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ABSTRACT Brain Tumours pose a significant health challenge, demanding the immediate development
of reliable and automated detection methods within the medical sphere. Swift and accurate identification
of these Tumours are crucial for effective treatment and the well-being of patients. These growths stem
from uncontrolled cell multiplication, depleting vital nutrients from healthy brain tissue and leading to
organ dysfunction. Presently, the conventional method involves a manual examination of brain MRI scans
by medical professionals, but this is hindered by the varied shapes and sizes of Tumours, resulting in
time-consuming and occasionally imprecise evaluations. The emergence of automation holds immense
potential, promising to bolster efficiency and allow medical practitioners more time for direct patient care.
Traditional machine learning approaches have historically depended on labor-intensive feature engineering.
In our research, we introduce an innovative approach: a combination of the U-Net model, a Convolutional
Neural Network (CNN), and Self Organizing Feature Map (SOFM) in an ensemble technique for precise
brain Tumour segmentation using the BRATS 2020 dataset. Our evaluation not only focuses on segmentation
accuracy but also utilizes valuable survival data from the dataset to predict patient survival rates. The
proposed model resulted in average training accuracy, mean Intersection over Union (mloU), and dice
coefficient scores of 0.967, 0.521, and 0.990 respectively for different epochs. Also, average validation
accuracy, mloU, and dice coefficient scores of 0.965, 0.546, and 0.992 respectively. The proposed model
showcases a 98.28% accuracy in the segmentation of brain Tumours. The proposed methodology has the
potential to revolutionize the landscape of brain Tumour diagnosis and treatment.

INDEX TERMS Automated brain tumor detection, BRATS 2020 dataset, U-Net, convolutional neural
network (CNN), modified self-organizing feature map (MSOFM), survival information, survival prediction,
tumor identification.

I. INTRODUCTION
Brain Tumour signifies an aggregation of abnormal cells

or benign [1]. In contrast, secondary brain Tumours, also
referred to as metastatic brain Tumours, emerge when cancer

within the brain, a vital organ protected by the rigid confines
of the skull. The growth of such Tumours within the limited
cranial space can give rise to significant complications. Brain
Tumours are typically classified into two main categories:
primary and secondary. Primary brain Tumours originate
within the brain itself, with a majority being non-cancerous
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cells from other parts of the body, such as the lungs or chest,
spread to the brain [2]. The severity of brain Tumours varies
according to their location and size, with some directly dam-
aging brain tissue and others exerting pressure on adjacent
neural structures. The detection of brain Tumours commonly
entails the use of MRI (Magnetic Resonance Imaging) scans,
offering detailed images of the brain’s structure without the
use of radiation, in contrast to CT scans. Consequently, MRI
images serve as the primary data source in our dataset.
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Our model is trained using the Brats-2020 dataset [3],
[4], [5], which comprises NIfTT files containing T1, Tlce,
T2, and FLAIR images, alongside corresponding ground
truth images, enabling us to advance our understanding and
management of these complex conditions. The presence of a
brain Tumour presents a formidable challenge in the realm
of healthcare, characterized by the intricate structure of the
brain. Therefore, the development of precise and robust
algorithms for the automated prediction of overall survival
and segmented regions in patients diagnosed with gliomas
holds paramount importance. Such algorithms can provide
invaluable guidance for diagnosis, treatment planning, and
outcome prognostication [6]. In the context of successful
surgical interventions, segmentation plays a pivotal role
in efficiently identifying and delineating brain Tumours.
While manual segmentation, the first approach, is inherently
subjective and often fails to yield desired outcomes due to
the difficulty in fully extracting Tumours without impacting
surrounding healthy tissue, an automated segmentation
approach becomes imperative. The latter method, relying on
automatic segmentation, ensures swift and accurate detection
of brain Tumours, proving essential for meticulous treatment
planning and quantitative assessment. The following are the
highlighting contributions of this work:

o U-Net for Brain Tumour Image Segmentation: The
U-Net model is used to segment brain Tumour images
from the BRATS 2020 dataset. U-Net is known for its
effectiveness in image segmentation tasks and provides
a foundation for precise Tumour identification.

o Modified Self-Organizing Feature Map (Modified
SOFM): Proposed a novel Modified Self-Organizing
Feature Map (Modified SOFM) approach to predict
patient survivability based on the segmented images.
The Modified SOFM [7] is designed to capture complex
patterns in the data, enabling accurate patient survival
predictions.

« Ensemble Approach: The U-Net-based image segmenta-
tion and Modified SOFM are combined for survival pre-
diction, creating an ensemble technique that enhances
both Tumour identification accuracy and survival rate
forecasting.

The rest of the paper is organized as follows: Section II
presents the related works carried out by various researchers.
The problem that is addressed in this work is stated in
Section III. The system model having objectives and solutions
is defined in Section I'V. The proposed methodology and the
working principle are presented in Section V. The proposed
algorithm is described in Section VI. The results are discussed
in Section VII and the conclusion and the future work is
summarised in Section VIII.

Il. LITERATURE REVIEW

The study conducts performance comparisons using Tensor-
Flow on the Google Colab platform. Havaei et al. [8] pro-
posed a novel approach to address the limitation of resolution
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in the BraTS dataset. They performed segmentation on MRI
images slice by slice, using CNN techniques. The architecture
involves convolutional layers hierarchically stacked to extract
incremental features.

Soltaninejad et al. [9] introduced a machine learned
approach based on FCN to detect coarse Tumour regions. The
model employs Random Forest for classification, albeit with
higher computational time. A Cascade Deep Learning model
reduces overfitting challenges by focusing on smaller image
regions.

Zhou et al. [10] introduced the ‘One-pass Multi-task
Network’ (OMNet) to address class imbalance in brain
Tumour segmentation. OMNet significantly reduces model
size and system complexity, though its implementation
introduces increased complexity. Raut et al. [11] introduced
a Convolutional Neural Network (CNN) model designed
for the detection of brain Tumours. The approach involves
augmenting brain MRI images to create a dataset suitable for
deep learning. Following this augmentation, a preprocessing
phase eliminates noise and prepares the images for analysis.
The system is trained using preprocessed MRI brain images
to classify new images as Tumourous or normal, based on
learned features during training. Backpropagation is utilized
to enhance result accuracy and minimize errors. Autoen-
coders are used to generate images devoid of irrelevant
features. Tumour region segmentation is achieved using the
K-Means algorithm, with potential for further classification
accuracy improvements using different algorithms. Tamil-
selvi et al. [12] introduced the concept that integrating
new technologies alongside existing imaging modalities
could enhance brain Tumour screening. Many brain Tumour
databases are inaccessible to the public. To address this, the
authors presented BRAMSIT, a valuable resource for the MRI
image analysis research community. BRAMSIT, ‘Brain MRI
Dataset for Screening and Imaging Technologies,” aims to
provide a diverse collection of both normal and malignant
brain Tumour images. The database includes patient-specific
details such as age and MRI axial position. Diverse datasets
hold the potential to further enhance the accuracy of brain
Tumour analysis.

Three distinct CNN models achieve an impressive 99.33%
accuracy rate for brain Tumour detection. Someswararao et al.
[13] highlighted the significance of early detection in
reducing the fatality rate associated with brain Tumours. They
propose a novel approach using machine learning algorithms,
especially the CNN model, for effective Tumour detection.
Increasing the training dataset and fine-tuning model
hyperparameters can bolster accuracy. Divyamary et al. [14]
focused on the early detection of brain Tumours through a
systematic sequence of steps, including noise removal, seg-
mentation, feature extraction, and Naive Bayes classification.
Ganasala et al. [15] emphasized the invaluable attributes
of magnetic resonance imaging (MRI) for visualizing brain
lesions. However, the volume of data generated by MRI
scanners poses a challenge for manually delineating Tumour
regions. The study focuses on identifying precise brain
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Tumour segmentation approaches and evaluating various
methods through image segmentation metrics. While higher
accuracy is achievable, certain methods may trade accuracy
for processing time. Baranwal et al. [2] introduced a system to
classify brain Tumour images into three sub-types using CNN
and SVM. Downsizing images and introducing controlled
noise enhance model robustness.

Ranjbarzadeh et al. [16] addressed the challenges of brain
Tumour segmentation through a deep learning framework
featuring an attention mechanism. Irmak et al. [17] presented
their work on the multiclassification of brain Tumours
using CNN technology. Rani et al. [18] focused on precise
computation of 3D Tumour volumes from 2D MRI images.
They introduced an effective volume rendering technique
for well-defined Tumour edges and 3D segmented Tumour
models.

Asthana et al. [19] proposed brain Tumour segmentation
using a U-Net-based model, achieving good results on
various MRI datasets. Additionally, they introduced a novel
regression model for predicting brain Tumour patients’
survival rates, showing moderate accuracy on the tested
datasets. Al Nasim et al. [20] focused on segmenting necrotic,
edematous, growing, and healthy tissue regions within
the brain Tumours. The use of U-Net’s encoder-decoder
architecture and image segmentation to exclude background
details enhances efficiency. The obtained dice scores on the
different BraTS datasets suggest that the model performs
consistently well across multiple years, demonstrating its
effectiveness in brain Tumour segmentation. Tran et al. [21]
presented a comprehensive framework that leverages deep
feature information from FLAIR MRI data to predict survival
in brain Tumour patients, showing promising results with
high accuracy and correlation scores. The suggested future
research directions, including the integration of additional
imaging modalities, exploration of different deep learning
models, and conducting large-scale multi-center studies,
indicate a commitment to improving clinical applicability and
advancing the field.

The literature review showcases advancements in brain
Tumour detection and segmentation using CNNs and
machine learning techniques. Integrating new technologies
and diverse datasets, exemplified by BRAMSIT, offers
valuable resources for researchers. However, challenges such
as class imbalance, increased computational complexity, and
the need for optimization in processing time highlight the
ongoing need for research and algorithm enhancements.

The field of radiology faces challenges in the manual
analysis of MRI brain Tumour results, leading to extended
diagnostic times. The reviewed papers address computational
demands, existing model complexity, and accuracy limita-
tions, stressing the necessity for more efficient and accurate
automated diagnostic methods for brain Tumours.

lIl. PROBLEM STATEMENT
The diagnosis and prediction of survival for patients suffering
from brain Tumours is a formidable challenge in the field of

VOLUME 12, 2024

medical science. Traditional machine learning methods rely
on manual and time-consuming feature engineering, which
often limits the accuracy of patient survival predictions. The
problem at hand can be defined as Feature Engineering
Complexity, Segmentation, Survival Prediction Accuracy,
and Effective Utilization of BRATS 2020 Dataset.

IV. SYSTEM MODEL

Let D represent the data source (BRATS 2020 dataset), P
denote the preprocessing module and Tumour segmentation
module be represented as S. For the Survival Prediction
Module, M is used to denote the survival prediction module
(Modified SOFM). The ensemble module is represented as E.
The objectives are symbolized as O and the system’s output as
Y, representing patient survival predictions. The D provides
data to the system and P processes and prepares the data. §
segments Tumour images, M predicts patient survivability,
and E combines the results from the Segmentation and
Survival Prediction Modules. The system optimizes its
components and processes according to defined objective
functions. The system generates patient survival predictions
(Y). The Tumour Segmentation Module receives prepro-
cessed images and produces segmented Tumour regions:
S : P — §. The Survival Prediction Module uses the
segmented Tumour regions and survival data: M : S —
Y. The Ensemble Module combines the results from the
Tumour Segmentation and Survival Prediction Modules:
E : (S,M) — Y. The Objective Functions guide the
optimization process: O : minimize O(D, P, S, M, E). The
system incorporates the feedback as part of the optimization
process representing F' for feedback.

A. OBJECTIVE FUNCTIONS
1. Feature Engineering Complexity The objective is to
minimize the complexity of feature engineering:

Minimize : Ofeature = f(t, €) M

where ¢ represents time and e represents effort.

2. Segmentation and Survival Prediction Accuracy The
objective is to maximize accuracy for both Tumour segmen-
tation and patient survival prediction:

Maximize : Osegmentation = Asegmenmlion = f(data) 2)

where Asegmentation 18 the accuracy of Tumour segmentation as
a function of data. Agyrvival 1S the accuracy of patient survival
prediction as a function of data.

3. Effective Utilization of BRATS 2020 Dataset The
objective is to maximize the effective utilization of the
BRATS 2020 dataset:

Maximize : Oprats = CBRATS 3)

where Cprars represents the challenge of effectively utilizing
the dataset.
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B. PROPOSED SOLUTION
The proposed solution involves the integration of the
U-Net model for image segmentation and the Modified
Self-Organizing Feature Map (Modified SOFM) for patient
survivability prediction within the system.

1. U-Net-Based Image Segmentation

The objective is to maximize the accuracy of Tumour
segmentation using the U-Net model:

Maximize : Oy—_Ner = SU—Net @

where Sy.Net represents the of Tumour
segmentation.

2. Modified SOFM for Survival Prediction

The objective is to maximize the accuracy of patient
survival prediction using the Modified Self-Organizing

Feature Map (Modified SOFM):

accuracy

Maximize : OSOFM = PSOFM (5)

where Psopm represents the accuracy of patient survival
prediction. This is achieved during training by maximizing
the validation accuracy and minimizing the validation loss.

3. Ensemble Approach The ensemble approach combines
the accuracy of U-Net-based segmentation and Modified
SOFM for an overall objective:

Maximize : Oensemple = E = Sy—_net + Psorm (6)

where E represents the overall ensemble approach accuracy,
which combines segmentation and prediction accuracy.

V. PROPOSED METHODOLOGY AND WORKING
PRINCIPLE

A. METHODOLOGY

In this sub-section, we describe the methodology adopted
to achieve the research objectives of brain Tumour patient
survival prediction using the U-Net model for image seg-
mentation and the Modified Self-Organizing Feature Map
(Modified SOFM) for survivability prediction. Figure 1
shows the proposed methodology in survival prediction.
The ensemble technique is used to improve the accuracy
of patient survival prediction, an ensemble technique is
introduced. This involves combining the outputs from U-Net-
based Tumour segmentation and the Modified SOFM-based
survival prediction. The ensemble approach leverages the
strengths of both segmentation and prediction models.

« Data Collection and Preprocessing: The research
begins with the collection of data from the BRATS
2020 dataset. This dataset contains brain Tumour images
and corresponding patient data. Data preprocessing is
carried out to ensure data quality and consistency. This
includes tasks such as:

— Normalization: The data is scaled and normalized
to facilitate further processing.

— Feature Extraction: Relevant features are extracted
from the images to represent Tumour
characteristics.
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FIGURE 1. Proposed methodology.

o Tumour Segmentation with U-Net: The U-Net model,
a Convolutional Neural Network (CNN), is employed
for precise Tumour segmentation. The segmentation
process is as follows:

1) Training: The U-Net model is trained using a
portion of the dataset. The model learns to
delineate Tumour regions from the images.

2) Validation: The trained U-Net model is applied
to the remaining dataset to perform Tumour seg-
mentation. The output is a binary mask indicating
Tumour regions.

o Survival Prediction with Modified SOFM: Sur-
vival prediction is carried out using the Modified
Self-Organizing Feature Map (Modified SOFM). This
step involves:

1) Training Modified SOFM: The survival data
is used for training the Modified SOFM. The
model learns to map Tumour features to patient
survivability.

2) Prediction: The trained Modified SOFM is applied
to the segmented Tumour regions to predict patient
survivability. The output is a prediction of survival
rates

B. WORKING PRINCIPLE
1) U-NET ARCHITECTURE
The U-Net is a convolutional neural network (CNN) widely
used for semantic segmentation tasks, including medical
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image segmentation such as brain Tumour segmentation
using the BRATS dataset. Ronneberger et al. proposed
U-Net [1] convolution neural network for biomedical image
segmentation. It is characterized by its U-shaped architecture,
which resembles the letter “U.” The U-Net architecture
consists of several sections, each with a specific function. The
U-Net has three sections Encoder, Bottleneck, and Decoder
sections. Here’s an explanation of the different sections of a
U-Net model:

o Encoder Section: The top part of the “U” shape is
called the encoder. Its primary purpose is to capture
contextual information from the input image. It consists
of several convolutional layers followed by pooling
layers (typically max-pooling). These layers help extract
hierarchical features from the input image. Each convo-
lutional layer increases the number of feature channels,
allowing the network to capture more complex patterns.

o Bottleneck: The bottleneck, located at the bottom of the
“U,” is a narrow portion of the network. It acts as a
bridge between the encoder and decoder sections. The
bottleneck has multiple convolutional layers to maintain
spatial information and capture high-level features.

o Decoder Section: The lower part of the “U” shape
is the decoder. Its primary function is to recover the
spatial information lost during the encoding phase and
generate the segmentation mask. The decoder consists
of up-sampling layers (often transposed convolution or
bilinear up-sampling) to increase the spatial resolution.
Each decoder layer is paired with skip connections that
bring feature maps from the encoder section at the same
scale. These skip connections allow the decoder to use
contextual information from earlier layers, aiding in
precise segmentation.

Skip Connections: Skip connections are crucial to U-
Net’s success. They facilitate the flow of detailed
information from the encoder to the decoder. These
connections merge feature maps from the encoder with
feature maps at the same scale in the decoder. Skip
connections help the model recover fine-grained details,
making it suitable for tasks like Tumour segmentation.
Final Layer: The final layer of the U-Net architecture
typically consists of a single convolutional layer with a
sigmoid activation function. It generates the segmenta-
tion mask, where each pixel is assigned a value between
0 and 1, indicating the probability of belonging to the
Tumour region.

The U-Net architecture’s distinctive “U” shape, skip con-
nections, and encoder-decoder structure make it highly
effective for tasks that require pixel-wise segmentation, such
as identifying Tumours in medical images. It can capture
both low-level and high-level features, ensuring precise and
accurate segmentation.

The segmentation of the images categorizes tissue.
It assigns numerical labels to these classes: 0 for “not
Tumour,” 1 for “necrotic or core’” Tumour regions, and 2 for
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“edema’” regions. Additionally, class 3 represents ‘‘enhanc-
ing”” Tumour regions. In the next stage, the segmented image
is considered for survivability prediction.

2) MODIFIED TRAINING SCHEME FOR SOFM FOR
SURVIVABILITY PREDICTION

Self Organizing Feature Map (SOFM) is an unsupervised
neural network architecture that has found wide applications
in data clustering. The network architecture was originally
proposed by T. Kohonen in 1982 [22], [23] and many of its
variants have appeared in the literature [24], [25], and [26].
The SOFM partitions the input space into several regions
where each region has similar data. Thus SOFM exploits the
statistical dependencies among the data in the input space for
partitioning and hence a modified training scheme has been
proposed for survivability prediction.

The “Modified Training Scheme for Self-Organizing
Maps (SOM)” creates a cluster of data with a specified
number of clusters. It begins by applying a two-stage
Condensed Nearest Neighbours rule to extract features from
the segmented image. The concept of the standard set was
proposed by N.V. Subba Reddy [27]. The Condensed Nearest
Neighbours rule retains the basic approach of the nearest
neighbour [28], [29], [30] rule but uses only a subset of the
training set of samples [31].

The ratio of the volume of the segment representing
Tumour to the total volume of the Brain in each channel and
the age of the patient represents the features for survivability
prediction. Through iterative training, the algorithm updates
weight vectors based on the Best Matching Unit (BMU)
for each sample in the feature-extracted data. Once training
is complete, it generates a cluster that is used to predict
survivability.

VI. ALGORITHM
In the initial phase, data acquisition is initiated, which
involves the retrieval of the MRI image dataset, specifically
BRATS 2020. After this, image pre-processing is carried
out, which encompasses the normalization of the images to
a standardized scale within the range of 0 to 1, achieved
through the application of the Min-Max Scalar. Additionally,
modalities displaying a significant quantity of regions
of interest are integrated. Continuing the procedure, the
subsequent step is the cropping of unlabeled volumes. This
cropping process is paramount in minimizing the presence
of extraneous dark areas that may exist outside the volume
of interest. Following this crucial step, the MRI images are
loaded utilizing a Custom Data Generator, which plays an
instrumental role in the meticulous preparation of the data for
both training and testing purposes. The U-net model is then
effectively and accurately employed to execute these tasks.
Algorithm 1 outlines the process of creating and training a
survival prediction model using deep learning techniques.
Initialization: An empty neural network model is created,
consisting of two layers. The first layer comprises 8 neurons
and utilizes a Rectified Linear Unit (ReLU) activation
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Algorithm 1 Brain Tumour Patient Survival Predic-
tion Algorithm

Data: BRATS 2020 dataset

Result: EnsembleResult, Dice, C-index

Data Collection and Preprocessing

2 Collect data from the BRATS 2020 dataset;

3 Perform data cleaning, normalization, and feature
extraction;

Tumour Segmentation with U-Net

Split the dataset into training and testing sets;

for each image in the training set do
L Train the U-Net model with the image;

—

N S A

o

for each image in the testing set do
9 Apply the trained U-Net model to the image for
Tumour segmentation;

10 Survival Prediction with Modified SOFM

11 for each patient in the dataset do

12 Train the Modified SOFM with the patient’s
survival data;

13 for each segmented Tumour region do
14 Predict patient survivability using the
Modified SOFM;

15 Ensemble Technique

16 Combine U-Net segmentation and Modified SOFM
prediction results;

17 for each patient’s prediction do

18 if U-NetResult > SOFMResult then

19 L Use U-NetResult;

20 else
21 L Use SOFMResult;

22 Evaluation and Validation

23 Calculate accuracy metrics for Tumour segmentation,
Dice coefficient;

24 if Dice > Threshold then

25 L Segmentation is accurate;

26 else
27 L Segmentation is not accurate;

28 Evaluate patient survival prediction accuracy using
C-index;

29 if C-index > Threshold then

30 | Prediction is accurate;

31 else
32 L Prediction is not accurate;

function. The second layer consists of 2 neurons and employs
a Softmax activation function. This model is tailored to
handle input data with four features.

Compilation: The model is compiled with specific
settings. It utilizes the categorical cross-entropy loss function
and the Adam optimizer for updating model parameters.
Accuracy is tracked as a metric during training.
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Algorithm 2 U-NET
Data: BRATS 2020 dataset
Result: EnsembleResult, Dice, C-index
Contracting Path (Encoder):
Input: X (Input Image);
C| <« ConvBlock(X);
Py < MaxPooling(C);
Cp < ConvBlock(Py);
Py < MaxPooling(C>);

C,, < ConvBlock(P,_1);

P, < MaxPooling(Cp,);
Bottleneck:

B < ConvLayer(P,);
Expansive Path (Decoder):
Input: B (Bottleneck Features);
Uy < Upconvolution(B);

M, < Concatenate(Uy, Cy,—1);
Cj < ConvBlock(M);

U, < Upconvolution(CY);

M, < Concatenate(U;, C,,—2);

e NN AN R W N

e L = < T
o 0 NN R W N =D

U, < Upconvolution(C,,_,);

M,, < Concatenate(U,, C1);

C! <« ConvBlock(M,);

Output Layer:

Y <1 x 1 ConvLayer with Sigmoid Activation(C});
Output: Y (Segmentation Mask);

NN NN
N R W N =D

Training: The model is trained using the provided training
data. This involves adjusting its internal parameters (weights
and biases) across 300 training epochs. The training data is
segmented into batches comprising five samples for every
training iteration. Algorithm 1 incorporates two subroutines,
described in algorithms 2 and 3.

The algorithm 2 description represents the U-Net archi-
tecture for semantic image segmentation, tailoured for the
analysis of the BRATS 2020 dataset in a report format.
The U-Net architecture comprises three key components:
the Contracting Path (Encoder), Bottleneck, and Expansive
Path (Decoder). In the Contracting Path, the input image X
undergoes a series of convolutional operations followed by
max-pooling layers, progressively reducing spatial dimen-
sions while increasing feature maps. The Bottleneck section
acts as a bridge between the encoder and decoder, preserving
essential features. The Decoder path upscales the features
and progressively concatenates them with corresponding
features from the Contracting Path, allowing the network to
capture both high-level information and fine-grained spatial
details. The final output is a segmentation mask Y, generated
by a 1 x 1 convolutional layer with a sigmoid activation,
facilitating detailed medical image segmentation for tasks
like Tumour detection, with evaluation metrics such as the
Dice coefficient.

The proposed modified self-organizing feature map
(MSOFM) for survivability prediction algorithm 3
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incorporates two stages condensed nearest neighbourhood
and SOFM.
The MSOFM predicts two categories of survivability:

e SHORT: 0 - Denotes the short survival category,
including intervals from 0 to 300 days.

o LONG: 365 - Represents the long survival category,
including intervals of 365 days or more.

This algorithm is designed to predict survivability based
on segmented medical images and patient data. It begins
by calculating the ratio of segmented volume to brain
volume for different image slices, normalizing the features,
and combining them with the patient’s age. The algorithm
employs a two-stage condensed nearest neighbor rule to
obtain a standard subset from these features. It initializes
parameters such as learning rate and neighborhood size
and iteratively updates weight vectors associated with the
features using the farthest neighbor method. After training,
the algorithm predicts survivability into two categories,
‘SHORT’ and ‘LONG’. In summary, it combines patient
age, and segmented image information, and employs a
self-organizing map to make survival predictions based on the
provided data.

VII. RESULT AND DISCUSSION

A. DATASET AND PREPROCESSING

The BRATS (Brain Tumour Segmentation) dataset serves
as the foundation of this study.The BRATS 2020 dataset
is a substantial multi-institutional collection of routine
clinically-acquired pre-operative multimodal MRI scans,
including glioblastoma (GBM/HGG) and lower grade glioma
(LGG), with updated datasets featuring 3T multimodal MRI
scans. This dataset contains a comprehensive collection
of brain MRI scans, including multiple sequences like
T1-weighted, T2-weighted, T1-weighted with contrast (T1c),
and Fluid-Attenuated Inversion Recovery (FLAIR) images.
The BRATS dataset comprises a substantial number of
MRI scans, each with varying characteristics. These images
are acquired with different imaging sequences, resulting in
diverse features:

« T1-weighted: Provides structural information about the
brain.

o T2-weighted: Offers
abnormalities.

o Tl-weighted with contrast (T1c): Highlights regions
with contrast-enhancing lesions.

« FLAIR: Enhances contrast between lesions and normal
tissue by suppressing cerebrospinal fluid.

insights into brain tissue

The dataset includes images from both Tumour and non-
Tumour cases, with variations in Tumour size, location,
and shape. The resolution of the images may vary as well.
To prepare the dataset for training the U-Net model, a series
of preprocessing steps are applied. MRI images are often
subjected to pixel intensity normalization to bring all images
within a consistent intensity range. This step ensures that the
model isn’t biased by variations in pixel values across images.
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Algorithm 3 Modified Training Scheme for SOM

Data: Segmented image obtained by the application
of U-Net
Result: Survivability prediction into two categories
SHORT and LONG

1 Calculate the ratio of volume segment to the volume
of Brain for Flair, T1ce and T2 slices respectively for
masks[1], masks[2] and masks[3] :
masks[1] < masks[1]/brain_vol
masks[2] < masks[2]/brain_vol
masks[3] <— masks[3]/brain_vol Extract the
patient’s age age_dict[i]. Merge all the features one
vector to merged: merged <—

[age_dict[i], masks[1], masks[2], masks[3]]

Apply the 2 stage condensed nearest neighbourhood
rule to the features extracted to obtain the standard
subset;

3 Set the values for initial learning rate 7(0) and initial

neighborhood size o (0);

4 Set the number of iterations and the number of
clusters n¢y,, = 2 required;

5 Normalize the samples in the extracted features and
the standard data set by the maximum of the feature
values;

6 Assign weight vectors from the extracted features

using the farthest neighbor method at random.

for each iteration do

[ 5]

N

8 for each sample in the extracted features do

9 Find the winner or BMU for each sample
present in the standard subset;

10 Update the weight vectors of the winner

neuron and the neighborhood by the
respective samples present in the extracted
features;

11 Predict the survivability;
Output: Survibality Prediction

Images may be resized to a common resolution to standardize
input dimensions. This ensures that the U-Net model can
handle inputs of consistent size and facilitates training.
Data augmentation techniques are employed to artificially
increase the dataset’s diversity. The augmentation method
includes Rotation, Horizontal and vertical flipping, Adding
noise, Contrast and brightness adjustments, and Elastic
deformations. Data augmentation helps the model generalize
better and cope with variations in Tumour appearance.
For supervised training of the U-Net model, corresponding
ground truth masks are generated from the segmented
regions in the BRATS dataset. These masks serve as the
target for the model, helping it learn to accurately segment
Tumours. The dataset is split into training, validation, and
test sets. The typical split ratio is 70 : 15 : 15, respectively.
The training set is used to teach the model, the validation set
to fine-tune hyperparameters and monitor training progress,
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FIGURE 2. A randomly selected slice from the BraTS 2020 dataSet.
and the test set to evaluate the model’s performance on unseen Figure 2 displays the visualization of a sample image
data. from BraTS dataset. The image encompasses T1-weighted
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FIGURE 3. Multichannel input data and image and mask.

(T1) and TI1-weighted contrast-enhanced(T1lce) images,
the former with native 2D acquisitions and the latter
using 3D acquisitions. Additionally, T2-weighted (T2) and
T2-weighted Fluid-Attenuated Inversion Recovery (FLAIR)
images are acquired with axial, coronal, or sagittal
2D methods, with slice thickness ranging from 2 to
6 mm, providing enhanced visibility of cerebral fluid.
Figures 2 (a), (b), (c), and (d) illustrate the FLAIR, T!, Tlec,
and T2 images. Figure 2 (e) displays the segmented mask.
The FLAIR, Tlce, and T2 images and the corresponding
segmented mask are cropped to size 128 x 128 x 128.
A sample cropped image is displayed in Figure 3. The
data is split into training and validation datasets. The
image loader is implemented as a generator that provides
a continuous stream of image and mask data in batches,
making it suitable for training deep learning models on large
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datasets. The generator is designed to apply various data
augmentation techniques to the loaded images and masks,
which could include operations like rotation, scaling, and
flipping. This generator setup is crucial for efficiently training
deep learning models on large datasets. Figure 4 depicts
a sample augmented dataset. Figures 4 (a), Figure 4 (b),
Figure 4 (c) and Figure 4 (d) represents FLAIR, Tlce T2 and
mask generated after augmentation.

B. TRAINING USING U-NET

During training, the batch size is set to 2, Batch size repre-
sents the number of data samples processed simultaneously
during each training or validation step. It’s a key parameter
that can affect training efficiency and model performance.
Batch generators are mechanisms used to load and handle
data in smaller, manageable portions during training. A 3D
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FIGURE 4. Image and mask after augumentation.
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FIGURE 5. Plot of loss and accuracy.

U-Net model for image segmentation with input images of
dimensions 128 x 128 x 128 and 3 color channels is
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constructed. The model is compiled with the Adam optimizer
using a learning rate of 0.001 and a suite of evaluation
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FIGURE 6. Sample image after validation.

TABLE 1. Training accuracy, mloU and Dice coefficient score for different
epochs.

Number of epochs | Accuracy | Mean IoU | Dice coefficient
10 0.944 0.382 0.9665
15 0.951 0.426 0.9752
20 0.956 0.475 0.9879
40 0.963 0.511 0.9992
60 0.971 0.558 0.9996
80 0.982 0.589 0.9997
100 0.984 0.608 0.9998
120 0.987 0.623 0.9999
AVG 0.967 0.521 0.990

metrics, including accuracy, mean Intersection over Union
(mloU), dice coefficients, and more. The model is trained.

Figure 5 (a) illustrates the changes in training and
validation losses across epochs using line plots. The training
loss is denoted by the yellow line, while the validation
loss is represented by the red line. These visualizations
are instrumental in evaluating the model’s performance and
detecting signs of overfitting, where the model excessively
optimizes for the training data at the expense of validation
performance.

In Figure 5 (b), line plots showcase the training and
validation accuracy over epochs. Similar to the previous plot,
the yellow line corresponds to training accuracy, and the
red line corresponds to validation accuracy. These visual
representations offer insights into how effectively the model
learns from the training data and how well it generalizes
to unseen validation data. It is crucial to analyze these
plots throughout the training process to ensure the model’s
performance aligns with the intended objectives and to
identify potential issues like overfitting or underfitting.

C. VALIDATION AND SURVIVAL PREDICTION
Figure 6 depict the sample image after validating on the
trained U-Net. Figures 6 (a), 6 (b) and Figure 6 (c) are the
test image, ground truth image, and predicted result.

The data presented in Table 1 demonstrates a direct
correlation between the increase in the number of epochs
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TABLE 2. Validation accuracy, mloU, and Dice coefficient score for
different epochs.

Number of epochs | Accuracy | Mean IoU | Dice coefficient
10 0.947 0.389 0.977
15 0.955 0.435 0.979
20 0.956 0.487 0.987
40 0.964 0.535 0.999
60 0.967 0.558 0.999
80 0.974 0.631 0.999
100 0.977 0.716 1.000
120 0.987 0.623 0.999
AVG 0.965 0.546 0.992

and the enhancement in various performance metrics such
as accuracy, Mean IoU, and Dice coefficient. The accuracy
exhibits a gradual ascent from 0.944 at 10 epochs to 0.987 at
120 epochs. Both Mean IoU and Dice coefficient display
significant improvements, signifying the model’s increased
proficiency in accurately segmenting objects within images
with extended training duration.

The table in 2 compiles essential validation metrics across
various epochs in a segmentation task. It records the number
of epochs, validation accuracy, mean Intersection over Union
(mloU), and Dice coefficient. The equations for Intersection
over Union (IoU) and Mean Intersection over Union (mloU)
are provided below: To calculate IoU:

Area of Overlap

IoU=——— @)
Area of Union

To calculate mloU:
|
mloU = I i_El ToU; ®)

The test accuracy is calculated using

Number of C t Predicti
umber of Correct Predictions 100%

®

The results show an improvement in validation accuracy
with increasing epochs, signifying the model’s ability to

Test Accuracy =
y Total Number of Predictions
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FIGURE 7. Age distribution and survival prediction.

TABLE 3. Mean loU and test accuracy.

Metric Value
Mean IoU 0.62
Test Accuracy 0.98

accurately classify pixel segments. Both the Mean IoU and
Dice coefficient increase over time, indicating enhanced
overall segmentation performance and greater alignment
between predicted and ground-truth masks.

The data within table 3 showcases performance metrics
evaluating a machine learning model. The Mean Inter-
section over Union (IoU), at a value of 0.62, serves
as a metric for segmentation accuracy, illustrating the
model’s effectiveness in delineating objects within images.
Additionally, the Test Accuracy, marked at 0.98, represents
the proportion of correctly classified instances within the
test dataset, reflecting the model’s overall classification
accuracy.
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D. SURVIVAL PREDICTION

The age distribution of patients in tin the BraTs 2020 dataset
is illustrated in Figure 7 (a). Figure 7 (b) illustrates the
predicted survival after the application of MSOM.

VIIl. CONCLUSION AND FUTURE WORK

The primary focus of this work lies in the efficient
segmentation of Tumour regions, aiming to expedite the
diagnosis process for doctors and pathologists. Taking into
consideration the performance and intricacy of the U-Net
Model, the proposed model achieved mean scores of 0.967,
0.521, and 0.990 for training accuracy, mean Intersection over
Union (mloU), and Dice coefficient across various epochs.
Additionally, for the validation phase, the model attained
mean scores of 0.965, 0.546, and 0.992 for accuracy, mloU,
and Dice coefficient respectively. Furthermore, the model
demonstrates a high accuracy of 98.28% in segmenting brain
Tumours. This innovative methodology holds promising
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potential to transform the field of brain Tumour diagnosis
and treatment. Instead of relying on manual segmentation
methods, a web-based interface has been developed for
doctors, showcasing segmented regions and assisting medical
professionals in their analysis. This interface facilitates
doctors in assessing Tumour impact and estimating survival
rates based on historical data, ultimately streamlining the
diagnostic process and saving considerable time. To further
improve this approach, future enhancements could involve
enlarging the training dataset and meticulously selecting
appropriate test samples to reduce misclassification. Addi-
tionally, the creation of three-dimensional (3D) anatomical
models from individual patient data holds promise in enhanc-
ing surgical planning and guidance. Moreover, for improved
testing accuracy and reduced computation time, exploring
classifier-boosting techniques such as dataset augmentation,
fine-tuning hyperparameters, extending training duration,
and incorporating more layers could prove beneficial.
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