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ABSTRACT The emergence of the AI era signifies a shift in the future landscape of global communication
networks, wherein robots are expected to play amore prominent role compared to humans. The establishment
of a novel paradigm for the development of next-generation 6G communication is of utmost importance
for semantics task-oriented empowered communications. The goal of semantic communication lies in the
integration of collaborative efforts between the intelligence of the transmission source and the joint design of
source coding and channel coding. This characteristic represents a significant benefit of joint source-channel
coding (JSCC), as it enables the generation of source alphabets with diverse lengths and achieves a code
rate of unity. Therefore, we leverage not only quasi-cyclic (QC) characteristics to facilitate the utilization
of flexible structural hardware design but also Unequal Error Protection (UEP) to ensure the recovery of
semantic importance. In this study, the feasibility of using a semantic encoder/decoder that is aware of UEP
can be explored based on the existing JSCC system. This approach is aimed at protecting the significance
of semantic task-oriented information. Additionally, the deployment of a JSCC system can be facilitated
by employing QC-Low-Density Parity-Check (LDPC) codes on a reconfigurable device. The QC-LDPC
layered decoding technique, which has been specifically optimized for hardware parallelism and tailored for
channel decoding applications, can be suitably adapted to accommodate the JSCC system. The performance
of the proposed system is evaluated by conducting BER measurements using both floating-point and 6-bit
quantization. This is done to assess the extent of performance deterioration in a fair manner. The fixed-point
system is synthesized and subsequently used as a semantic feature transmission and reception system
across a noisy channel, with the aim of presenting a prototype for semantic communications. This study
concludes with some insights and potential research avenues for the JSCC prototype in the context of future
communication.

INDEX TERMS JSCC, joint souce-channel code, LDPC, QC-LDPC, FPGA, image transmission, semantic
communications, task-oriented communications, 6G, wireless communication, edge AI, unequal error
protection.

I. INTRODUCTION
Traditional communication systems often overlook the sig-
nificance of the meaning behind information. They operate
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on the assumption that all symbols or bits are of equal
importance and are handled as such. The primary objective of
these systems is to ensure the accurate retrieval of transmitted
sequences at receiving ends, prioritizing conformity in trans-
mission. The design methods in this field have predominantly
relied on principles from digital communication. Information
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theory establishes the maximum limits on the capacity of the
system. While channel coding concentrates on developing
strategies that can approach these limits with extremely low
error probability, source coding (known as data compression)
refers to the process of encoding information in a way
that reduces the amount of data required with the objective
of optimizing the length of the source encoded sequence.
However, the latest generation of communication systems is
being applied in ways that challenge the conventional design
paradigm, particularly in terms of semantic and task-oriented
aspects [1].

The semantic aspect pertains to the level of precision
and accuracy with which transmitted symbols are able to
convey the intended meaning and comprises the transmission
of a notion or informational material from a source to a
destination without delving into the intricacies. It entails the
comparison of the inferred meaning by the recipient with
the intended meaning by the sender while considering the
content, requirements, and semantics in order to enhance
the communicative system towards a state of intelligence.
Furthermore, the task-oriented aspect prioritizes task comple-
tion and efficiency and examines the potential ramifications
associated with the utility of the provided information. The
efficacy of a task or performance metric is determined
by how efficiently the acquired information aids in its
accomplishment. The achievement of a shared aim within
task-oriented limitations and requirements is facilitated by the
utilization of available resources, including communication
bandwidth, computing expense, and power consumption. The
evaluation of system performance can bemeasured in relation
to the extent to which a certain objective is achieved, taking
into account the allocated resources, instead of considering
all the transmission sequences that can typically be conveyed
in the aforementioned information theory framework-based
approach. Based on the stated task objectives and existing
knowledge, it can be demonstrated that semantic source
coding [2] has the potential to achieve greater reductions in
redundancy expense and communication overhead compared
to the Separate Source-Channel Coding (SSCC). This is
mostly due to its ability to refine the most pertinent and con-
cise information and then condense it. An intriguing aspect
worth exploring is the extent of compression achieved in
semantic source coding in relation to the original information
[3]. The authors have obtained the theoretical boundaries for
lossless and lossy compression based on this semantic source,
together with the lower and upper limitations on the rate-
distortion function.

Furthermore, semantic-information feature learning [4] is
the key to addressing the utilization of cognitive techniques
employed as a means to direct computational resources
towards activities of higher importance. The process of
achieving dynamic adaptation in semantic compression
involves the utilization of a feature learning module and an
attention feature module. These modules enable the source
encoder to generate a variable number of symbols andmodify

the capability of the source encoder and channel encoder
through the use of cognitive techniques. Moreover, task-
oriented feature learning [5] addresses that the attainable
precision of inference is contingent upon the amount of
feature components collected and the extent to which they
are distorted by detecting noise and quantization defects.
The classification gain is only influenced by the distributions
of classes in the feature space and represents the highest
possible inference accuracy that can be attained theoretically.
Therefore, this learning accuracy is dependent on not only
the underlying design of the artificial intelligence models
being used but also the classification distributions of the
feature space. In order to facilitate the implementation
of immediate intelligent services in future communication
systems, it is advantageous to distill and communicate
merely the information that is pertinent to the task at
hand and precise semantics. The semantic and task-oriented
approach effectively reduces the overall latency of the system.
However, it should be noted that this method deviates from
the optimal Shannon’s SSCC [6], which is typically applied in
the communication of long block-length bit sequences. SSCC
employs advanced compressing methods to eliminate all
redundant sequences from source-encoded symbols, whereas
Joint Source Channel Coding (JSCC) exploits the remaining
redundant information that emerges following compressing
with the error-correcting capability in order to minimize
distortion within a certain limit of codelength. Unequal
error protection (UEP) prevents errors from occurring by
assigning encoded redundancies according to the significance
of the information bits. Only some sets of bits are of
equal significance when sending source-encoded information
because of the varied degree of vulnerability of the source
decoder. Therefore, the authors in [7] present a remarkable
performance of the UEP JSCC code system by providing an
innovative adjustable code rate for multiple semantic task
classes. We summarize our contribution from the following
perspectives:

1) This paper provides a brief exploration of the latest
designs and methodologies in semantic and task-
oriented communication, with a specific emphasis
on the knowledge pertaining to the prototype of
the JSCC scheme. The proposed fixed-point JSCC
scheme serves as a practical solution not only for
transmitting and receiving semantic features over
noisy channels but also for UEP semantic importance
applications. This study presents a novel approach for
enhancing the semantic encoder/decoder by including
the UEP capabilities of the quasi-cyclic Low-Density
Parity-Check (QC-LDPC) JSCC decoder. The primary
objective is to safeguard the semantic significance of
6G communication.

2) The primary aim of this study is to explore the potential
of surpassing the traditional Shannon criteria, while
also presenting the initial iteration of a prototype for
a semantic JSCC communication system. The JSCC
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prototype significantly reduces the data width from
a 32-bit floating-point to a 6-bit fixed-point, making
practical FPGA implementation possible. Additionally,
we revisit the design of semantic codec learning and
task-oriented signal compression in order to explore
how the semantic task-oriented techniques can be
adapted to the proposed JSCC platform.

3) The JSCC system under consideration acts as a
prototype to make it easier to modify communication
protocols in the future. Through the use of deep
learning techniques, this system is specifically created
to be adaptable to a broad variety of semantic and
task-oriented features. The proposed prototype, when
compared to other state-of-the-art, can deliver better
BER performance despite the reduction in fix-point
implementation and is achieved by applying QC-LDPC
codes with a reasonable code rate.

In this paper, we revisit the design methodologies of
next-generation 6G communication systems with regard
to semantic and task-oriented aspects and JSCC system
following the demonstration of the state-of-the-art prototype
designs in Section II. Second, we investigate the applications
of a JSCC system based on QC-LDPC codes. By leveraging
quasi-cyclic characteristics and optimizing the whole system,
QC-LDPC codes are adopted to enable the feasibility
of a JSCC system. We deploy the JSCC system in a
Field-Programmable Gate Array (FPGA)-based platform so
the users can configure this platform after manufacture.
We also demonstrate that semantic feature transmission
and reception are potential application scenarios. The JSCC
system can maintain a high code rate (0.8) at a low level of
Eb/N0, which tandem coding systems must decrease to no
more than 0.5. In general, the flexibility and performance
enhancement of the JSCC system is particularly attractive
to next-generation 6G communication. In section III, the
proposed QC-LDPC code-based JSCC system is detailed.
Section IV presents the experiments and the corresponding
results followed by not only a demonstration of a semantic
feature transmission and reception but also applicable to task-
oriented features. The primary goal is to provide a prototype
venture for semantic communications to the marketplace
for consumers. Lastly, conclusions and future directions are
depicted in Section V.

II. DESIGN OF NEXT GENERATION COMMUNICATION
AND JOINT SOURCE CHANNEL CODING
In this section, we examine the application of JSCC system
in relation to the integration of AI for semantic and
task-oriented considerations to explore the opportunities of
future communications.

A. SEMANTIC CODEC LEARNING
The evolution of semantic communication [2] is traced back
to the early 20th century with its continuous growth into the
realm of modern communications with regard to beyond 5G
and 6G technologies. In light of this, there is a significant

need to develop more intelligent and efficient communication
protocols that can meet the diverse quality of service (QoS)
needs. This must be done while addressing the challenge
of limited communication bandwidth and computation. The
development of an intelligent communication system is
considered essential in both industry and academia. Such a
system is not limited to memorizing data flows based on
rigorous regulations but also aims to comprehend, analyze,
and articulate the fundamental semantics. The ambition of
‘‘beyond Shannon’’ [8] surpasses the conventional Shannon
paradigm, which focuses on ensuring the accurate receipt of
individual sent bits, regardless of the conveyed meaning of
these bits.

In the context of conveying meaning or achieving a goal
through communication, the crucial factor lies in the influ-
ence exerted by the received sequences on the interpretation
of the message meant by the sender or on the attainment of
a shared objective. However, despite its growing popularity,
research on semantic communication remains fragmented
and encompasses a wide range of research interests. The
evolution of human dialogues in relation to the semantics of
everyday usage for the purpose of semantic communication
is still in its infancy. The challenge of developing theoretical
semantic models for actual multidimensional information
has led to the adoption of JSCC technique in most extant
semantic designing strategies. The current implementation
of module architectures, similar to the classical Shannon
paradigm, presents several issues. As the level of interest in
this particular field continues to increase, there is a concerted
effort being made to address and surmount the challenges
associated with it. Hence, the semantic scheme based on
JSCC emerges not only as a highly viable contender for
next-generation 6G communication systems but also as a
promising transit candidate for the optimal goal of semantic
communication. The partnership between JSCC and deep
learning in [9] reveals that the deep learning encoder and
decoder, as presented, exhibit superior performance in terms
of word error rate compared to the conventional technique,
particularly when the computational resource allocated for
syllable encoding is limited. A limitation of this approach
is the utilization of a predetermined bit length for encoding
words of varying lengths. In [10], a performance comparison
of deep and JSCC-based semantic communication [9] to
present the potential advantage and the design strategies has
concluded the difference between semantic communication
and traditional communication as follows:

1) There exist various domains of processing information.
The first phase of SC involves the manipulation
of information within the semantic realm, whereas
the conventional focuses on compressing information
within the realm of entropy.

2) Traditional communication methods prioritize the
precise retrieval of information, whereas semantic
communication systems are designed to facilitate
decision-making or the achievement of specific trans-
mission objectives.

17710 VOLUME 12, 2024



X. Zhong et al.: Joint Source-Channel Coding System for 6G Communication

FIGURE 1. The design overview for semantic communications in [2].

3) Conventional systems primarily focus on designing
and optimizing the information transmission modules
found in standard transceivers. In contrast, semantic
communication systems take a holistic approach by
jointly designing the entire information processing
framework, spanning from the source information to
the ultimate goals of applications.

In comparison [10], the complexity analysis of the deep-SC
scheme demonstrates superior performance compared to
existing SSCC schemes while the JSCC-based semantic
communication scheme has lower computing latency than the
deep-SC scheme. The successful incorporation [10] and the
survey [2] of deep learning and JSCC techniques inspires
the innovative construction of semantic communication. The
subject matter pertains to the examination of semantic source
coding [3] in connection with the primary information,
thereby enabling an inclusive research framework that has the
capacity to surpass the limitations of Shannon’s conventional
information theory.

In Fig.1, we summarize the design overview of the
semantic aspect in [2] from semantic theory encircled
semantic channel capacity and future communication chan-
nels and datasets, including text, audio, image, video,
unmanned aerial vehicles (UAVs), and the Internet of
Things (IoT), are based on semantic theory. In order to
calculate the source semantic entropy, a model measurement
is required. The semantic quantification determines the
semantic compression and signal processing. Furthermore,
the semantic framework and hierarchy are illustrated in
Fig.1. To effectively enable task execution, the effectiveness
on the top of the design architecture is based on task
or goal-oriented methodologies. Following the basics of
theory and dataset, the second level brings the semantic
aspect to an evolution of future communication. For the
bottom level, this layer via physical transmission integrates
with the semantic level and presents JSCC encoder/decoder
regarding synchronization, precoding, antennas, and power
amplify.

B. TASK-ORIENTED SIGNAL COMPRESSION
The tremendous growth seen in telecommunication tech-
nologies is yet to follow the goal of reliable, fast, and low
latency communications or to improve the capacity at which
a communication network can serve users. While the idea
of reliable communication appears to be a very intuitive
and obvious requirement for communication systems, it is
arguably a human need. Be it communication for a voice call,
download of a photo, or streaming a video, we always prefer
to receive our desired content at the best perceivable quality.
This need, however, is no longer in place when design-
ing machine-to-machine communications. The machine-to-
machine communications [1] occur since this can help the
receiver to make more informed decisions [11], [12], [13]
or more precise estimates or computations [14] or both [15].
Naturally, in this context, there is no need for the reliability
of communications to be beyond serving the specific needs
of the control, estimation, or computational task at hand. This
calls for a fresh examination into the design of communica-
tion systems that have been engineered with reliability as one
of their ultimate goals [16]. The emerging literature regarding
SC [17] as well as goal/task-oriented communications [11]
is attempting to take the first steps towards the above-
mentioned goal, i.e., incorporating these semantics [18],
[19], together with the goal of message exchange, into
the design of communication systems. The ever-increasing
growth of machine-to-machine communications is the major
motivating factor behind the accelerating research interest in
the task-oriented design of communications. As IoT networks
and cloud-based applications become more commercialized,
autonomous vehicles/UAVs become more mature, and indus-
try 4.0 approaches maturity, a boom in machine-to-machine
communications is fueled. To emulate a cyber-physical
system composed of several inter-dependant devices or
machines, this paper considers the mathematical framework
of a generalized decentralized partially observable Markov
decision process (Dec-POMDP). There is a significant body
of literature behind the theoretical advancements for solving
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FIGURE 2. Selected reference of the machine-to-machine communications for task-oriented design.

generalized forms of Markov Decision Processes [20], and
their applications in telecommunication and cyber-physical
systems [12], [21]. Their work departs from the literature on
the instance design of the observation function for each agent
in the Dec-POMDP. The challenge of jointly developing
the observation function and control strategy for each agent
in Dec-POMDPs was investigated in [11]. It is important
to note that the agents’ observations come from a funda-
mental Markov decision process (MDP). While in classical
Dec-POMDP problems [20], the observation function is
considered to be a single fixed function, the framework in [11]
offers more flexibility in designing the control policies for
a multi-agent system. This approach specifically permits a
restricted joint design of the observation and control policy,
which is summed up as follows:

1) The bit-budgets for the inter-agent communication
channels are respected;

2) The observation functions filter any non-useful obser-
vation information for each agent;

3) The removal of non-useful observation information
by the observation functions is carried out such as
minimization of any loss on the average return from
multi-agent systems (MAS’s) due to bit-budgeted inter-
agent communications.

The approach in [11] is neither a classic MDP nor a
POMDP [22] as the action vector is not jointly selected at
a single entity: a task-oriented data compression (TODC)
problem [11], [23] can be approximated by identifying the
quantization policy in the joint control and quantization
problem. A limited bit-budget for the multi-agent commu-
nication channels can be achieved with the aforementioned
approaches to maximize the expected return by the system.
The analytical investigation was presented in [11], [24],
and [25] into how the TODC can be disentangled from
the control problem - given the possibility of a centralized
training phase. The author’s analytical studies confirmed
that despite the separation of the TODC and the control
problems, they can ensure very little compromise on the
average return by the MAS when compared with jointly
optimal control and quantization. It is worth noting that
the conventional quantization problems regard minimizing
the absolute difference between the original signal and
its quantized version. However, the difference between

task-oriented communication is achieved by considering the
usefulness and value of the goal-oriented approach for the
task at hand, while conventional communication does not
consider it. The significance of the result obtained from [11]
is multi-fold:

1) Reduces the complexity of the clustering algorithm by
transforming it from multi-dimensional observations
to the one-dimensional output space of the value
functions,

2) The observation points are linearly separable when
being clustered according to the generalized data
quantization problem

3) The effectiveness of the data for the task is considered
for goal-oriented quantization.

4) The value of the observations begins to grow as the
ultimate target of the task at hand becomes closer.

Furthermore, the prevalence of deception and Trojan assaults
utilizing adversarial machine learning poses a serious
threat to machine-to-machine communications and edge
servers/devices in [26], [27], and [28]. The authors demon-
strate adversarial threats and the potential methodology for
encouraging more approaches with security and defense of
task-oriented communications on 6G networks. In Fig.2, the
aforementioned design methodologies are summarized as
the selected reference for the task-oriented aspect of next-
generation 6G communication. Therefore, the previously
discussed principles on goal-oriented quantization can be
effectively employed in the JSCC scheme to achieve further
resource optimization.

C. JOINT SOURCE CHANNEL CODING AND ITS
PROTOTYPE
In accordance with Shannon’s separation theorem, a typical
cascade structure that improves the performance of source
coding and channel coding independently may maintain
the entire system at its optimum [6], such as the majority
of contemporary systems for wireless image transmission,
which compresses the picture using a source coding method
(e.g., JPEG, WebP, BPG) before encoding the bit stream
with a source-independent channel code (e.g., LDPC, Polar,
Turbo, BCH etc.). Nevertheless, the theory is based on
certain premise conditions, such as an unlimited code length,
point-to-point transmission system, memory-less stationary
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TABLE 1. The significant prototype advances made in the domains of JSCC and DJSCC.

source, etc. Since these requirements are seldom satisfied
in real-world applications, these tandem coding schemes
are often suboptimal, such as autonomous driving and the
Internet of Things (IoT) that enforce low latency real-time
communication and/or low computation complexity imple-
mentation. In addition, if the channel quality goes below a
specific level, the channel coding may not offer enough error
corrections, and the source coding will inevitably collapse
catastrophically. Consequently, jointly optimizing source
coding and channel coding for relatively short messages,
also known as JSCC, gradually becomes advantageous and
garners a great deal of interest.

JSCC was initially conceptualized more than four decades
ago [36]. This has been explored further since the 1990s
[37], [38] [39]. An iterative joint source-channel decoding
algorithm was then proposed in the subsequent works, such
as [40], and it was verified that these structures produce a
large coding gain over separate coding in finite block-length
transmission.

The article [41] presented a novel JSCC scheme in which
double LDPC codes [42] were applied as the source and
channel codes. It was also found that for fixed-size blocks,
the source (encoded or unencoded) is redundant, and this
redundancy may be exploited on the decoder side. For
instance, the channel encoder uses information from the
source to lower its frame error rate (FER) while maintaining
a very low signal-to-noise ratio (SNR).

Image transmission and reception in a JSCC system were
soon proposed as a feasible application. The authors of [43]
explored the possibility of transmitting images in a JSCC
system through a deep-space communication channel. The
authors of [44] proposed a joint source-channel coding
scheme using BCH codes in a binary symmetric channel
(BSC), and it reduced the distortion of satellite images better
than a classical tandem source-channel coding scheme based
on BCH codes.

In [45] and [46], the authors optimized the JSCC system or
proposed new codes to enhance systemic performance, such
as the BER. The research on JSCC systems has become more
popular [47], [48], [49], [50], [51], [52], but the feasibility
of implementing a JSCC system at the circuit level is rarely
mentioned. As a sub-class of LDPC codes [42], [53], [54],
[55], [56], QC-LDPC, where the parity check matrix is

composed of permutation matrices (CPMs), can contribute
to effective partial-parallel processing, due to the regularity
of their parity check matrices HHH. For telecommunication,
there have been comprehensive studies [57], [58], [59]
on improving the complexity and accuracy of the LDPC
decoders. They applied appropriate calculations [60], [61],
[62] and various structures of LDPC codes [63], [64], [65],
[66]. Other than communications, LDPC code decoders have
also been popular in other areas such as storage [67], [68],
[69] or biometric systems [70], [71], [72]. The prototype
of the JSCC decoder can be remarked on and summarized
in [30] that trace back to the early 20th century the initiative
of JSCC implemented in Variable Length Error Correction
(VLEC) code [73] exhibits a considerable level of intricacy
due to the utilization of a vast alphabet for the selection
of encoded sources. With the advent of the UEC-URC
code [74], Unary Error Correction (UEC) code combined
with a Unity Rate Convolutional (URC) code. It provides
a nearly optimal performance at a reduced computational
cost. This holds true even when dealing with extensive
encoded sources, such as those seen in source coding.
Although the Log-BCJR algorithm used in UEC-URC decod-
ing is hindered by the presence of sequential information
dependencies, which negatively impact processing latency,
a solution known as the Fully Parallel Turbo Decoder
(FPTD) [75] overcomes these limitations. By eliminating
the aforementioned dependencies inherent in the traditional
Log-BCJR approach, the FPTD attains the performance of
the first high throughput near-capacity JSCC decoder and
its prototype architecture [30]. Furthermore, the Decode-
or-Compress-and-Forward (DoCF) [29] is proposed for the
mechanism that the JSCC decoding step is responsible for
processing the demodulated sequences from a relay, followed
by an additional stage to retrieve the original message from
the source, taking into account the fluctuating circumstances
of the channel. The method of the decoder at the point
of arrival involves a two-phase decoding procedure that
utilizes the standard BCJR algorithm. The experimental
verification of the proposed scheme’s superiority is con-
ducted by implementing it on Software-Defined Radios
(SDRs), with a focus on addressing system-level difficulties
in provisioning. The analog circuit prototype [31], [32], [33]
of JSCC can get a compression technique for lightweight
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FIGURE 3. Block diagrams of the proposed semantic-feature image transmission scheme.

devices and the performance of the system was assessed
through the utilization of SPICE simulations, in addition
to the construction and testing of PCB prototypes. The
variant of deep learning-based JSCC (DJSCC) [76], [77],
[78], [79] is to attain notable levels of reliability despite
constraints such as restricted resources and poor SNRs. The
reconstruction work involves the utilization of DJSCC, which
may be seen as a variant of an auto-encoder. In DJSCC,
the SNRs are introduced into the intermediary segment
of the encoder, resulting in a distorted version of the
original auto-encoder. TheDJSCC encoder employs semantic
signals or analog waveform sequences instead of digital
transmission, unlike traditional wireless transmission. This
enables its operation in challenging channel circumstances
while still achieving satisfactory restoration. Nevertheless,
the efficiency enhancement obtained by current DJSCC
techniques is only discernible through simulations in aca-
demic studies, which serve as the knowledge sharing by
auxiliary transmission for semantic networks [5]. These
simulations typically assume ideal synchronization, precod-
ing, antenna, and power amplifier conditions. Therefore,
the study [34] focuses on an SDR-based DJSCC platform.
The capability of this system is evaluated by taking into
account two important factors: synchronization error and
non-linear distortion. Moreover, drawing inspiration from the
impressive resilience demonstrated by Vision Transformers
(ViTs) [80] in effectively addressing various challenges
associated with picture nuisances, the authors in [35] provide
a novel approach that utilizes a ViT-based framework for
the purpose of SC. The methodology employed in our
study demonstrates an increase in peak signal-to-noise ratio
(PSNR) by a satisfactory level when compared to several
variations of convolutional neural networks. Finally, we sum-
marize the state-of-the-art prototype of JSCC and DJSCC
in Table 1. Our work demonstrates the inclusive prototype
of an edge semantic device to inspire further advanced
hardware design for JSCC-based semantic task-oriented
communication.

III. PROPOSED PROTOTYPE OF JSCC SYSTEM FOR
SEMANTIC FEATURE TRANSMISSION AND RECEPTION
A. OVERVIEW
The proposed JSCC system is designed to accommodate
various types of semantic communications and task-oriented
communications through the application of deep learning
techniques. A deep learning model recovers the transmitted
data with the semantic or task-oriented feature in accordance
with side information derived from knowledge-based and
task-effectiveness metrics. As depicted in Fig. 3, the architec-
ture employs a specialized semantic encoder to transform the
raw data into a source sequence based on knowledge-based
side information, denoted as s. This sequence undergoes a
random interleaving process or the proposed UEP installation
for the semantic encoder to leverage the UEP capability
and be aware of the location of the invulnerable code-
word segment, resulting in itrl(s). Subsequently, the JSCC
QC-LDPC encoder with a code rate of 0.8 compresses and
encodes itrl(s) into a new sequence C to ensure reliable data
transmission. The encoded sequence C is then modulated
using BPSK, where bits 0 and 1 are mapped to +1 and
−1, respectively, yielding X . This modulated sequence is
transmitted over an AdditiveWhite Gaussian Noise (AWGN)
channel, resulting in the received signal X ′

= X + N , where
N represents the AWGN. Finally, a QC-LDPC-based JSCC
decoder processes X ′, followed by a de-interleaving step,
to produce the estimated source sequence s′ for the semantic
decoder.

B. QC-LDPC CODES CONSTRUCTION AND ENCODING
The JSCC system outlined in this paper is designed for
implementation on hardware such as FPGAs, requiring a shift
from floating-point to fixed-point arithmetic. This change
inevitably leads to a predictable decrease in computational
accuracy. To counteract this performance loss, additional
parity bits are incorporated into the JSCC QC-LDPC
encoder. This adjustment ensures that the system maintains
a reasonable performance level when deployed on hardware.
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Furthermore, in our previous work [81], we provide a
UEP LDPC code construction that shows the best irregular
node distribution in accordance with the design of the
large-degree variable node, which has a better capability
for error correction than the small-degree variable node.
From a hardware perspective, a variable node unit with a
larger degree and stronger error-correcting capabilities has
a higher level of computational complexity than a smaller
degree. In a tanner graph, the degree of the check/variable
node can be represented as its connecting edge. The authors
derive the theoretical analysis to demonstrate the decoding
capability of UEP LDPC code. This result can be applied
to UEP QC-LDPC code design for semantic communication
and apply the following QC-LDPC code construction by
determining variable node degree to achieve UEP for the
JSCC system.

The construction of QC-LDPC codes is twofold based on
Protograph LDPC (P-LDPC) codes and CPMs replacement
for the quasi-cyclic characteristic. Our aim is to construct
a QC-LDPC matrix based on (Bs1,Bc1). The optimized
P-LDPC codes, (Bs1,Bc1), deriving from [82], are chosen
in that such code pair can achieve a decoding threshold of
-2.1 dB, 1.5dB lower than the classic (BR4JA,BAR4JA) [83].
Besides, in general, P-LDPC codes [84] also offer rapid
encoding and decoding structures and achieve the linear
minimumHamming distance, leading to a better performance
in the waterfall region and the error-floor region of BER
curves. In what is called the lifting method for (Bs1,Bc1), the
JSCC matrix can be written as

H50×90 =

(
Hs(20×40) HL(20×50)
0s(30×40) Hc(30×50)

)
(1)

where 030×40 is an all-zero matrix of size 30 × 40.
HL(20×40) = [020×30I20×20].

The next step is to replace traditional LDPC codes with
QC-LDPC codes. The parity check matrix of the QC version
of the selected P-LDPC codes can be obtained by replacing
‘‘1’’s with CPMs of appropriate shift values and ‘‘0’’s with
all-zero matrices based onH50×90 using Golomb-Ruler [85],
which can ensure the girth of generated matrices are large
enough.

By lifting H50×90 with a factor of z = 160, the matrix of
QC-LDPC codes that we obtain can be denoted by

HQC(50×90) =

(
HsQC(20×40) HLQC(20×50)
0sQC(30×40) HcQC(30×50)

)
(2)

Referring to Eq.2, the parity check matrices for the JSCC
encoding are indicated as HsQC and HsQC, which sizes are
3200 × 6400 and 4800 × 8000, respectively.
The encoding method can be simply achieved by

c = GT s (3)

where, generation matrix G can be calculated using parity
matrix HsQC. Since the large size of the proposed H matrix
requires massive computation, the other equivalent approach
is leveraging the right side of Eq.2 to divide and conquer the

JSCC encoding scheme. To generate the output of the JSCC
encoder, denoted by c, two major steps, source compression
and parity-bit generation for channel communication should
be followed as below.

Source Compression: The first step can be regarded as
compressing data, which is given by

b = HsQC. (4)

Based on the size of parity check matrices, the source
information vector, denoted as s, has a size of 6400 × 1.
As optimized QC-LDPC codes are designed for p = 0.04,
this means that the probability of ‘‘1’’ in the source vector
should be 4%. In other words, p = Pr(si = 1) = 0.04, i =

1, 2, . . . , 6400. Given that HsQC (3200 × 6400) is the H
matrix for the source codes, the compressed output can be
calculated using Eq. (4). The size of the output b is 3200×1.
The source compression ratio Rs is equal to 6400/3200 = 2.

Channel Parity-bit Generation: the subsequent manner
is based on the property of LDPC parity check matrix in
Eq. 5:

HQC c = [H1(4800×4800))H2(4800×3200)] c = 0. (5)

As codeword c of the JSCC encoder can be denoted as

c = [p b]T (6)

where p represents the parity bit vector of size 1 × 4800.
Accordingly, the parity bit vector can be calculated using

p = H−1
1(4800×4800)H2(4800×3200)b. (7)

The second half of the proposed JSCC encoder, which
behaves like a channel encoder and is fed with a 3200-bit
longb, outputs 8000 bits. Therefore, the channel code rate
Rc is 3200/8000 = 0.4. So far, the overall code rate will be
Roverall = Rs × Rc = 0.8.

It is noted that all data involved in the JSCC encoding
scheme are represented as binaries, corresponding operations
depicted in the aforementioned equations are merely bitwise
operators (ANDs and XORs), which are hardware-friendly to
implement.

C. JSCC LAYERED DECODING ALGORITHM
The JSCC decoder using QC-LDPC codes can be visualized
through a Tanner graph. This graph is essentially divided
into two interconnected subgraphs: one representing the
source and the other representing the channel, depicted in
Fig. 4. As the major component of the proposed system, the
QC-LDPC code-based JSCC decoder can be achieved
by applying a QC-LDPC layered sum-product decoding
algorithm [62], [86], although some new calculations, such
as message exchanges between the source side and the
channel side, need to be included. The partial parallelism of
the layered decoding algorithm, which enables full parallel
operations amongst all sub-matrices within one check node
or ‘‘layer’’, simplifies the hardware implementation of the
source and channel decoders. The following parameters and
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FIGURE 4. The Bipartite Graph of JSCC Decoding Scheme using QC-LDPC codes.

values should be defined and assumed before explaining the
JSCC decoding process.

• An AWGN channel with zero mean and variance δ2 is
assumed. The channel value from this AWGN channel
is set as the initial values of Variable-Node-to-Check-
Node (V2C) messages.

• Ms and Mc represent the number of check nodes (CNs)
in the source and the channel, respectively.

• Ns and Nc represent the number of variable nodes (VNs)
in the source and the channel, respectively.

The key decoding procedures for the source and channel
are as follows.

• Variable node processor (VNP) in source decoding:
the variable node to check node (V2C) messages,βscjk ,
is computed according to Eq. (8). To be more specific,
Lksc is denoted as the source log-likelihood ratio (LLR)
of the k-th VN in the source decoder.M (k)\ j represents
the set of CNs connected to the k-th VN, excluding the
j-th CN itself. The other denotations regarding all other
equations can be found in Fig. 4. It should be noted
that circles and squares, respectively, represent variable
nodes and check nodes in Fig. 4. The hollow circles
represent punctured variable nodes.

βscjk = Lsck +

∑
j′∈M (k)\j

αscjk ∀k ∈ N (j) (8)

• Check node processor (CNP) in source decoding: Two
operations are performed in two steps.

1) Update the check node to variable node (C2V)
messages αscjk in Eq. 9.

2) Updating message from the source decoder to the
channel decoder, I sc_cc

k̂
in Eq. 10.

tanh(αscjk /2) = tanh(I cc_sc
k̂

/2) ×

∏
k ′∈N (j)\k

tanh(βscjk /2)

∀k ∈ N (j) (9)

tanh(I sc_cc
k̂

/2) =

∏
k ′∈N (j)

tanh(βscjk ′/2) (10)

Calculating Posteriori LLR lsck needs to be done after CNP
using Eq. (11).

lsck = Lsck +

∑
j′∈M (k)

αscj′k . (11)

For channel decoding, the procedure for updating LLR
messages is very similar to source decoding, as depicted on
the right side of Fig. 4.

• VNP in channel decoding: owing to the crossed
message-passing mechanism between the source
decoder and the channel decoder, VNP in channel
decoding must be computed separately. Ñ cc_sc indicates
the set of VNs connected to the corresponding CNs in
the source decoder.

βccjk = Lcck +

∑
j′∈M (k)\j

αccj′k ∀k ∈ N (j) ∩ Ñ cc_sc (12)
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FIGURE 5. A brief design architecture of the QC-LDPC decoder implementation for either the Source or Channel side.

In Eq. (12), Ñ cc_scis the complement of N cc_sc.

βccjk = I sc_cc
k̂

+ Lcck +

∑
j′∈M (k)\j

αccj′k ∀k ∈ N (j) ∩ N cc_sc

(13)

• CNP in the channel decoding:

tanh(αccjk /2) =

∏
k ′∈N (j)\k

tanh(βccjk /2) ∀k ∈ N (j) (14)

• Message from the channel decoder to the source
decoder:

I cc_sc
k̂

= Lcc
k̂

+

∑
j′∈M (k̂)

αcc
j′k̂

. (15)

• Posteriori LLR update without VNs connected with CNs
in the source decoder:

lcck = LccK +

∑
j′∈M (k)

αccj′k ∀k ∈ N (j) ∩ Ñ cc_sc (16)

• A Posteriori LLR update with only VNs connected with
CNs in the source decoder:

lcc
k̂

= I cc
k̂

+ Lsc_cc
k̂

+

∑
j′∈M (k̂)

αcc
j′k̂

∀k ∈ N (j) ∩ N cc_sc (17)

The last step is the hard decision and the stopping criterion
for the decoding iteration. Let us consider the decoded
source-side sequence and channel-side sequence with ŝ =

{ŝ1, ŝ2, . . . , ŝk} and ĉ = {ĉ1, ĉ2, . . . , ĉk}, respectively. They
are used to obtain an estimated value of the received
codeword sent on the sender’s side, according to the following
rule:

FIGURE 6. The proposed regular interleaver in [87] for UEP intallation.

• ĉk = 0 if lcck ≥ 0, otherwise ĉk = 1 ∀k
• ŝk = 0 if lsck ≥ 0, otherwise ŝk = 1 ∀k

Stopping the decoding process is subject to if the decoder
reaches the maximum number of decoding iterations, which
is preset before decoding.

It should be emphasized that in our case, the number of
layers is: mszs1 = 20. Gs and Gc, representing the number of
decoding groups per layer in the source and channel decoder,
respectively, and we choose one group (Gs = 1 and Gc = 1)
for both sides.

The proposed architecture shown in Fig. 5 is different
from a normal layered LDPC decoding architecture, as I cc_sc

k̂
and I sc_cc

k̂
, used for exchanging messages between the

source and channel decoders, in Eq. 15 and Eq. 10 are
involved exclusively in a JSCC system. Therefore, I cc_sc

k̂
and

I sc_cc
k̂

should be calculated as well in the CC2SC/SC2CC
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TABLE 2. Comparison of the synthesized JSCC and turbo decoder.

FIGURE 7. The Experimental Platform on the receiver’s side.

Processors. To balance the complexity of this system,
a modified quantized sum-product algorithm based on [60]
was adopted to simplify the hyperbolic tangent functions
in Eq. 9 and Eq. 14. Specifically, a look-up table (LUT)
architecture is implemented for a two-input fixed-point tanh
calculation.

D. INTERLEAVER AND DE-INTERLEAVER FOR UEP
INSTALLATION
The interleaving technique is used to spread burst errors
and average the distribution of ‘‘0’’s and ‘‘1’’s in the
source vector. Especially for semantic feature images,
the importance is likely to be centered and continuous.
Interleaving the information in these images can improve the

TABLE 3. Feature comparison with others.

error correction capability of LDPC codes. To recover the
order of each binary on the decoding side, the de-interleaver
is applied. In [87], the proposed regular interleaver and
de-interleaver are shown in Fig.6 with the assumption of
semantic importance having a higher occurrence probability
on the even position using the signal processing technique
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FIGURE 8. BER performance comparison. p = 0.04.

or semantic model. This technique can be designed for
the allocation of semantic importance to invulnerable or
stronger error-correction capability as illustrated in the red
codeword segment in contrast to the vulnerable codeword
in the green segment. Hence, the semantic encoder/decoder
possesses information on the distribution of UEP in the
transmitted coded sequence. Consequently, it may achieve
enhanced semantic compression while semantic importance
is protected by an invulnerable codeword segment.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL PLATFORM
The experimental setup utilizes a Virtex Ultrascale + FPGA
VCU118 evaluation kit as the receiving platform, shown in
Fig. 7. The system’s processor is built around an open-source
32-bit RISC-V CPU core, deriving from [89] and connecting
to a flexible interconnection bus. Essential modules such
as DMA controllers, NAND flash controllers, and main
memory controllers for DDR RAMs are integrated, along
with an Ethernet IP. The core components of the system
include a specialized JSCC decoder based on QC-LDPC
codes and a deep learning accelerator for semantic and task-
oriented processes. This accelerator is designed to handle
matrix multiplication, convolution, and activation functions,
which are fundamental to neural network computations based
on YOLO [90] and auto-encoder. To simulate transmission
modules (in the first row depicted in Fig. 3) and model an
AWGN channel, a separate computer is employed. Conse-
quently, the combined computer-FPGA setup functions as
two distinct JSCC systems. The first system encodes semantic
feature images and transmits them as BPSK-modulated data
through anAWGNchannel. The second system receives these
image data from the channel and reconstructs the original
image information using demodulation and JSCC decoding
techniques.

FIGURE 9. Original and Received Semantic Feature Images in a case
when p = 0.0398.

B. IMPLEMENTATION RESULTS
A 6-bit quantization scheme denoted as ‘‘Proposed-Q6’’
in Fig. 3, is adopted in the proposed JSCC system. The
synthesized results comparing resource utilization with the
state-of-the-art in [30] are shown in Table 2. It should
be noted that the logic (FFs and LUTs) to implement the
decoder occupies around 33% of the entire FPGA and around
1.4% of block memories. The resource utilization of Intel
Altera, employing ALUT, is demonstrated. The registers
comprise logic components and adaptive logic modules,
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with each module housing two ALUTs. For 50 decoding
iterations, 31 microseconds are spent by the FPGA driven by
a 100 MHz clock. In Table 3, the feature comparison reveals
that our FPGA platform for JSCC semantic communication
encompasses both floating point analysis and fixed point
(6)-bit) quantization. The resource consumption, when
compared to the state-of-the-art technique, demonstrates a
suitable cost to achieve improved BER performance. Addi-
tionally, the inclusion of supplemental parity bits enhances
the BER performance when employing a code rate of 0.8 to
compensate for the quantization loss, in comparison to the
other platforms utilizing a code rate of 1.

Owing to the distinct architecture of the proposed scheme
and the dimensions of the LDPCmatrix, a direct performance
comparison with the existing literature is not feasible. As a
result, a simulated system employing 32-bit floating-point
precision, labeled as ‘‘Proposed-FP32’’ in Table 3, serves as
a benchmark against the 6-bit hardware implementation and
six additional relevant studies. As illustrated in Fig. 8, the
Bit Error Rates (BER) for the proposed codes, both under
floating-point simulation and 6-bit hardware implementation,
were scrutinized in juxtaposition with other works that solely
investigated JSCC systems in a simulated setting, as indicated
in the final column of Table 3. The BER is plotted on
the y-axis, while the Eb/N0, or the energy per bit to noise
power spectral density ratio, is plotted on the x-axis. The
empirical findings from the 6-bit quantized version align
well with the simulated outcomes, denoted as ‘‘Proposed
FP32’’. Notably, the trajectory of these curves, as Eb/N0
increases, is congruent with existing scholarly contributions.
Despite the simplifications introduced by data quantization
in the proposed architecture, a modest decline in the BER of
‘‘Proposed-Q6’’ is observed. However, its BER performance
remains superior to those reported by [50], [91], Double
regular LDPC, and R4JA in [92], all of which employ
non-QC-LDPC codes with 32-bit floating-point simulations.
This superior performance can primarily be attributed to the
QC-LDPC code generation, reasonable code rate modifica-
tions, and efficacious hardware deployment. In addition, the
comparison of BER between turbo code and JSCC in [30]
demonstrates the error floor-free benefit of QC-LDPC code.
QC-LDPC code makes a significant contribution to this
effort, although it requires greater hardware usage.

As the proposed UEP QC-LDPC codes in this design are
optimized on the condition that p ≤ 0.04, a semantic feature,
such as the original one depicted in the upper image of Fig. 9,
can be well contained in a 160 × 40 image, in which each
black and white pixel can be represented by 1 bit in the source
vector. Due to the UEP-aware semantic encoder, the semantic
importance can be protected by an invulnerable LDPC code
segment and is feasible with the proposed regular interleaver.
This compact system is tested under Eb/N0 ranging from
−2 to 0 with 0.5 as its step. Fig. 9 shows one occasion under
variousEb/N0. Considering the lowBER results in Fig. 8, this
simple semantic feature means that the sender and receiver
can communicate correctly with each other nearly all the

time. The code rate for this entire system is R = Rs × Rc =

2×0.4 = 0.8. It should be noted that in such lowEb/N0, many
communication standards, such as IEEE 802.11n (WiFi) and
IEEE 802.16e (WiMAX), need to set a low code rate to 0.5 or
even lower when complex or high-volume noise is detected.

V. CONCLUSION AND FUTURE DIRECTIONS
By facilitating the exchange of highly informational,
up-to-date, and efficient data. SC has the potential to
enhance the effective use of resources, improve information
accuracy and efficacy in task completion, and serve as
a model and technical foundation for future generations
of communication systems. The utilization of task-oriented
communication has beenwidely regarded as a novel approach
in the development of communication methods for multi-
agent systems. In this paper, a novel JSCC system based
on QC-LDPC codes is proposed as a promising candidate
for semantic task-oriented communication systems. As the
proposed irregular QC-LDPC code construction with the
nature of UEP capability, the semantic importance can be
dynamically assigned to the variable node with stronger
error-correction capability by the proposed interleaver. After
semantic source coding passes the information to the simple
structure of the QC-LDPC codes, the JSCC system is
implemented on the hardware device. Significantly, the
operations of the JSCC decoder are layered and are then
executed in parallel both on the source and channel sides.
The fixed-point system also maintains fair BER performance
compared to the simulated one. Moreover, the design with
its optimized QC-LDPC codes is further investigated by
compressing image data and protecting encoded data via an
AWGN channel. This application is the semantic feature of
image transmission and reception. In many cases, in practice,
sources are transmitted uncoded, while state-of-the-art block
channel encoders are used to protect the transmitted data
against channel errors. If the JSCC scheme is used in such
cases, the throughput can be improved by compressing
the source data (Rs = 2) and then the channel coding
starts. If the input image and channel codes are fixed, the
throughput of our proposed design is doubled, compared with
the non-compression system. Even when competing with
another JSCC system, a better error correction capability can
still outperform others. We conclude some potential future
research directions as follows.

1) The design concepts entail the utilization of collabora-
tive techniques with an edge AI server throughout the
process of semantic transmission in order to enhance
adaptability. The objective of this collaboration is to
provide guidelines for configuring the JSCC decoder
in the context of feature and federated learning.

2) Due to the nature of the applicable implementation
in [93], the JSCC framework is used to interface
with binarized neural networks to optimize resource
utilization in edge devices with limited computational
capabilities. This approach is specifically applied
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TABLE 4. List of abbreviations.

in the context of task-oriented communication and
goal-oriented quantization while considering the appli-
cation of the RISC-V low-power revolution.

3) Although there is a tendency for DJSCC to supplant
the role of JSCC, the future possibility of collaboration
with machine learning remains a focal point not only
in the study of theoretical analysis but also in practical
implementation. The importance of including semantic
and task-oriented design aspects in the development of
UEP JSCC prototype cannot be overstated, particularly
in the context of edge AI for future-generation 6G
communications.

4) In the cybersecurity aspect, the analysis of the secrecy
rate transition between edge servers and devices
utilizing JSCC can be explored within the framework

of differential privacy [94], specifically in the presence
of eavesdropping or the other assault scenario.

The incorporation of semantics and task-oriented communi-
cation is expected to assume a significant role in forthcoming
intelligent systems. The purpose of this article is to offer
an introductory overview and a cohesive perspective for the
prototype of next-generation 6G communication systems to
inspire more potential research activities.

APPENDIX ABBREVIATION
We show the list of abbreviation in Table 4
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