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ABSTRACT The most common method for interpreting strata with seismic data is to relate the peaks and
troughs of adjacent traces based on the seismic waveform characteristics. This can be captured by machine
learning and deep learning methods to stratigraphic segmentation as many people investigated in industry.
However, the spatial variability and instability of the peaks and troughs of seismic signals increases the
difficulty of applying this technology. In addition, the nonlinear relationship and complicated subsurface
geological setting make it more difficult. Thus, we propose a new seismic attribute extraction method based
on the Gabor wavelet transform and linear dimensionality reduction. This method does not use the peaks
or troughs of the seismic signal and instead focuses on the energy change in the seismic signal at the
strata interface. It uses the characteristics of the energy change to identify strata. A sliding window Fourier
transforms (STFTs) pretreatment is applied to convert the seismic signal to a spectrum energy form. On this
basis, the local texture information of the spectrum can be processed by theGabor wavelet transform to obtain
the Gabor attribute of the seismic signal. The seismic Gabor attributes extracted using the above method
contain time, frequency, and energy features, solving the problem of single seismic amplitude data features.
Finally, the validity of the extracted seismic attributes is verified by a field data. In this process, the seismic
amplitude, spectrum data andGabor attributes are used as sample data for the support vector machine (SVM),
random forest (RF), extreme gradient boosting (XGBoost) models and deep residual shrinkage network
(DRSN) for comparison. The results show that when the seismic Gabor attributes are used, the accuracy and
root mean square error (RMSE) of the stratigraphic identification with the SVM, RF and XGBoost models
are significantly better than those of the seismic amplitude and spectrum data only.

INDEX TERMS Spectrum analysis view, Gabor wavelet transform, LDA, SVM, RF, XGBoost, DRSN.

I. INTRODUCTION
Seismic signals contain various geological information, such
as lithology, structure, reservoir petrophysical properties and
fluid properties [1], [2]. Early seismic exploration relied on
the amplitude or velocity attributes of seismic signals to iden-
tify potential oil and gas reservoir reflections by analysing,
seismic profiles [3]. The concept of seismic attribute char-
acteristics in seismic exploration work during this period is
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preliminary. Experts normally process and transform seis-
mic signals to certain forms of data reflecting lithology
identification, reservoir description and oil and gas detec-
tion [4], [5], [6]. These transformed data can be from wave
dynamics, kinematic geometry, statistics and other methods,
allowing them to intuitively determine the characteristics of
the subsurface geological objects [7], [8], [9]. With the rapid
development of mathematics, physics, computer science and
information science, various new theories and methods for
seismic attribute extraction have been developed [10], [11].
More than hundreds of different seismic attributes based on
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the amplitude, frequency, phase and correlation of seismic
signals are available in industry. Still, new seismic attributes
and extraction methods are constantly being developed [12].
Seismic attribute extraction can be a mathematical trans-

form process. After seismic data or seismic signals are math-
ematically transformed, various seismicwaves characteristics
can be obtained [13]. Seismic signals are non-stationary sig-
nals, and studies on the processing of non-stationary signals
have began in the 1940s [14]. The short-time Fourier trans-
forms (STFTs) based on stationary signals not being able
to handle the non-stationary signals, Koenig et al. proposed
a spectrum analysis method [15] to count non-stationary.
Because its method is simple and easy to implement,
it became a common tool for analysing non-stationary signals
and was widely used to analysis and process signals [16],
[17], [18]. However, due to lacks of consideration of bound-
ary effect and others, this method was gradually replaced
by wavelet transforms, S transforms and Wigner-Ville trans-
forms, which demonstrated superior performance.

In recent years, with the advancement of mathematical
theory, computer hardware and technology, various artificial
intelligence-based algorithms have been widely used in vari-
ous fields [19], [20], [21]. In this field, the spectrum analysis
has been re-focused. L. Navarro et al. constructed a spectrum
analysis) method for music signals to detect subtle frequency
and phase changes and successfully characterised each type
of sound attack without losing signal information [22].
Yu et al proposed decomposing the mixture spectrogram into
three components, namely, a sparse spectrogram represent-
ing the singing voice, a low-rank spectrogram representing
the background music, and a residual spectrogram repre-
senting the components. This successfully separates vocal
sounds from background music [23]. Wang et al. treats
the time-frequency analysis as an image and further adopts
the guided spectrogram filter, and propose a single-channel
speech enhancement algorithm. This algorithm effectively
suppresses noises and greatly improved speech quality and
speech intelligibility [24].

Although studies on the relationship between energy, time
and frequency have yielded useful results in speech pro-
cessing, it is rarely used in seismic signal processing. The
frequency spectrum of the seismic signal can be converted
into a spectrum analysis to provide a visual representation
of the changes in the seismic signal energy with time and
frequency. This method is a ‘‘three-dimensional’’ form of
expression. The process of generating a spectrum analysis
view is essentially a process of extracting the seismic sig-
nal attributes. Therefore, it is feasible to study and analysis
the time-varying characteristics of the short-time spectrum
of the seismic signal and extract the relevant attributes of
the seismic signal from the energy change. Compared with
traditional methods, such as ‘‘bright spot’’ technology [25]
and ‘‘sweet spot’’ [26] technology, the extraction of seismic
attributes based on the spectrum analysis view is more objec-
tive, accurate and rapid. Furthermore, the seismic attributes

extracted from the spectrum analysis view of the effective
seismic signal can be used as training data. By applying var-
ious machine learning algorithms, seismic signal denoising
and pattern recognition can be performed. Gabor wavelet
transforms have unique advantages in terms of spectrum
analysis view feature extraction. Gabor wavelet transforms
can extract features at different scales and various directions
in the frequency domain. Compared with the Fourier trans-
form, the Gabor wavelet transform can adjust the direction,
centre frequency and fundamental frequency bandwidth of
the filter, greatly improving the signal resolution in the time
and frequency domains. Tao et al. improved the recognition
rate of emotional speech by using Gabor wavelet transforms
on the logarithmic energy spectrum of emotional speech [27].
Kubicek et al. developed a feature representation based on
the amplitude spectrum of sonar data with convolutions of
two-dimensional Gabor wavelet transforms and the acoustic
colour amplitude. The Gabor wavelet transform can be used
to extract local features for model recognition with high
accuracy [28].

Stratigraphic identification is the very important area for
seismic interpretation using attributes. Due to the charac-
teristics of wide coverage, spatial continuity and enriched
information, seismic data became the major means for con-
structing stratigraphic framework. Zheng et al. imaged the
distribution and evolution of tidal deposits in the study area
using RMS (root mean square) amplitude attribute maps
by combining high-resolution stratigraphic correlations with
seismic attributes extracted from stratigraphic slices of the
3-D data volume [29]. Chen et al. studied on the spatial
and temporal distribution of microfacies of the reef-beach
using seismic attribute extraction.Meanwhile, combinedwith
impedance inversion, the spatial distribution of porosity of
reef-beach reservoir was characterized. The results show that
the evolution of the reef-beach system contains three stages
which are initial bioclastic bank establishment stage, reef
development stage and exposure stage [30]. Thota et al. inves-
tigates the reservoir characteristics of the Mount Messenger
Formation of Kaimiro-Ngatoro Field which was deposited in
deep-water environment. 3D seismic data, core data and well
data from the Kaimiro-Ngatoro Field were utilized to iden-
tify lithofacies, sedimentary structures, stratigraphic units,
depositional environments and to construct 3D geological
models [31].

This paper proposes a seismic attribute feature extraction
method based on Gabor wavelet transforms of the spectrum
analysis view of seismic signals. We first process the seismic
signal with framing, windowing, and STFTs to construct the
spectrum analysis view. Then, the Gabor wavelet transform is
used to extract the time-frequency features, which uses only
the seismic waveform features to address the limitation of
the traditional method. For experiments, we use the seismic
amplitude (waveform), spectrum analysis view and extracted
seismic Gabor features as datasets for, three popular machine
learning algorithms and one deep learning algorithm, namely,
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the support vector machine (SVM), random forest (RF),
extreme gradient boosting (XGBoost) and deep residual
shrinkage network (DRSN), to verify the effectiveness in
terms of the stratigraphic division. The experimental results
show that when the seismic Gabor feature is used in the
training dataset, the stratigraphic division effect is more
noticeable. In addition, we applied the seismic Gabor features
to field seismic data and achieved good results.

II. THE PRINCIPLE OF SEISMIC GABOR FEATURE
EXTRACTION
A. THE PRINCIPLE OF THE GABOR TRANSFORM
The Fourier transform (FT) is a global transform that may
not fit for non-stationary signals. However, non-stationary
signals can be considered locally stationary. By performing
a FT on the local part of the signal, the characteristics of
non-stationary signals can be analysed. In terms of approx-
imation for the stationarity of local signal by Short-Time
Fourier Transform (STFTs), we introduce the Gabor trans-
form, which uses the concept of a time window function
on the basis of the FT [32]. The Gabor transform performs
window processing on the signal, and applies short-time
Fourier transforms on the window. By obtaining the trans-
form coefficient, the time-frequency relationship of the signal
can be built. Assuming x(t) is a continuous time signal, the
continuous Gabor expansion and transform can be defined as,

x(t) =

∑
m

∑
n

C(m, n)hm,n(t) (1)

hm,n(t) = h(t − mT ) exp(jn�t) (2)

where T is a time shift parameter,� is a frequency parameter,
andm and n represent the time domain and frequency domain
serial numbers, respectively, with m, n = 0, ±1, ±2, · · · .
C(m, n) is the Gabor transform coefficient, and hm,n(t) is the
Gabor basis function. In addition, the basis function must
satisfy the following energy normalization constraint.

∞∫
−∞

|h(t)|2 dt = 1 (3)

Since the basis function hm,n(t) cannot form an orthonor-
mal basis in the Gabor transform, it is difficult to solve the
expansion coefficient C(m, n). Bastiaans proposed a dual
window that is biorthogonal to the original window. That
is that the biorthogonal analysis window function (auxiliary
window function) is used [33]. The Gabor coefficient is cal-
culated by an inner product of the quadrature dual window
and the signal [34], that is,

C(m, n) =

∞∫
−∞

x(t)γ ∗
m,n(t)dt (4)

γm,n(t) = γ (t − mT ) exp(jn�t) (5)

where γ ∗
m,n(t) in equation (4) and γm,n(t) in equation (5)

are conjugate functions. By substituting equation (4) into

FIGURE 1. Schematic diagram of seismic time-domain signal framing.

FIGURE 2. Schematic diagram of the Hamming window function. (a) is
the time-domain image, and (b) is the frequency domain image.

equation (1), the following orthogonal relationship can be
obtained. ∑

m

∑
n

hm,n(t)γ ∗
m,n(t

′) = δ(t − t ′) (6)

where δ(t) is the Dirac function, which can be expressed as,

δ(t − t ′) =

{
1, t = t ′

0, t ̸= t ′
(7)

The biorthogonal condition can be expressed as,

T0�0

2π

∞∫
−∞

h(t)γ ∗(t − mT0) exp(−jn�0t)dt = δ(m)δ(n) (8)

where T0 = 2π/�, and �0 = 2π/T .

B. SPECTRUM ANALYSIS VIEW OF SEISMIC SIGNALS
In this paper, we use the short-time window analysis to pro-
cess the seismic signal and to divide the signal into multiple
short segments, assuming the signal to be stationary in the
short segments [35]. The segmentation of the seismic signal
results in possible segment discontinuity at its split point in
between segments. The more the segments are divided, the
higher the error between the divided signal and the original
signal. Therefore, we perform windowing or framing on the
segmented signal.
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FIGURE 3. Spectrum analysis view of seismic single-track data. (a) Raw seismic signal amplitude, (b) Spectrum analysis view of the seismic signal.
The red line is the stratigraphic boundary.

1) SEISMIC SIGNAL FRAME PROCESSING
If the seismic signal is processed in frames, the signal can
be considered a stationary signal in each frame. Then, STFT
processing can be performed. To maintain the continuity of
the signal, a segmented method in which the front and rear
of each frame are partially overlapped is used to smooth the
transition between frames or segments. The overlapping part
is the frame shift, as shown in Fig. 1.

2) SEISMIC SIGNAL WINDOWING
Windowing the seismic signal is equivalent to periodically
extending a truncated signal. Thus, the truncated signal
becomes a finite sequence. Because this operation causes the
original nonperiodic signal to reflect some of the characteris-
tics of the periodic function, the time-domain signal can better
meet the periodic requirements of STFT. In addition, the
framed seismic signal becomes continuous after windowing,
which suppresses spectral leakage and aliasing and prevents
the Gibbs effect. The windowing process is usually realized
by multiplying the signal and the window function. The
equation (9) and equation (10) show the windowing process
in the time and frequency domains.

xw(n) = x(n)w(n) (9)

XN
[
exp(jω)

]
= 0.5

π∫
−π

X
[
exp(jθ)

]
×W

[
exp(j(ω − θ))

]
dθ (10)

In this paper, the window function is the Hamming window,
which is defined as,

w(t) =


1
T
(0.54 + 0.4 cos

π t
T
) |t| ≤ T

0 |t| > T
(11)

W (ω) = 1.08
sinωT

ωT

+ 0.46
[
sin(ωT + π )

ωT + π
+

sin(ωT − π )
ωT − π

]
(12)

Different weighting coefficients in the Hamming window
decrease the size of the side lobes and cause the energy of
the signal to be more concentrated. The Hamming window is
more suitable for seismic signals with complex spectra and
multiple frequency components, as shown in Fig. 2.

3) SPECTRUM ANALYSIS VIEW OF SEISMIC SIGNALS
After the seismic signal x(t) is divided into frames and
windowed, the seismic signal sequence xd (n) is obtained
with d = (1, 2, · · · ,D), where D represents the number of
frames. The seismic signal of the third frame is calculated.
The equation for calculating the STFT of the seismic signal
xd (n) of the d-th frame is:

Xd (k) =

N−1∑
n=0

xd (n)w(n0 − n) exp [−(2π j/N )kn] (13)

where w(n0 − n) exp [− (2π j/N ) kn] is the discretized Ham-
ming window function, N is the interval length of the
short-time Fourier transform, and Xd (k) is the spectrum anal-
ysis view of the generated seismic signal. The seismic signal
spectrum analysis view contains a considerable amount of
information related to the seismic attribute characteristics.
This view combines the characteristics of the time-domain
waveform and spectrogram and shows the variation relation-
ship of the seismic signal spectrum over time, which is a
dynamic expression of the spectrum.

Fig. 3 shows a spectrum analysis view of a single trace
seismic signal generated from multi-reflecting interface or
strata boundaries. In the spectrum analysis view, the hori-
zontal axis is time, the vertical axis is frequency, and the the
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colour is the energy at a specific time and frequency, as shown
in Fig. 3(b).When the spectrum analysis view is studied along
the time axis, we find that the energy is mainly concentrated
in the low frequency band and is not continuous. The energy
concentrated area (usually the resonance peak) is mainly near
the reflective layer. The energy gradually decays over time.
When the spectrum analysis view is studied along the fre-
quency axis, we find that the early energy is concentrated in
the high frequency band near the reflection horizon. However,
this energy is much lower and attenuates faster than in the low
frequency band. This result is consistent with the propagation
characteristics of seismic waves in the strata. Therefore, com-
pared to the direct extraction of seismic attribute from seismic
signal waveforms, the seismic signal spectrum analysis view
can more objectively reflect the propagation characteristics
of seismic signals in subsurface media.

C. GABOR WAVELET TRANSFORM AND FEATURE
EXTRACTION IN THE SPECTRAL ANALYSIS VIEW
1) GABOR WAVELET TRANSFORM
The Gabor function is orthogonalized through scaling and
rotations for a series of Gabor wavelets. A Gabor wavelet
has a high resolution in both the time and space domains.
In addition, the Gabor wavelet is able to capture local features
and can be used to extract subtle local changes in data.
The two-dimensional Gabor wavelet kernel function can be
expressed as,

Gµ,v(z) =

∥∥kµ,v
∥∥

σ 2 exp

(
−

(−∥kµ,v∥
2
∥z∥2)

2σ 2

)

×

[
exp

(
jkµ,vz

)
− exp

(
−

σ 2

2

)]
(14)

where kµ,v =

(
kv
kv

cosϕµ

sinϕµ

)
, kv = 2∧

(
−
v+2
π

)
, ϕµ = µπ

k ,

µ is the direction of the Gabor filter, v is the filter scale, k
is the total number of directions, j is the complex arithmetic
(j =

√
−1), σ is the radius of theGaussian function, ∥•∥ is the

Euclidean norm of the corresponding value, and z(x, y) is the
spatial position of the input value. The single-channel seismic
signal data can be converted to the spectrum analysis view and
recorded as P(z). The convolution of the Gabor wavelet can
be expressed as follows:

Fu,v(z) = P(z) ∗ Gµ,v(z) (15)

where Fu,v(z) is the feature of the spectrum analysis view P(z)
with the Gabor wavelet transform, and ∗ is the convolution
operation.

2) SEISMIC GABOR FEATURE EXTRACTION
The size of the kernel function window in the Gabor wavelet
transform has a great influence on the feature extraction of
the seismic spectrum analysis view. In equation 13, the kernel
function window size can be adjusted according to the (x, y).
We fix the relevant parameters of the different scales and

directions to qualitatively analyse the influence of the kernel
function window size on feature extraction. The specific
parameters include λ which is the wavelength, θ which is
the filter direction, ϕ which is the phase offset, being able
to represent the phase parameter in the cosine function in the
Gabor kernel function, and γ which is the spatial aspect ratio,
indicating the ellipticity of the Gabor kernel function. When
γ is equal to 1, the filter is circular. When γ is greater than
4 or less than 1, the filter is either elongated or shortened,
respectively. The changes as the direction of the Gabor filter
varies can be observed by selecting different window sizes,
as shown in figures 4 and 5.

As seen in figures 4 and 5, as the window size of the
kernel function increases, the non-zero proportion of the
convolution kernel decreases, and the features extracted by
this filter gradually capture more details. Due to seismic data
denoising in the early stage, it is impossible to completely
eliminate the interference factors. The features extracted by
the large window amplify the interference factors and are
sensitive to interference such as noise. The extracted features
are more likely to contain interference factors. In addi-
tion, as the window size increases, the computation demand
increases. However, the features extracted by a small window
tend to be global, which can miss the detailed features and
reduce the resolution of the extracted features. Therefore,
it is necessary to select the optimal window size through
experiments.

D. THE BASIC PROCESS OF DIMENSIONALITY
REDUCTION
Linear discriminant analysis (LDA) is a dimensionality
reduction technique for data analysis and supervised learn-
ing. The idea of LDA is that when projecting variables, the
variance in the inner class has the smallest value, while the
variance between classes has the largest value [36], [37]. For
stratigraphic boundary identification, the projection points
corresponding to a boundary being as close as possible,
which the distance between different types of data centre
points to be as large as possible. The specific process is as
follows.

1) Consider 7 hierarchical interfaces of data {xi, yi}7i=1,
where the data of {xi, yi} is the i-th interface, with i ∈

[1, 2, · · · , 6, 7].
2) Calculate the covariance matrix

∑
i of the i-th layer.

3) Calculate the projections ωTµ0 and ωTµ1 of the hierar-
chical interface data on line w, where µ0 and µ1 indicate the
position of the line point in the data.

4) Calculate the covariances ωT∑
0 ω and ωT∑

1 ω of the
two hierarchical interfaces separately.

5) According to the principle that the projection points of
the same interface should be as close as possible, that is,
ωT∑

0 ω + ωT∑
1 ω should be as small as possible.

6) Perform projection points of different interfaces to
have group center distance as large as possible, that is,∥∥ωTµ0 − ωTµ1

∥∥2
2 should be as large as possible.
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FIGURE 4. The shape changes in the Gabor kernel filter with different scales and directions.

FIGURE 5. Gabor kernel filter shape changes with different window sizes. (a) 6 × 6, (b) 8 × 8, (c) 10 × 10, (d) 12 × 12, (e) 16 × 16, (f) 20 × 20,
(g) 24 × 24, and (h) 32 × 32.

7) Maximize objective function J as equation (16) as
follows.

J =

∥∥ωTµ0 − ωTµ1
∥∥2
2

ωT
∑

0 ω + ωT
∑

1 ω
(16)

equation (16) can be rewritten as,

J =
ωT(µ0 − µ1)(µ0 − µ1)Tω

ωT(
∑

0 +
∑

1)ω
(17)

According to the form of generalized Rayleigh Quotient,
equation (17) can be reformulated as,

J =
ωTSaω
ωTSbω

(18)

where Sa and Sb are the intraclass scatter matrix and interclass
scatter matrix, respectively.
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To optimize equation (18), the following equation can be
derived.

ω∗
= argmax

ω

∣∣ωTSaω
∣∣∣∣ωTSbω
∣∣ (19)

where ω∗ is the optimal discriminant function. In order to
achieve the goal, we differentiate equation (18).

dJ(ω)
dω

=
2Saω

(
ωTSbω

)
− 2Sbω

(
ωTSaω

)
ωTSbω

(20)

We set equation (20) equal to 0, and we can get the following
equation.

Saω
(
ωTSbω

)
= Sbω

(
ωTSaω

)
(21)

Equation (21) can be transformed into the following
equation.

Saω = Sbω
(

ωTSaω
ωTSbω

)
= J (ω)Sbω (22)

We multiply both sides of equation (22) by S−1
b to get the

following equation.

S−1
b Saω = J (ω)ω (23)

where, S−1
b represents the inverse matrix of Sb. So solving ω∗

is to solve the eigenvectors and eigenvalues corresponding to
S−1
b Sa. Derived from the above equation, LDA is divided into
three steps. The first is to obtain classification information,
and secondly to obtain the average value, within-class scatter
matrix, and between-class scatter matrix. Finally, find the
eigenvalue corresponding to S−1

b Sa.

E. SPECTRUM ANALYSIS VIEW OF SEISMIC SIGNALS
The spectrum analysis process has two components includ-
ing data processing and feature extraction. The former is
responsible for generating the spectrum analysis view, while
the latter extracts the features of the spectrum analysis view.
The purpose of this study is to address a limitation of the
traditional method, which uses extracting only the seismic
attribute features of the waveform features. First, each sam-
ple of the data is intercepted with window when sliding.
To address the data interception issue caused by the nonuni-
form thickness of the strata while effectively extracting thin
layer features, the method of minimum window overlapping
and moving is adopted. The minimum window is chosen
based on the premise of having no more than the number of
data points corresponding to window of the thinnest layer in
the entire section.

Due to the large amount of seismic data, the selected
window must consider thin layers and not be too large.
In addition, overlapping motion inevitably leads to dupli-
cate calculations, thereby reducing efficiency. Therefore, for
different thicknesses of strata, different data interception
methods are used. For strata with large thicknesses, the win-
dow is moved from the top to the bottom by connecting the
end of the window.When the data near the bottom are smaller

than the length of the window, the method of superimposing
and moving is used to prevent the loss of the bottom data. For
data interception at the stratigraphic interface, the window
size is based on parameters such as the wavelength and sam-
ple rate. We attempt to prevent the window being too large,
as the data could intercept the horizon data, causing the data to
be corrupted.We also attempt to prevent the window beingtoo
small, which could cause reflection data to be missed. The
specific process is shown in Fig. 6.

III. MODEL TRAINING AND PARAMETER SETTING
A. DATA PREPARATION AND EVALUATION INDEX
200 samples seismic profile data were selected as the dataset
for an experiment, with 180 samples in the training set and
20 samples in the test set. Each seismic section has a total of
7 stratigraphic boundaries, as shown in Fig. 7.
A seismic profile consists of the amplitude data. The dis-

tribution interval of the seismic amplitude data in the same
study area is particularly large. The seismic data should be
standardised to increase the ease of determining the opti-
mal solution after the distribution interval reaches [−1, 1],
accelerating the convergence of the model. Furthermore,
in this experiment, the resulting data which additional gain
is applied from processing are used instead of the original
waveform data. To mitigate the uncertainty caused by this
gain, the data were normalized. To improve the computational
efficiency, we normalized the amplitude data. The serial num-
bers 1 through 7 were used as stratigraphic labels for the
7 interfaces, with 0 used to represent the remainder of the
stratigraphic data. It should be noted that when the training
set for the model is created, the division of the strata uses the
trough of the seismic wave as the starting point. Therefore,
the division points of the strata all fall in the trough of the
seismic wave.

The evaluation criteria are the root mean square error
(RMSE) and accuracy. The RMSE is calculated as follows.

RMSE =

 7∑
i=1

400∑
j=1

(ŷij − yij)/2800

1/2

(24)

where i and j are the serial number and track number of
the layered interface, respectively, ŷij is the position of the
predicted interface point, and yij is the position of the true
interface point. The RMSE considers only the degree of dif-
ference between the predicted stratigraphic interface and the
true stratigraphic interface and is easily affected by extreme
values. On the basis of RMSE, we also use the accuracy rate
as an evaluation metric. In the artificial stratigraphic division,
a certain range of errors are allowed. Thus, we simulate
stratigraphic division with a threshold control. Specifically,
when the threshold value is 1, the predicted interface com-
pletely coincides with the true interface, and the stratigraphic
division is correct. When the threshold is 2, the predicted
interface points and the true interface point has one sample
difference in either direction. When the threshold is 3, the
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FIGURE 6. Flowchart of this paper. The main steps and processes in the
figure are as follows: 1. Framing and windowing the seismic signal data,
2. Short-time Fourier transform of each frame of the seismic signal data,
3. Generating a spectrum analysis view of the seismic signal, 4. Gabor
filtering, in which the frequency spectrum analysis view is processed to
obtain the relevant eigenvalues at different scales and directions, 5. Use
LDA to obtain the optimal feature dimension, and 6. Stratigraphic division
to verify the extracted features.

FIGURE 7. Stratigraphic division of the seismic profile. Taking the
2400 profile as an example, each seismic profile consists of 401 single
traces. Serial numbers from 800 to 1200 make up the abscissa. The
ordinate is time (which can be regarded as depth), and the sampling time
of each single-channel data is 3600 ms. To reduce the calculation cost,
we intercept the data in the time period from 600 ms to 3600 ms. The
sampling interval is 2 ms.

predicted interface point and the true interface point have
2 sample difference in either direction, and so on.

B. CHOICE OF TEMPLATE SIZE
To demonstrate the validity of the Gabor feature of the seis-
mic data, we tested the template size for feature extraction.
The Gabor features extracted with different template sizes
have various enhancement. A Gabor feature with a scale of
17 and an orientation of 150◦ is shown in Fig. 8.

Before the Gabor template size is designed, it should be
noted that the window size of the time domain and the tem-
plate size of the Gabor kernel function is different. The time
domain window size is inversely proportional to the centre
frequency and can be calculated as follows.

L =

√
2π
ω

(25)

where L is the time domain window size, and ω is the centre
frequency.

We conduct experiments with SVM, RF, XGBoost and
DRSN classifiers using convolutions with template sizes of
8 × 8, 16 × 16 and 32 × 32. The experimental results are
shown in Table 1.
Table 1 shows that the 32 × 32 template achieves the best

layering effect. The RMSEs of the SVM, RF, XGBoost and
DRSN classifiers are 0.120, 0.139, 0.115, and 0.123 respec-
tively. For the SVM classifier, the RMSEs of the 32 ×

32 template is 0.157 and 0.036 less than those of the 8×8 and
16 × 16 templates. For the RF classifier, the RMSEs of the
32 × 32 template is 0.168 and 0.026 less than those of the
8 × 8 and 16 × 16 templates. For the XGBoost classifier,
the RMSEs of the 32 × 32 template is 0.136 and 0.037 less
than those of the 8× 8 and 16× 16 templates. For the DRSN
classifier, the RMSEs of the 32 × 32 template is 0.09 and
0.025 less than those of the 8 × 8 and 16 × 16 templates.
In terms of computing time, the SVM, RF, XGBoost and
DRSN classifiers took 9.43, 10.04, 9.13 and 10.05 hours,
respectively, with the 32 × 32 template. The classifiers took
7.06 hours, 8.75 hours, 7.84 hours and 8.94 hours for the
16 × 16 template and 5.78, 6.98, 6.04 and 7.68 hours for
the 8 × 8 template. Considering both performance and effi-
ciency, we chose a template size of 16 × 16 for subsequent
experiments.

C. FEATURE DIMENSIONALITY REDUCTION
The experiments in this section use LDA to reduce the
dimensionality of the seismic Gabor features. The SVM, RF,
XGBoost and DRSN classifier were adopted. The test data
included 20 seismic profiles. The results are shown in Fig. 9.
Fig. 9(a) shows that as the dimension increases to 25000,

the accuracies of the three classifiers improve. As the dimen-
sion increases further, the performance of the classifiers
decreases. The number of dimensions corresponding to the
best performance of each classifier is that the SVM has the
highest accuracy for the dimension of 24000, while 2400 and
2500 for the RF classifier 2500 for XGBoost and 2100 for
DRSN classifier. When the dimensionality is reduced further,
the accuracies of the three classifiers decrease. In addition,
Fig. 9(b) shows the time consumption of each classifier for
different feature dimensions. As the dimension increases, the
individual classifiers take longer to train the model. Accord-
ing to the model training time and the stratification accuracy
we chose an average dimension of 24000 for the subsequent
experiments, at which the three classifiers achieved the best
performance. Finally, we compare the results with the Gabor
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FIGURE 8. Gabor characteristics of seismic single-trace data with different template sizes. The red lines are the
stratified points on the seismic single-track data. The scale in the figure is 17 and the direction is 150◦. (a) is a Gabor
feature with a template size of 8 × 8. (b) is a Gabor feature with a template size of 16 × 16. (c) is a Gabor feature
with a template size of 32 × 32. As the size of Gabor kernel function template increases, the details of single-channel
seismic spectrum analysis view feature extraction gradually improve.

TABLE 1. Accuracy and time of different template sizes.

FIGURE 9. Stratigraphic division effect and model training efficiency of different feature dimensions. (a) is the accuracy rate, and
(b) is the time consumption.

feature without LDA dimensionality reduction. The compar-
ison results are shown in Table 2. Table 2 shows that the
performance of each classifier is greatly improved by LDA
dimensionality reduction. In addition, the time consumption
is greatly reduced. The experiments show that when LDA
is used to reduce the dimension, the Gabor feature can also
preserve critical striatal characteristics. LDA greatly reduces
the computational complexity of the classifier.

IV. ANALYSIS AND APPLICATION
A. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the validity of the Gabor feature of the seismic data,
we use the seismic amplitude data, spectrum analysis view
data and Gabor features as training set. The stratigraphic divi-
sion experiments are conducted using the SVM,RF, XGBoost
and DRSN classifiers. The experimental results are shown in
Table 3.

TABLE 2. Comparison of the effect and time before and after
dimensionality reduction (threshold: 3).

For comparison purpose, the threshold was set to 3 to
analysis the experimental results. The classifiers trained with
the seismic amplitude data as the training set had the poorest
RMSE and accuracy. The classifiers trained with addition of
the spectral analysis view features achieves better RMSE and
accuracy. With addition of Gabor feature is the best. For the
SVM classifier, the RMSE is 0.257, and the accuracy was
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TABLE 3. Stratigraphic division effect of different features at different thresholds.

68.41%. With addition of spectral analysis view data had an
RMSE of 0.216 and an accuracy of 71%. The RMSE with
further addition of the seismic Gabor feature is 0.126, and
the accuracy was 92.93%. Compared with addition of the
seismic amplitude data and the spectral analysis view features
in the training sets, the RMSE of the seismic Gabor features is
decreased by 0.131 and 0.09, respectively, while the accuracy
increased by 24.52% and 21.93%.

With the RF classifier, compared with the seismic ampli-
tude data and the spectral analysis view features, the RMSE
of the seismic Gabor features decreased by 0.135 and 0.066,
respectively, while the accuracy increased by 11.96% and
17.57%. With the XGBoost classifier, compared with the
seismic amplitude data and the spectral analysis view fea-
tures, the RMSE of the seismic Gabor features decreased by
0.135 and 0.078, respectively, while the accuracy increased
by 14.16% and 11.04%. In terms of the RMSE and accu-
racy, horizon division with the Gabor features as the dataset
achieved the best results, as shown in Fig. 10.
An analysis of 20 tests shows that training datasets with

various attributes have different impacts on the performance
of the classifier, while the stratigraphic division performance
of different classifiers on the same dataset is not considerably
different.

To further analyse the specific impact of the three datasets
on the performance of the classifier, a single channel of the
SVM classifier was extracted, and the specific results of the
stratification are shown in Fig. 11.

When the seismic amplitude data are used as the training
set, the stratigraphic division result is imprecise, as shown
in Fig. 11(a). The division of the first stratigraphic interface
deviates dramatically from that of the original interface. The
considerable differences can be observed. In the subsequent
division, the interface points are mis-labelled. For the entire
trace, only the fifth layer is correct. The overall fitting is
poor. For the training set with addition of spectrum analysis
view feature, the stratigraphic division results are generally
good, as shown in Fig. 11(b). First, 2 of the 7 stratigraphic

interface points, the 6-th and 7-th interface points, are com-
pletely fitted. Second, the division of other layered points
does not deviate substantially from the original interface with
maximum deviation under one cycle of the seismic wave.
In addition, the stratigraphic labelling is correct. Finally, each
stratigraphic interface point is located in the trough of the
seismic wave, which closely follows the characteristics and
principles of the original stratigraphic division. Among the
three training sets, the stratigraphic division of the seismic
Gabor feature set has the best results. 4 of 7 interface points
that are completely correct, namely the 1-th, 2-th, 3-th and
6-th points. For the 5-th and 7-th division points, only 1 sam-
ple point deviates from the original interface position. The
difference between the fourth division point and the original
division point is within one cycle.

The stratigraphic division profile is projected onto the seis-
mic profile data for analysis of the overall performance of the
seismic Gabor feature set. When the seismic amplitude data,
spectrum analysis view data, and seismic Gabor features are
used as datasets, the division results of section 2222 with the
SVM classifier are shown in Figs. 12, 13 and 14, respectively.

To improve the visualization, we identify the locations
where the stratigraphic interface has a high amplitude but
a poor division result with a red ellipse on the seismic
cross-section. The amplitude of the stratigraphic interface is
weak, and the areas where the division causes large fluctua-
tions are indicated by red rectangles. For the convenience of
description, the 7 automatically divided interfaces are marked
with Nos. 1-7. The stratigraphic division results based on
the seismic amplitude data are shown in Fig. 13. The 1-th
(No. 1), 4-th (No. 4) and 6-th (No. 6) stratigraphic interfaces
showed different degrees of fluctuation in the strata with
strong amplitudes, high continuity and lateral stability. Espe-
cially for the 4-th (No. 4) stratigraphic division interface, the
division at the middle position fluctuates dramatically, and
the difference between some division points and the actual
division point is nearly 120 simple points. For stratigraphic
interfaces with weak seismic amplitudes, the division results
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FIGURE 10. RMSE and accuracy of different classifiers using different datasets. (a) shows the RMSE, while (b) shows the accuracy.

FIGURE 11. Seismic single-trace division results of three datasets with the SVM classifier. The red
line is the original division point of the strata. The blue line is the stratigraphic division point of the
SVM classifier. The purple line indicates that the original division point of the strata completely
coincides with the boundary of the strata divided by the SVM classifier. (a) is the division result of
the seismic amplitude dataset. (b) is the division result of the spectrum analysis view. (c) is the
division result of the seismic Gabor features.

are more volatile, as shown by the red rectangles in the
6-th (No. 6) and 7-th (No. 7) interfaces in Fig. 12. Within
the red rectangle, both the horizontal and vertical division
fluctuations are dramatic. The poor matching is nearly up to
40 seismic traces. In general, the stratigraphic division results
based on the seismic amplitude data are not satisfactory.

The stratigraphic division results based on the addition
of seismic spectrum analysis view are shown in Fig. 13.

Although there are some deviations in the division of the
strata with strong seismic amplitudes, high continuity and lat-
eral stability, the deviations are not that dramatic. Moreover,
the vertical division fluctuations do not deviate considerably
from those at the true division point, and the poor matching
range is small, as shown in the 2-th (No. 2), the 3-th (No. 3),
the 4-th (No. 4) and the 6-th (No. 6) interfaces in Fig. 13 with
the red ovals. At locations with weak seismic amplitudes,

VOLUME 12, 2024 17817



R. Xiong et al.: Seismic Attribute Extraction and Application Based on the Gabor Wavelet Transform

FIGURE 12. Result of stratigraphic division of seismic profile 2222 with
the seismic amplitude data.

lateral discontinuities and chaotic seismic wave reflections,
the magnitude of fluctuations and the extent of poor match is
smaller than those of the division with the seismic amplitude
dataset only. These features are indicated with red rectangles
in the 4-th, 6-th and 7-th interfaces in Fig. 13. In general,
the stratigraphic division results using the addition of seis-
mic spectrum analysis view dataset are within an acceptable
range.

The stratigraphic division results based on the addition of
seismic Gabor feature dataset are shown in Fig. 14. Lateral
fluctuations are small at the divided interface with a strong
seismic amplitude, high continuity and good lateral stability.
The deviation between the automatically divided interface
and the original interface is very small and essentially
within 5 sampling points, as shown in Fig. 14 for the 1-th
(No. 1), 2-th (No. 2), 4-th (No. 4), 5-th (No. 5) and 7-th (No. 7)
interfaces, which are marked with red ovals. Although the
stratigraphic division at locations with weak seismic ampli-
tudes, poor continuity, and poor lateral stability fluctuated in
some degrees, the magnitude of the lateral fluctuations and
the extent of poor match were much smaller than those of the
seismic amplitude dataset and seismic spectrum analysis view
dataset. In general, when the seismic Gabor feature dataset is
used for stratigraphic division, the overall shape and trend of
the divided interface are roughly consistent with those of the
original divided interface, satisfying stratigraphic division for
practical applications.

Besides conventional machine learning classifiers, we also
show the stratigraphic segmentation results based on seis-
mic Gabor features and DRSN, as shown in Fig. 15. For
the stratigraphic division in the regions with strong seismic
amplitude, high continuity and lateral stability, although there
is a deviation, the magnitude of the deviation is small. For

FIGURE 13. Result of stratigraphic division of seismic profile 2222 with
the spectral analysis view data.

example, in the division of the 1-th, 2-th and 6-th layers, the
poor match is within 30 traces. In the stratigraphic division
of the 3-th, 5-th and 7-th layers, the fluctuation is dramatic,
but the amplitude of the fluctuation is small, as shown in the
red rectangular area in Fig. 15. For the strata division with
weak seismic amplitude, lateral discontinuity and disordered
reflected waves, although the mismatch is large, the lateral
poor match area is small. Overall, the stratigraphic division
results of DRSN are acceptable.

B. SUMMARY OF THE EXPERIMENT
When the strata interface is relatively stable (the seismic
event is continuous and the direction changes little) and the
amplitude difference between the seismic waves above and
below the interface is small, the stratigraphic division results
are satisfactory. Where the amplitude difference between
the interfaces is small and the seismic event is chaotic,
the stratigraphic division points have large mismatch. This
occurs because the seismic Gabor feature is mainly based
on the energy change in the seismic wave. The insignificant
change in the amplitude above and below the stratigraphic
interface causes a small energy difference above and below
the interface. Thus, the seismic Gabor characteristics are
not clear. At the same time, the weaker seismic amplitude
leads to a weaker seismic wave energy and a less noticeable
energy change. Finally, when the event of the seismic wave
is chaotic, energy dispersion occurs in the spectrum analysis
view, which is the main reason for the large mismatches of the
stratigraphic division point. Although 4 scales and 6 direc-
tions are used in the Gabor wavelet transform to extract the
seismic Gabor features, the stratigraphic division in locations
with weak seismic amplitudes, discontinuities and disordered
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FIGURE 14. Result of stratigraphic division of seismic profile 2222 with
the seismic Gabor characteristic data.

phase deviates far from the original position. The deviation
of the results with the method proposed in this paper is much
less than the deviations of the seismic amplitude dataset and
seismic spectrum analysis view dataset.

C. PRACTICAL APPLICATION
In the previous experiments, we tested the extracted seismic
Gabor features and achieved good results. Finally, we applied
this method to actual seismic exploration project. The study
area is located in the No. 46 well area of a basin in the south-
ern part of the Tianshan Mountains. The specific location is
shown in Fig. 16.
We extracted the amplitude data of a seismic profile pass-

ing through the No. 46 key well from a 3D seismic database
acquired in the study area, as shown in Fig. 16. The abscissa
on the display is the line number, which is marked at the top
of the seismic section. Trace 493 in the lower right corner
indicates that the seismic trace 493 of each survey line was
extracted when the seismic profile was created. The location
of well 46 in the seismic profile is marked with a brown
straight line. The log profiles from left to right are the nat-
ural gamma curve (GR), depth, lithology, sedimentary facies,
deep lateral resistivity (RD) and medium lateral resistivity
(RM). Among them, the lithology includes the colour of the
rock. The strata divided by the lithology, geophysical param-
eters and geological environment are marked in the well
profile. In addition to the above data, the palaeontology and
sedimentary evolution characteristics are used as references
to have a continuous adjustment, and divided the drilling
geological profile into 6 interfaces, which were denoted as
Nos.

The specific division of the well profile was based on
pattern changes in the GR, RD and RM curves, as well as

FIGURE 15. Stratigraphic division of No. 2222 based on seismic Gabor
features and DRSN classifier.

lithology differences in the lithological columns. For exam-
ple, in the first interface (No. 1), the GR value suddenly
decreases, while the RD and RM values suddenly increase,
and the lithology on both sides of the interface also changes
greatly. In the seismic profile, the seismic waves have a
strongly reflection, laterally continuous and stable. There are
no issues with the division of the first interface. In the second
interface (No. 2), the No. 46 well position and the positions
on both sides of the well have strong reflections, good lateral
continuity and good stability, and the stratigraphic division
is accurate. In the few locations away from the well where
the seismic wave reflection is weak, the stratigraphic divi-
sion has large fluctuations, however, the lateral range of the
fluctuations is small, as shown by the green rectangle in
Fig. 17. The third (No. 3) interface is similar to the first
interface, and the automatic stratigraphic division result is
very accurate. Most of the strata in the 4-th (No. 4) and 5-th
(No. 5) interfaces have strong reflection, good continuity and
lateral stability, and division the strata is reliable. However,
in the last part of the 4-th and 5-th layer interfaces, the seismic
reflections are weak and disordered. Although there are no
major fluctuations in the stratigraphic division, according to
the experimental results, the reliability of the stratigraphic
division is low for similar cases, which is marked by the red
rectangle on the 4-th and 5-th interfaces in Fig. 17. In the
6-th (No. 6) interface, the seismic wave reflection is weak for
the entire interface, and the continuity and lateral stability are
poor. The division result has large fluctuations and low reli-
ability, as indicated by the red ellipse in the No. 7 formation
interface in Fig. 17. In the well geological profile that corre-
sponds to this interface, the changes in the GR, RD and RM
curves at the interface are not clear, and the lithology varies.
Manual classification based on log data is also difficult. Thus,
we must combine lithofacies paleogeography, sedimentary
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FIGURE 16. The scope of the study area and the distribution map of well locations. The map marks the specific conditions of drilling work in the
study area and surrounding areas, including industrial oil and gas wells, low production wells, and dry wells.

FIGURE 17. Practical application of seismic Gabor feature horizon division.

environment and other data with the adjacent well data to
complete the division of the strata.

V. CONCLUSION
In this paper, a seismic attribute feature extraction method
based on the Gabor wavelet transform is proposed. Unlike
traditional methods for the extraction of seismic amplitude
features, this method fully uses the time domain, frequency
domain and energy information of the seismic signals to

ensure that the extracted feature can bemore repositioning the
formation changes. To verify the effectiveness of the method,
in this paper, seismic amplitude data, spectrum analysis view
data and extracted seismic Gabor features are used as training
sets, and the SVM, RF, XGBoost and DRSN algorithms are
used to verify the extracted features. The verification results
show that the extracted seismic Gabor features are better than
traditional features such as waveforms. Finally, we applied
this method in practice. In the practical application,
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we compared the automatic stratigraphic division results with
well geological profiles. The comparison results show that the
seismic signal data can be converted into a spectrum analysis
view dataset and that theGabor wavelet transform can be used
to extract data features. Themethod and process of converting
the seismic signals into geological features in the practical
ways.
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