several countries have
reported GPS signal spoofing security vulnerabilities [2].
UAVs were initially developed for military goals like
practicing anti-aircraft techniques, gathering intelligence,
killing opponents, destroying hostile objects, and so on.
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With fast technological improvement over the last two to
three decades, the usage of UAVs has expanded beyond
military uses to various civilian and commercial applications.
In Germany, DHL’s logistics business employed UAVs to
carry medicine twice a day over a 12-kilometre journey to the
car-free island of Juist [3]. The United States Federal Aviation
Administration has granted Alphabet, the parent company
of Google, permission to use UAVs to transport meals in
2019 [4]. UAVs are utilized for a variety of other tasks,
including animal monitoring, search and rescue operations,
community surveillance, ambulance service, firefighting,
journalism, aerial filming, and panoramic photography [5].
Utilizing UAVs in conjunction with the Internet of Things
(IoT) sensors on the ground offers a range of applications [6].
These include assisting agricultural companies in surveying
land and crops, aiding energy companies in monitoring power
infrastructure and operational equipment, and supporting
insurance companies in property and asset inspections.

The use of GPS services has dramatically expanded
recently. The market for GPS tracking devices is projected
to witness growth, escalating from its existing value of
1.57 billion to an estimated 3.38 billion by the year 2025
[7]. Ensuring safety often revolves around monitoring the
present location of a mobile entity. In the case of autonomous
vehicles, their navigation system relies on GPS signals
to determine the current latitude, longitude, acceleration,
and orientation, aiding the vehicle in reaching its intended
destination. The widespread availability of GPS-equipped
devices and affordable spoofing equipment has given rise to
an increased risk of malicious GPS attacks. These attacks
are facilitated by the prevalence of unencrypted GPS signals
and the ease with which attackers can manipulate standard
GPS signal structures using programmable radio devices such
as HackRF or USRP [8]. This enables attackers to launch
GPS spoofing attacks from a distance, disrupting genuine
GPS signals and leading target vehicles’ navigation systems
astray. Researchers have demonstrated the potential to control
autonomous vehicles’ paths, even causing them to deviate
off-road using tools like HackRF [9]. Besides navigation,
numerous applications and services also heavily rely on GPS
data to enhance their functionalities and user interfaces [10].

Small UAVs have been investigated for their vulnerability
to GPS spoofing attacks in recent years [11], [12]. To tackle
the issue of susceptibility to GPS signal spoofing in small
UAVs, numerous researchers have employed techniques
such as fingerprint and multipath detection [13]. These
approaches aim to identify and counteract the manipulation
of GPS signals in small UAVs. The employed methods
face significant challenges. Multipath detection is ineffective
against subtle GPS signal spoofing and demands extra
hardware and precise clock synchronization. Noisy and Weak
signals falter energy detection, risking the misclassification
of genuine signals as spoofed. Fingerprinting needs extensive
data for training, and substantial receiver hardware, and is
susceptible to environmental shifts.
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Numerous studies have introduced traditional machine
learning (ML) methods aimed at categorizing and identifying
GPS spoofing. These models offer proficient frameworks
for identifying GPS spoofing incidents [14]. Over the last
decade, ensemble learning methods have emerged as a
prominent advancement in the machine learning field because
of their superior performance when compared to conventional
machine learning approaches [15].

The challenge of GPS spoofing in small UAVs is com-
plex. New, tricky spoofing techniques can trick traditional
detection methods, needing extra tools and precise timing to
counter. Weak GPS signals can confuse detection systems,
risking mistakes in identifying real and fake signals. Protect-
ing small UAVs from spoofing is crucial as they are used in
vital roles like security and delivery. Solving these challenges
means making reliable detection methods to keep UAV
operations safe and secure in important tasks. The motivation
for this study is to recognize and classify GPS spoofing
incidents in UAVs. Numerous research investigations have
concentrated on categorizing and identifying UAV-targeted
spoofing attacks with the help of machine learning methods.
This study relies on machine learning models and ensemble
classifiers. The models undergo training and testing utilizing
a dataset comprising 13 GPS signal characteristics derived
from real-time experiments. This study makes the following
contributions

« A stacked ensemble model is introduced which lever-
ages the strength of both machine learning and deep
learning models to identify GPS signal spoofing in small
UAVs.

« A systematic approach is designed for dataset acquisi-
tion, preparation, and controlled simulation tests.

« For better results from the proposed approach, the data
is preprocessed using z-score normalization techniques
before being used to train machine learning models.

o Performance comparison to analyze the efficacy of
the proposed approach in comparison to well-known
machine learning models in the context of detecting GPS
signal spoofing.

Section II provides a succinct overview of contemporary
literature and significant progress within the domain of
IoT-based solutions. Section III presents the data and method-
ologies utilized in the conducted experiments. Section IV
elaborates on the machine learning and deep learning
models. Section V offers a comprehensive insight into the
experimental outcomes, accompanied by a detailed analysis.
Lastly, Section VI serves as the conclusion, wrapping up the
article.

Il. RELATED WORK

This section explores the advancements, methodologies,
and findings from various studies that have addressed the
challenges and intricacies of identifying and countering GPS
signal manipulation. By examining the range of approaches,
techniques, and outcomes reported in prior research, this
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section sets the stage for the novel contributions and insights
presented in this study. Numerous investigations have been
conducted concerning the Categories of GPS Spoofing
Signals and the detection of GPS spoofing.

A. CATEGORIES OF GPS SPOOFING SIGNALS

GPS spoofing signals are classified as meaconing or gen-
erative spoofing. In meaconing, an authentic GPS signal
is captured and rebroadcast, resulting in a timing offset
when compared to real GPS signals. Spoofing a UAV using
meaconing necessitates jamming to reacquire signals after
entering signal-tracking mode [16]. In contrast, generative
spoofing requires synchronizing GPS time and modifying
navigation signals with a spoofing simulator [17]. The sig-
nal’s strength steadily increases to alter the target receiver’s
tracking loops and move it to a counterfeit place. Detection
avoidance is achievable using generative spoofing, even
when GPS tracking is active. Meaconing attacks may be
distinguished by examining the time offset, but generative
spoofing offers a more predictable danger to tiny UAVs due
to its complexity.

B. GPS SPOOFING ATTACKS DETECTION

Numerous studies have focused on detecting and mitigating
GPS spoofing incidents. One approach relies on acceleration
error analysis derived from GPS receiver and inertial mea-
surement unit (IMU) measurements [18]. Another strategy
utilizes GPS data and IMU, applying the XGBoost model and
Genetic Algorithm in a two-step process to detect spoofing
attacks [14]. Artificial neural networks were employed
to classify GPS signals based on features like pseudo-
range, Doppler shift, and SNR, yielding promising detection
efficiency [19]. These efforts collectively highlight effective
methods for identifying GPS spoofing with various data-
driven techniques.

Another method for detecting GPS spoofing was outlined
in [20], utilizing vision sensors, monocular cameras, and
IMUs in conjunction with UAV sensors. This method
employs the fusion of vision sensor and IMU data for
GPS spoofing detection. Additionally, a vision-based UAV
spoofing identification technique utilizing visual odometry
was proposed in [21], leveraging UAV cameras that remain
unaffected by fabricated GPS signals. The relative trajectory
acquired from images through visual odometry is cross-
referenced with GPS-derived flight trajectory data to detect
spoofed signals. while another [22] utilizes vision sensors and
IMU s for detection. An additional vision-based method [23]
exploits Visual Odometry to detect spoofing by comparing
UAV camera-derived trajectory with GPS-based flight
trajectory information. These techniques collectively address
GPS spoofing concerns through predictive modeling, sensor
fusion, and image-based analysis, contributing to improved
UAV flight security and resistance to deception signals [24].

In [2], a novel framework for GPS spoofing detection was
introduced, requiring minimal initial setup and emphasizing
information fusion. This real-time approach utilizes IMU data
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to determine the UAV’s present location, cross-referencing
it with GPS-derived location information to flag potential
GPS spoofing attacks. In [25], an innovative algorithm was
presented to handle abrupt system state changes caused by
GPS spoofing attacks. Employing a particle filter algorithm,
this method counteracts the effects of GPS spoofing by
manipulating prediction discrepancies, resulting in improved
UAV position estimation and reduced errors.

C. SPOOFING ATTACKS CLASSIFICATION WITH MACHINE
LEARNING

In [26], a counter-spoofing model was introduced, employing
linear regression for optimal UAV route prediction and
long short-term memory (LSTM) for trajectory prediction.
The model incorporates multiple identification schemes for
GPS spoofing signals, enhancing UAV flight sensitivity and
safety to deceptive signal detection. Simulation experiments
indicate its efficacy in countering GPS spoofing without
escalating hardware expenses.

In various studies, innovative methods for countering GPS
spoofing have been proposed. One approach [26] combines
linear regression and LSTM to predict optimal UAV routes
and enhance sensitivity to GPS spoofing signals. A similar
approach for spoofing detection and classification was put
out by [27] based on the least absolute shrinkage and
selection operator. This technique employs signal processing
methods to differentiate authentic and spoofed signals using
code-phase values and incorporates a threshold to minimize
false alarms. These studies collectively offer diverse strate-
gies for combatting GPS spoofing, encompassing real-time
detection, particle filter compensation, and signal processing
techniques for accurate identification and classification.

In [28], a methodology was introduced involving multiple
models with varying K-fold values, integrating voting
techniques to select the best model. Authors [29] explored a
resilient framework for detecting and estimating GPS spoof-
ing attacks. The authors addressed sensor drift concerns by
managing estimation errors. Machine learning methods offer
promise for GPS spoofing detection in small civilian UAVs
by eliminating the need for extra hardware. In [30], a support
vector machine (SVM)-based approach was proposed to
identify UAV GPS spoofing attacks through state estimation
analysis. Alternatively, [31] introduced a method relying on
received signal strength measurements to establish a credible
residence area, effectively discerning between authentic and
spoofed GPS positions. In [32], machine learning models
were employed for spoofing detection, compared to a path-
based approach. Notably, these techniques offer the potential
for robust detection, considering varied attack durations and
flight patterns.

D. GPS SPOOFING ATTACKS CLASSIFICATION USING
DEEP LEARNING MODELS

The recent developments in deep neural networks (DNN)
offer a potential resource for filtering out data anomalies.
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TABLE 1. Summary of related work on GPS spoofing detection on UAVs.

their results with those of earlier de-
tection techniques, a precise and effec-
tive automatic detection method using a
coarse Gaussian function is created.

Ref. | Year | Dataset Approach/Classifiers | Findings Limitations
[27] | 2021 | Real-time GPS- | LR anti-spoofing | Increased capability to resist GPS spoof- | Limited evaluation of diverse attack sce-
related data model ing, no additional hardware cost, and | narios.
easy implementation.
[23] | 2023 | MPU9250 Motion  Processing | The method uses data from all three axes | Dependency on specific IMU hardware;
Units (MPUs) to identify GPS spoofing and retrieve | effectiveness in complex spoofing sce-
correct GPS locations. narios not addressed.
[28] | 2020 | Texas Spoofing | LASSO Correlation profiles, analysis of the con- | Evaluation limited to specific spoofing
Test Battery tribution of individual components from | test data; generalizability concerns.
(TEXBAT) data desired and spoofed signals.
[31] | 2021 | Spoofing data set | Support Vector Ma- | After evaluating the effectiveness of var- | Lack of evaluation on diverse spoofing
TEXBAT chines ious kernel functions and comparing | scenarios; scalability concerns.

and MAVLINK
dataset

spoofing attack detection.

[33] | 2022 | A real-time | Machine learning | The approaches suggested dynamically | Generalizability concerns; lack of ex-
dataset (13 | models choose the model that produces the best | tensive real-world testing.
signals features) results for identifying attacks.

[34] | 2021 | UAV flight logs | LSTM Authors applied LSTM classifier and | Performance on complex spoofing sce-
and telemetry autoencoder for the GPS spoofing at- | narios not discussed; scalability con-
data tacks classification. cerns.

[35] | 2021 Real-time dataset MultiLayer Authors tested three statistical models of | Lack of evaluation under diverse en-

Perceptron (MLP) MLP under different base stations. vironmental conditions; scalability con-
cerns.

[36] | 2023 | Real-time dataset | IR-UWB distance | The authors offer a method for detecting | Scalability concerns for larger UAV

measurement GPS spoofing attacks in UAV swarms | swarms; real-world validation required.
using an illustration of an IR-UWB sup-
ported UAV swarm.

[37] | 2023 | GPS signal | PCA-CNN-LSTM Comparing the proposed model to exist- | Resource-intensive methods; real-time
dataset ing deep learning and machine learning | feasibility not extensively discussed.

models, it fared better.

[38] | 2019 | Real-time dataset | The ensemble model | The weight optimization technique im- | Scalability concerns for varying attack

using the Salp Swarm | proved the results. types; generalizability not thoroughly
Algorithm addressed.
[39] | 2022 | Real-time dataset | 1D convolutional neu- | The proposed model enabled detection | Performance under varying environ-
ral network on mobile platforms. mental conditions not extensively eval-
uated.

[40] | 2023 | Real-time UAV | CNN-BILSTM- The proposed method is evaluated on | Limited evaluation on diverse spoofing

sensor data Attention (CBA) actual attack scenarios, such as denial- | attacks; scalability concerns in complex
of-service (DoS) attacks that spoof the | scenarios.
GPS, and it shows both efficacy and
interpretability.

[41] | 2022 | Real-time UAV | Deep ensemble learn- | The formulated spoofing detection prob- | Scalability concerns for complex spoof-
cellular data ing methods lem as non-linear optimization problem. | ing scenarios; real-world validation re-

quired.

[42] | 2022 | TEXBAT dataset | MLP The proposed system generate alarm on | Real-time response in dynamic environ-

ments not extensively addressed; scala-
bility concerns.

A study employed 1D CNN for GPS spoofing detection
for small UAVs. The authors applied an LSTM autoencoder
and classifier for GPS spoofing [33]. Authors introduced a
multilayer perceptron (MLP) model in [34]. It was trained
using statistical characteristics extracted from path loss
measurements collected from adjacent base stations. This
trained model is then utilized to assess the credibility
of the GPS position. The study introduced an innovative
application of deep learning techniques to counteract the
impacts of spoofing attacks aimed at one or multiple PMUs
concurrently [42].

Through MLP techniques, there are also various ways to
identify GPS signal faking. A novel method for spoofing
identification is to utilize a neural network (NN), as presented
by [43]. The technique collected information on the early-late
phase and signal intensity from the tracking loop’s correlation
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output to assess whether the signal was phony. Based on
the results, a 99.3% true detection rate is reported. When
two deep learning models were evaluated, the researchers
discovered that MLP performed better than LSTM. Their
method accurately identified GPS spoofing attacks with accu-
racies of 83.2%(TEXBAT dataset) and 99.9% (MAVLINK
dataset) [41]. Dang et al. [40] investigated the effectiveness of
statistics from the base stations for spoofing attack detection
on cellular UAVs. The MLP model has a simple structure
and performs well with some less complex datasets. To avoid
overfitting, MLP needs a lot of training in spoofing data
because it is not robust enough to handle complicated
spoofing datasets.

In addition to the aforementioned deep learning tech-
niques, spoofing attack detection techniques based on CNN
have also been used. Using a simple model, the study [38]
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a novel antispoofing technique. The suggested solution used
the ResNet architecture, which made it more effective than
SVM at detecting most spoof signals. Flight experiments
were used to gauge the algorithm’s efficacy. Wu et al. [39]
suggested a methodology for cyber attack detection in
real-time. The strategy makes use of an attention model
based on CNN and bidirectional LSTM (BiLSTM). The
model was successfully used to detect spoofing attacks in
a simulation setting. Results revealed a 99.1% spoofing
detection accuracy.

E. ROLE OF ENSEMBLE MODELS FOR GPS SPOOFING
ATTACKS CLASSIFICATION

Spoofers are constantly designing and developing innovative
techniques to attack UAVs, making the security of UAVs
challenging. Stand-alone models may not be an appropriate
choice to detect such attacks, so ensemble models can be
leveraged in this regard. As an illustration, in [44], an ensem-
ble model was introduced to categorize and identify attacks
in wireless networks. The proposed technique integrates
multiple base learners to get a strong meta-learner. The
proposed stacking strategy exhibited superior performance
compared to its constituent base learners. Similarly, [37]
undertook a comparison of distinct ensemble models to
predict RSS power for UAVs. The outcomes showcased
the supremacy of stacking over standalone models. The
authors [36] developed a framework for GPS signal spoofing
detection in small UAVs utilizing the PCA-CNN-LSTM
approach, as well as a method for detecting signal spoofing
attacks in small UAVs. Many studies are confined to small
datasets or scenarios, restricting the applicability of their
proposed methods to a wider range of spoofing contexts. The
diversity and complexity of spoofing attacks are not fully
addressed or evaluated in some works, potentially leaving
gaps in understanding and defense against various types of
spoofing tactics. Table 1 summarizes the summary of existing
studies and their limitations.

In brief, diverse techniques are proposed for detecting
GPS spoofing attacks utilizing machine learning algorithms.
These methods encompass feature selection and extraction
strategies; however, their effectiveness remains limited.
To address the challenge of identifying GPS signal spoofing
in autonomous vehicles, this study recommends an effica-
cious approach by employing machine and deep learning
algorithms, along with ensemble techniques.

This study stands out by introducing a stacked ensemble
model, merging the strengths of machine learning and deep
learning models to detect GPS signal spoofing in small UAVs.
Unlike previous research, it adopts a structured methodology,
systematically acquiring and preparing datasets, and conduct-
ing controlled simulation tests. Notably, the study employs
z-score normalization techniques for data preprocessing,
a step often overlooked in prior works, aiming to optimize
model performance. Additionally, it shows a comprehensive
performance comparison, analyzing the effectiveness of the
proposed approach against established machine learning
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TABLE 2. Attributes of the dataset.

Attributes Detailed description

PRN Satellite Vehicle Number

DO Carrier Doppler inHz

PD Pseudo-range in meter

RX Receiver Time

TOW Time of the Week in seconds

CP Carrier Phase Cycles

EC Magnitude of the EarlyCorrelator

LC Magnitude of the LateCorrelator

PC The Magnitude of the PromptCorrelator
PIP Prompt in phase correlator

PQP Prompt Quadrature Component

TCD Carrier Doppler in Trackingloop in Hz
CNO Carrier to Noise Ratio in dB-Hz

models specifically for GPS signal spoofing detection.
These aspects, from the novel model architecture to the
systematic approach and detailed performance analysis, make
this study important, potentially offering enhanced detection
capabilities for safeguarding small UAVs against spoofing
threats.

I1l. DATA COLLECTION AND PREPROCESSING

This section encompasses the crucial stages of GPS spoofing
attack detection, starting with the collection of GPS signal
data and the subsequent data preprocessing.

A. DATASET

This study makes use of a collection of GPS spoofing
incidents. This dataset [45] comprises data from genuine GPS
signals gathered from various places to simulate a moving and
stationary autonomous automobile using a universal software
radio peripheral device configured as a GPS receiver. During
the data collection process, 13 features are obtained from
eight parallel mediums at various receiver stages (i.e.,
tracking, navigation decoding, and acquisition). In addition
to the gathered legitimate GPS signals, three types of
GPS spoofing attempts were simulated: basic, intermediate,
and complicated. The generated dataset includes 158,170
samples with a balanced distribution reflecting three types
of simulated GPS spoofing attempts and 55% genuine
occurrences. Table 1 describes each feature.

B. DATA PREPROCESSING

Data preparation is critical since it enhances model per-
formance and results in more accurate features. In this
part, data preparation is accomplished by data analysis,
cleansing, and outlier removal using Z-score normalization.
To begin preprocessing the GPS spoofing dataset, its size, and
general information are examined using the .shape property.
To obtain the data types and the quantity of non-null values
for each variable, use the.info() function. The variables
PD, TCD, and CNO are then investigated as well as their
distribution. Following that, we examine the dataset for
missing values. We infer from our data exploration that the
dataset contains all values. Then we look for outliers in
the data.
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C. Z-SCORE NORMALIZATION

Following analysis, the data are normalized using the z-score
method. The dataset used in this study contains an 8-channel
GPS receiver. It indicates that each feature in the dataset
contains values of 8 different channels. Every feature in each
channel contains 158,170 continuous numeric values ranging
from -3368 to 491783. Due to the higher diversity in features
and channel values, Z-score normalization (standardization)
is one of the most important data preprocessing techniques
used for machine learning. Algorithms that compute the
distance between the features are biased towards numerically
larger values if the data is not scaled. Tree-based algorithms
are fairly insensitive to the scale of the features. Also,
feature scaling helps machine learning and deep learning
algorithms train and converge faster. For these reasons, this
study adopted the z-score normalization using Scikit-Learn
provided transformer, StandardScaler, for standardization.
It translates the data to the mean vector of the original data to
the origin and squishes or expands. The z-score normalization
is applied to the entire dataset to scale up the dataset and avoid
any kind of favoritism to the higher numeric values.

The statistical process of standardization, also known as
Z-score normalization, transforms a value distribution into a
mean of 0 and a standard deviation of 1. Both feature scaling
and data preparation frequently involve its utilization. The
mean is subtracted, and the standard deviation is divided,
to normalize the Z-score. The Z-score of a data point may
be calculated using the following equation: The Z-score can
be calculated using

=)
==K
o

ey

where z denotes the data point’s Z-score, x denotes its value,
mu is the dataset’s mean (average), and sigma denotes its
standard deviation.

The Z-score displays the number of standard deviations
of a data point from the mean value. Positive and negative
Z-scores indicate above the mean, and below the mean
values, respectively. Using z-score normalization, the data
distribution is altered which facilitates the comparison of
different features of the dataset.

IV. MATERIALS AND METHODS

Within this section, the methods employed for GPS spoofing
detection are discussed. The supervised machine learning
models, deep learning models, and ensemble models are used
in experiments. The hyperparameter details of the models are
given in Table 3.

A. RANDOM FOREST

Random forest (RF) [46] generates multiple trees and
employs randomness to mitigate variability. It has gained
substantial attention in research for addressing classification
and regression tasks involving groups of data. RF adopts
a bagging strategy, combining predictions through majority
voting, and operates on bootstrap samples from the initial
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TABLE 3. Hyperparameter details of all classifiers.

Classifier Hyperparameter

LR C =10, class_weight="balanced’, 11_ratio = 0.7, max_iter
= 3000, penalty = ’elasticnet’, solver = ’saga’

SVM C =300, class_weight = "balanced’

RF n_estimators = 300, criterion="entropy’, max_depth = 30,

DT criterion="entropy’ , max_depth = 30,

ETC n_estimators = 300, max_depth = 30, criterion="entropy’

KNN n_neighbors = 5, leaf_size = 35

VC criteria="soft’, n_jobs = -1

CNN Stride = (1 X 1), pool size= (@ 2), filter= (@ 256), Dense
neuron (60), activation =’Relu’

LSTM return_sequences= True, Dense neurons/Units (60), acti-
vation ="Relu’

RNN Dense neurons/Units (60), activation =’Relu’

dataset. The operational concept of RF can be described as
follows:

p = mode (Ti(3). T200), ... Tn(»)} €)
p=mode > Tu(y) 3)
m=1

The final output, designated as ‘p,” is determined by
employing majority voting among the predictions generated
by the individual trees, denoted as T, T», and Ty,.”

B. SUPPORT VECTOR MACHINE

SVM [47] stands as a potent machine learning methodology,
proficient in tackling both classification and regression
challenges. It achieves this by employing the kernel trick
to transform data and establish optimal boundary lines,
referred to as hyperplanes, that demarcate different outputs
effectively. These hyperplanes serve to segregate data points
of distinct types. The foundational principle of data classi-
fication revolves around crafting a function that consistently
assigns labels to data points, all the while minimizing errors
or maximizing margins. A wider margin surrounding the
separating function translates to fewer errors. By constructing
this function, labels are more distinctly segregated. In this
specific instance, the linear kernel is utilized, which offers
high accuracy.

C. LOGISTIC REGRESSION
Logistic regression (LR), as documented in Wright’s
work [48], presents a prominent approach for addressing
challenges in classification tasks. Rooted in statistical
principles, this method operates by leveraging the concept of
probabilities. It demonstrates particular efficacy when deal-
ing with binary data, aiming to predict outcomes using one
or more explanatory variables. Logistic regression employs a
sigmoid function, also termed a logistic function, to establish
relationships within categorical data. This sigmoid function
transforms input values into a range between 0 and 1, giving
rise to an S-shaped curve. This enables logistic regression to
gauge the probability of a specific class or event occurrence.
The numerical value indicated within logistic regression

TP L]

involves the translation of real numbers, where “‘e”” signifies
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the natural logarithmic base. For model optimization, logistic
regression is executed with 100 iterations (max_iter). The
parameter “‘penalty” is configured as “12,” thereby deter-
mining the penalty norm applied to the model.

D. DECISION TREE

Decision trees (DT), as outlined in the work by Breiman [49],
constitute a fundamental yet potent supervised machine-
learning methodology, adept at accommodating both numer-
ical and categorical input. Its exceptional adaptability has led
to its widespread utilization across diverse fields. The root
node is selected based on the Gini Index which is calculated
as:

classes
Gini=1- > p(ilt)* )
i=1

A key advantage of decision trees is their straightforward
implementation. These trees employ decision rules and
subsets of features at varying classification levels. They
comprise branches featuring internal and leaf nodes. Internal
nodes represent individual features, while branches leading to
groupings represent combinations of features. Each leaf node
corresponds to a class, embodying an example. The efficacy
of a decision tree’s construction profoundly influences its

performance on training datasets.

E. K NEAREST NEIGHBOUR

The K-nearest neighbors (KNN) classifier [50] is a widely
recognized algorithm. It operates as a non-parametric,
instance-driven learning technique, thereby avoiding any
assumptions about the underlying data distribution. Employ-
ing estimated distances, the KNN algorithm selects K
examples from the training dataset that exhibit the closest
resemblance to the new instance. Once K’s nearest neighbors
are identified, the algorithm conducts a majority voting
process among their associated class labels. Consequently,
the projected class for a novel instance is determined by the
class label that attains the highest frequency within the set of
K neighbors.

F. EXTRA TREE CLASSIFIER

The extra tree classifier (ETC) algorithm, as introduced by
Sharaff [51], shares similarities with the Random Forest
(RF) technique, albeit with distinct tree-building approaches.
Unlike RF, ETC opts for using the original dataset to
construct trees, foregoing the utilization of bootstrap samples.
ETC’s decision-making process is rooted in random data
sampling from the top k-best features. The selection of
the optimal feature for tree partitioning employs the Gini
index. While both ETC and RF serve as ensemble learning
models for classification tasks, their divergence emerges in
the manner of tree assembly within their respective forests.
In the case of ETC, K features are randomly sampled from
the feature pool and subsequently allocated to the test nodes
of each tree.
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G. LONG SHORT-TERM MEMORY

LSTM represents an advanced paradigm within the realm of
deep learning and stands as an evolutionary development of
Recurrent Neural Networks (RNNs), as referenced by [52].
Within the architecture of an LSTM, crucial elements such
as the forget gate (f), the input gate (ix), and the output
gate (o) are embedded. These gates serve to facilitate the
controlled passage of data, enabling the retention of salient
information while filtering out extraneous data, contingent
on the predetermined dropout threshold. Central to the
LSTM model is the inclusion of a dedicated memory
component denoted as Ci, functioning as a repository for
pivotal information. Notably, various iterations of LSTM
configurations exist.

The LSTM model corresponds to the associated weights
involving matrix components. The accumulated hidden state
until the (k— 1) time step is denoted as 4, while s signifies the
input at that specific time step. The bias term is symbolized
by b. During the (k — 1) time step, adjustments are made
to the memory cell block represented as c. Every neuron
within the output layer of the LSTM maintains connections
with all neurons within the dense layer, indicating a fully
interconnected structure.

H. CONVOLUTIONAL NEURAL NETWORK

CNN is designed to capture intricate patterns through the
utilization of convolutional and pooling layers, as highlighted
by Yamashita [53]. CNNs find widespread application in
tasks such as image segmentation and classification. The
robustness of layered CNN models is bolstered by end-to-end
training, ensuring their adaptability.

Functioning as a feed-forward network model, CNN’s
convolutional layers process input data by applying filters to
the output of preceding levels. CNN also contains pooling,
dropout, and fully connected layers. Pooling contributes to
feature selection by reducing feature dimensions, and it can
be implemented as either average or max-pooling. The out-
puts of preceding layers are directed to fully connected layers,
which ultimately determine the final outcome. Dropout layers
are strategically employed to mitigate overfitting risks. The
selection of an appropriate activation function is crucial in
discerning the significance of input information.

I. PROPOSED ENSEMBLE MODEL
This ensemble model combines machine learning and a deep
learning algorithm, creating a synergistic union. Ensembling
stands as a potent strategy involving the aggregation of
predictions from diverse models to enhance accuracy and
resilience. Each model within an ensemble brings forth its
distinct merits and limitations, and their amalgamation yields
superior overall performance. The proposed architecture is
presented in Figure 1.

The ensemble model’s functionality revolves around
harmonizing the predictions from two distinct learning
algorithms. The conventional strategy for constructing an
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FIGURE 1. Architecture diagram of the proposed approach.

ensemble involves training multiple models on an identical
dataset, followed by fusing their predictions. The SVM-CNN
ensemble model adheres to this methodology, training
SVM and CNN models separately on the same dataset.
These models individually generate predictive probabilities
for each class of the target variable. This assortment of
predicted probabilities can then be combined to render
a conclusive prediction for every observation within the
dataset. A prevalent method to aggregate these predictions
is through a weighted average of predicted probabilities,
wherein the weights are determined based on each model’s
performance on a validation set.

The proposed ensemble model leverages the strengths
of both machine learning and deep learning algorithms,
leading to enhanced accuracy and robustness in predictions.
By training diverse models on the air quality dataset and
merging their predictions, we elevate the model’s capability
for generalization and curtail overfitting. The operational
dynamics of the envisaged ensemble model are encapsulated
by

n n
D= argmax{ZSVMi, ZCNNi}. (5)
i i

n n
where ZSVM,- and ZCNNi yield prediction probabili-

i i
ties for each test sample. Subsequently, the probabilities
generated by SVM and CNN for each test case undergo
assessment using the soft voting criterion.
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The ensemble model arrives at its final class designation
by considering the highest average probability across classes
and by aggregating the projected probabilities from both
classifiers. The conclusive prediction corresponds to the class
with the most substantial probability score, as evidenced by

VC(SVM + CNN) = argmax(g(x)) (6)

V. EXPERIMENTS AND RESULTS

Within this section, an in-depth analysis of the performance
exhibited by the proposed model is conducted. This model
employs a variety of machine learning classifiers and is
deployed on a GPS spoofing dataset. A comprehensive
evaluation is undertaken, encompassing multiple metrics
such as accuracy, recall, precision, and F1 score. These
metrics collectively serve as evaluative benchmarks to
ascertain how effectively the proposed model performs in
comparison to established approaches. The spoofing data
has been partitioned into training and test sets, following
a 70:30 ratio.

A. IMPLEMENTATION DETAILS
The experimental setup involved training the model. The
prescribed model was developed within the Python 3.8 pro-
gramming environment. For performance evaluation, accu-
racy, precision, recall, and F1 score are used with the
following equations

TP + TN

Accuracy = @)
TP+ TN + FP+ FN
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TABLE 4. Experimental results of machine learning models.

Classifiers | Accuracy | Precision Recall F1 score
RF 95.89% 95.62% 95.25% 95.45%
ETC 91.47% 85.17% 87.74% 86.29%
LR 93.09% 91.29% 93.44% 92.54%
KNN 89.68% 88.50% 89.74% 89.18%
DT 94.49% 94.22% 94.58% 94.37%
SVM 96.50% 97.34% 98.18% 97.87%
. TP
Precision = —— (8)
TP + FP
TP
Recall = ——— O]
TP + FN
Precision x Recall
F1 Score =2 x (10)

Precision + Recall

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

B. RESULTS OF MACHINE LEARNING MODELS

The experiments incorporate an array of machine learning
classifiers including RF, ETC, LR, KNN, DT, and SVM.
Table 4 illustrates the results of machine learning models
and offers an overview of their overall efficacy. The SVM
model exhibited a commendable score with 96.50% accuracy
in accurately identifying instances within the test set. Its
precision, recall, and Fl-score are recorded as 97.34%,
98.18%, and 97.87% respectively. Conversely, the KNN
model demonstrated a notably low score on all metrics
with 89.68% accuracy, 88.50% precision, 89.74% recall, and
89.18% F1 score. ETC, LR, and DT have shown moderate
levels of performance in identifying spoofing attacks from
GPS-based datasets.

The experimental findings demonstrate that both RF
and SVM exhibit better results when compared to other
models in precisely categorizing GPS spoofing attacks.
By analyzing these results, it’s evident that the SVM
classifier outperformed the other models in terms of accuracy,
precision, recall, and F1 score. This indicates that the SVM
model exhibited a high level of accuracy in identifying GPS
spoofing attacks and was particularly effective in achieving
both high precision and recall rates. These results suggest
that the SVM model holds promise as a robust tool among
machine learning models for detecting and classifying GPS
spoofing attacks.

C. RESULTS OF DEEP LEARNING MODELS

Deep learning models used in experiments include LSTM,
RNN, and CNN. The performance of these models is pre-
sented in Table 5. Results show the performance evaluation
of different classifiers, LSTM has shown better results
than RNN in accurately identifying spoofing attacks. The
CNN achieves an accuracy of 97.37% and 98.47% score of
precision. The recall metric measures the classifier’s ability
to detect actual positive instances, with CNN achieving
98.88%. Lastly, the Fl-score, harmonizing precision and
recall, is 98.69% for CNN. These results collectively
underscore CNN’s superior performance among the deep
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TABLE 5. Experimental results of deep learning models.

Classifiers | Accuracy | Precision Recall F1 score
LSTM 90.29% 87.16% 87.37% 87.24%
RNN 88.34% 85.52% 85.19% 85.32%
CNN 97.37% 98.47% 98.88% 98.69%

learning models, highlighting its potential as a robust tool for
accurate GPS spoofing attack classification.

Collectively, these findings accentuate the superior per-
formance of the CNN architecture among the evaluated
deep learning models. CNN'’s ability to accurately identify
GPS spoofing attacks, as evidenced by its high precision,
recall, and F1 score, signifies its potential as a reliable
and robust tool for combating such security threats. The
CNN’s capacity to extract and discern significant spatial
and temporal features from the data contributes substantially
to its efficacy in classification tasks, thereby establishing
it as a promising choice for accurate GPS spoofing attack
detection and classification. These results underscore the
viability of CNN as a pivotal component in the arsenal against
GPS spoofing threats, paving the way for enhanced security
measures and reliable identification of spoofing attempts.

D. RESULTS OF ENSEMBLE MODELS

Table 6 presents the performance of ensemble models in
the context of classifying GPS spoofing attacks. These
ensemble models combine the capabilities of multiple
individual classifiers to improve predictive accuracy. The
ensemble configuration of models is labeled as “Ensemble
(RF-CNN),” “Ensemble (RF-LSTM),” “Ensemble (SVM-
LSTM),” and “Proposed Ensemble (SVM-CNN).” It can be
observed that an ensemble of machine learning and deep
learning models has shown improved results. Notably, the
“Proposed Ensemble (SVM-CNN)” stands out with excep-
tional results, achieving an accuracy of 99.72%, a precision
of 99.65%, a recall of 99.77%, and an F1-score of 99.72%.
Overall, the table demonstrates that ensemble models, such
as “Proposed Ensemble (SVM-CNN),” yield remarkable
results in accurately classifying GPS spoofing attacks. These
ensemble models leverage the complementary strengths of
their constituent classifiers, leading to enhanced predictive
accuracy, precision, recall, and Fl-score. These findings
suggest that ensemble techniques hold significant promise for
the effective detection and categorization of GPS spoofing
attacks.

The results from the ensemble models, notably the
proposed Ensemble (SVM-CNN), demonstrate a signifi-
cant leap in accurately identifying GPS spoofing attacks.
By combining the strengths of various classifiers, these
ensembles showcase exceptional performance, achieving
robust accuracy, precision, recall, and F1 scores. This
robustness indicates the potential of ensemble techniques as
a cornerstone in bolstering security measures against GPS
spoofing threats. The visual representation in Figure 2 further
solidifies the ensemble models’ dominance in classifier
accuracy, underlining their promise for effective detection
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FIGURE 2. Accuracy comparison of all employed models.

TABLE 6. Experimental results of ensemble models.

Classifiers Perf(?r.m ance in %

Accuracy | Precision | Recall | FI1 score
RF-CNN 97.67 97.20 97.78 97.49
RF-LSTM 94.82 91.37 92.08 91.89
SVM-LSTM 92.48 94.52 94.18 94.29
Proposed 99.72 99.65 99.77 99.72
(SVM-CNN)

and classification of GPS spoofing attacks. Overall, these
findings underscore the efficacy of ensemble methods as
a promising avenue for fortifying defenses against such
security vulnerabilities.

E. SIGNIFICANCE OF PROPOSED APPROACH

This study also performs cross-validation to analyze the
significance of the proposed model SVM-CNN. Table 7
illustrates the cross-validation results for the SVM-CNN
model for classifying GPS spoofing attacks. A model’s
performance can be reliably analyzed using cross-validation
where k folds are considered to investigate the model’s
ability and robustness to provide accurate results with lower
standard deviation. The ““average” row at the bottom of the
table presents the mean values of these performance metrics
across all folds. The Proposed Ensemble (SVM-CNN) model
exhibits consistently high performance across the folds,
with an average accuracy, precision, recall, and F-Score
of 99.72%, 99.75%, 99.79%, and 99.77% respectively.
This suggests that the ensemble model is effective and
reliable in accurately classifying GPS spoofing attacks across
various subsets of the dataset, indicating its robustness and
generalization capability.

F. COMPARISON WITH STATE-OF-THE-ART EXISTING
MODELS

To evaluate the significance of the proposed SVM-CNN
model, this study undertakes a performance analysis by

VOLUME 12, 2024

94.82
92.48
90.29
88.34
&w\

&

99.72

TABLE 7. Results for k-fold cross-validation of the proposed ensemble
(SVM-CNN).

Fold Number | Accuracy | Precision | Recall | F-Score

Fold-1 99.45 99.76 99.79 99.77

Fold-2 99.78 99.78 99.83 99.81

Fold-3 99.67 99.82 99.88 99.85

Fold-4 99.55 99.70 99.76 99.73

Fold-5 99.79 99.86 99.76 99.81

Average 99.72 99.75 99.79 99.77

TABLE 8. Experimental results of ensemble models.

Reference Year Model Accuracy
[31] 2021 SVM 92.31%
[55] 2022 Nu SVM 92.78%
[37] 2023 | PCA-CNN-LSTM 99.49%

Proposed Ensemble | 2023 (SVM-CNN) 99.72%

100 99.49 99.72

92.78
92.31

SVM [31] Nu SVM [55] PCA-CNN-LSTM [37] Proposed

FIGURE 3. Accuracy comparison with state-of-the-art models.

comparing it with other advanced approaches commonly used
for detecting GPS spoofing attacks.

Table 8 facilitates a comparative analysis between the
proposed ensemble (SVM-CNN) model and several state-
of-the-art existing models in the field of GPS spoofing
attack detection. Notably, the study [36] introduces a PCA-
CNN-LSTM model achieving an impressive accuracy of
99.49% in detecting GPS spoofing attacks. In contrast,
the proposed ensemble (SVM-CNN) model, featured in
this study, surpasses the other models with a notably
higher accuracy of 99.72%. This comparative assessment

27353



IEEE Access

A. Abdulmajid Eshmawi et al.: Enhanced ML Ensemble Approach for Securing Small UAVs

emphasizes the effectiveness of the proposed model in GPS
spoofing attack detection and its competitive standing among
contemporary state-of-the-art methodologies as shown in
Figure 3.

VI. CONCLUSION

This work presented a complete way for detecting GPS
signal spoofing using an ensemble model. The dataset
was rigorously collected using a composite-wing UAV and
a deceptive misleading spoofing blocker. The following
phases involved data analysis and preparation, most notably
z-score normalization. Following that, an ensemble of
machine learning and deep learning models is devised
to detect instances of GPS signal spoofing. The use of
confusion matrices as a rigorous assessment tool was critical
in determining the model’s computational efficiency. Exper-
imental results demonstrate the ensemble model’s efficiency,
with an outstanding accuracy rate of 99.74%. Notably, this
work used actual GPS spoofing signal data, assuring the
preservation of critical data features that support GPS signal
manipulation while providing greater dependability than
simulation-derived datasets. Finally, a comprehensive model
capable of detecting GPS signal spoofing was developed
that is an ensemble of both machine learning methods and
deep neural networks. The proposed ensemble SVM-CNN
has shown significant performance in identifying spoofing
actions in UAVs. Furthermore, this study explains the move
from complex machine learning models to simpler deep
learning models in UAV GPS signal spoofing detection.
Future initiatives will incorporate cutting-edge deep learning
methodologies and models to improve spoofing attack
detection.
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