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ABSTRACT Groundwater spring plays a crucial role in human life, including water resource management
and planning; therefore, developing accurate prediction models for groundwater spring potential mapping
is essential. The objective of this research is to introduce and confirm a new modeling approach based
on TensorFlow Deep Neural Networks (TF-DNN) and multisource geospatial data for spatial prediction
of groundwater spring potential, with a case study in the tropical province in the central highland of
Vietnam. For this task, the TF-DNN model structure with three hidden layers with 32 neurons each was
established; therein, the AdaptiveMoment Estimation (ADAM) algorithmwas used as an optimizer, whereas
the Rectified Linear Unit (ReLU) was used as the activation function, and the sigmoid was used as the
transfer function. A geospatial database for the study area, consisting of 733 groundwater spring locations
and 12 influencing factors, was prepared in ArcGIS Pro. Then, it was used to develop and verify the TF-DNN
model. Decision Tree, Support Vector Machine, Logistic Regression, Random Forest, and Classification
and Regression Trees were used as a benchmark for the model comparison. The results demonstrate that
the proposed TF-DNN model (Accuracy = 80.5%, F-score = 0.797, and AUC = 0.864) achieves a high
global prediction performance, outperforming the benchmark models. Thus, the TF-DNN represents a novel
and effective tool for spatially predicting groundwater spring potential mapping. The groundwater spring
potential map generated in this study has the potential to assist provincial authorities in formulating strategies
concerning water management and socio-economic development.

INDEX TERMS Groundwater, Tensorflow, deep neural networks, geospatial data, Vietnam.

I. INTRODUCTION
Groundwater is an indispensable resource for societies
as it serves various vital purposes, including agricultural
cultivation, industrial activities, and drinking water sup-
ply [1]; however, the availability of groundwater is not
limitless [2], thereby necessitating the need for accurate
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forecasting, effective management, and responsible utiliza-
tion. As a result of socio-economic development, population
growth, and the adverse impacts of climate change, the ris-
ing demand for water supply underscores the urgency of
implementing sustainable management practices for ground-
water resources [3]. Ensuring the sustainable use of these
resources has become a vital priority for safeguarding human
well-being. In this regard, the utilization of a potential
mapping method for groundwater plays a pivotal role in
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the comprehensive assessment and effective management of
groundwater resources. Such a method enables the identi-
fication of regions with a high potential for groundwater
occurrence and facilitates the estimation of water volumes
within targeted areas. By employing this approach, policy-
makers and resource managers can make informed decisions
to optimize the utilization and conservation of groundwater
resources.

Different approaches have been applied to map the poten-
tial areas of groundwater [4]. First, groundwater potential
mapping has frequently been conducted by using statisti-
cal approaches, including discriminant analysis and logistic
regression [5]. These approaches are commonly simple to
implement, but they are based on analyzing a linear rela-
tionship between the values of independent and dependent
input data, which may contain errors. Although they often
require a limited number of samples, they need considerable
knowledge from experts to decide on suitable predictors,
which may not always provide accurate outputs [6].

Other widely used approaches to groundwater potential
mapping are geospatial methods, including weighted over-
lay and fuzzy logic [7]. These methods utilize various
spatial variables, including land use/land cover, soil types,
and topography, to create potential maps of groundwater.
These variables impact the occurrence of groundwater and
can address incomplete or missing data. Specifically, the
weighted overlay is based on the relative importance of each
independent variable to weigh their impact on predicting the
occurrence of groundwater [8]. A statistical analysis or expert
knowledge is applied to decide weights, and then the method
creates a weighted quantity of the input variables to generate
a potential map of groundwater. Meanwhile, fuzzy logic uses
fuzzy set theory with various spatial datasets, which can
address incomplete or missing data and then predict ground-
water potential maps [9]. Nevertheless, the truthfulness of the
results varies according to the accuracy and availability of the
input data, which are likely challenging to acquire for some
regions [10], [11].

In the last decade, machine learning-based approaches
have been increasingly applied for mapping potential ground-
water areas [12], [13]. These methods offer several advan-
tages, including the ability to address complex and nonlinear
relationships between groundwater occurrence and the asso-
ciated predictors, resulting in more accurate and reliable
outcomes. Notable machine learning-based methods for
this purpose include support vector machines [14], neural-
fuzzy systems [15], artificial neural networks [16], random
forests [17], and decision trees [18]. These methods exhibit
flexibility, the ability to handle intricate relationships, and
adaptability, making them highly suitable for groundwater
modeling. As a result, they provide improved results and
valuable insights for effective groundwater management and
informed decision-making processes.

In recent years, the development of information technol-
ogy with integrated and ensemble algorithms [19], [20] has

offered many new solutions for the field of groundwater
research, i.e., Bayesian ensemble [21], Naïve Bayes ensem-
ble [22], multi-model ensemble [23], boosting and bag-
ging [24], cluster ensemble [25], ensembleKalman filter [26],
and iterative ensemble smoother [27], [28]. Overall, the pro-
posed integration and ensemble of multiple models have
consistently improved performance in groundwater model-
ing tasks. The ability to combine models, capture nonlinear
relationships, handle uncertainty, generalize well, and adapt
to different geo-environmental data sources contribute to the
superior performance of integrated and ensemble algorithms
in these groundwater modeling applications.

In more recent years, the development of remote sens-
ing technology, geographic information systems (GIS), and
deep learning has significantly advanced the spatial model-
ing of various geo-information science domains [29], [30],
[31], including groundwater studies. Remote sensing involves
the acquisition of data about the Earth’s surface from a
distance, typically using satellites or aerial platforms, i.e.,
Sentinel images [32], Landsat 9 OLI-2 satellite imagery [33],
and UAV-LiDAR (Light Detection and Ranging) data [34],
provide available valuable information for groundwater mod-
eling. While GIS technology, i.e., ArcGIS Pro and Google
Earth Engine, plays a crucial role in managing and analyzing
spatial data for groundwater modeling, including geospatial
data integration and spatial analysis [35], [36]. Deep learning
has shown significant promise in groundwater modeling [37],
[38] due to its ability to learn and extract complex patterns
from large datasets automatically. More importantly, deep
learning can fuse various multisource geospatial data [39],
such as remote sensing derived data, soil layer, hydrogeolog-
ical parameters, and climate data, to improve the accuracy
of groundwater models. It enables the integration of diverse
information and enhances the representation of groundwater
system dynamics. Nevertheless, exploring deep learning and
multisource geospatial data for spatial prediction of ground-
water spring potential is still limited in the literature.

In this study, we propose and validate a novel mod-
eling approach for groundwater spring potential mapping,
addressing the above limitation of literature. Our approach
utilizes TensorFlow Deep Neural Networks (TF-DNNs) and
multisource geospatial data. TensorFlow, an open-source
software library for machine learning and artificial intelli-
gence, provides a flexible framework for constructing deep
neural networks. Our model effectively captures the intricate
and nonlinear relationships between groundwater occurrence
and various influencing factors by employing deep neural
networks. We incorporate a range of influential variables,
including slope, aspect, elevation, curvature, land use/land
cover, distance to fault, distance to river, lithology, rainfall,
and indexes (e.g., NDVI, NDMI, NDWI), as input features
to calculate the probability of groundwater occurrence in
the target area. In order to create groundwater potential
maps, we integrate our model outputs with GIS function-
alities. This integration allows for the delineation of areas
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with high groundwater potential. The utilization of TF-DNNs
eliminates the need for expert knowledge and manual inter-
vention, reducing the likelihood of human errors. Moreover,
it enhances the accuracy and robustness of the results, over-
coming the limitations of existing methods. By adopting this
approach, we aim to contribute valuable scientific evidence to
support decision-making in the sustainable management and
utilization of groundwater resources.

The research aims to introduce and evaluate a novel
approach for spatial prediction of groundwater spring poten-
tial using TensorFlow Deep Neural Networks and multi-
source geospatial data. Specifically, it focuses on enhancing
the accuracy of groundwater spring potential mapping in
tropical areas, such as the Kon Tum province in Vietnam.

The subsequent sections of the paper are structured as fol-
lows: Section II delves into the background of the algorithms
employed. In Section III, the study area and data are eluci-
dated. Section IV introduces the proposed Tensorflow Deep
Neural Network for spatial prediction of groundwater springs
potential integrated with GIS. Section V encompasses the
results and discussions. The paper concludes with discussions
and final remarks in Section VI and Section VII, respectively.

II. BACKGROUND OF THE ALGORITHMS USED
This section describes the background of the deep neural net-
works used in this research. Additionally, it outlines the key
features of five benchmark algorithms, DT (Decision Trees),
SVM (Support Vector Machines), LR (Logistic Regression),
RF (Random Forest), and CART (Classification and Regres-
sion Trees), for the purpose of comparisons.

A. DEEP NEURAL NETWORKS
Deep learning is a subfield of machine learning that has
gained significant attention in recent years, especially in
geosciences [40], [41], [42], due to its ability to learn highly
complex and abstract representations of geo-environmental
data automatically. It is based on the use of neural networks,
which are composed of interconnected nodes or neurons that
mimic the behavior of neurons in the human brain. Herein,
deep learning algorithms learn features directly from raw data
by utilizing a hierarchical architecture of multiple layers of
processing [43], which allows the network to progressively
extract and transform features from the input data from simple
and local patterns in the lower layers to more abstract and
global representations in the higher layers. The most popular
deep learning frameworks are shown in Table 1.
Of the various deep learning frameworks, TensorFlow,

which was developed by Google [44], was chosen for this
research due to its high flexibility in constructing deep neural
network models. The main strength of TensorFlow lies in its
ability to handle computations with large amounts of data and
parameters and to distribute them across multiple devices for
parallel processing [52]. This makes it ideal for training deep
neural networks on large datasets. Moreover, TensorFlow
offers a wide range of high-level APIs and tools that facilitate

FIGURE 1. A typical structure of a deep neural network.

the development of deep learningmodels, such as ArcGIS Pro
deep learning, for building and training neural networks.

Let’s consider a training dataset DT ∈ (X, y), with X ∈

Rm,y ∈ [1,0], and m is the number of input factors. In this
research context, X is a matrix consisting of 12 ground-
water spring influencing (GSI) factors (m =12), whereas
y ∈ (0,1) denotes two classes, groundwater spring and
non-groundwater spring. The TFDeepNN aims to build an
inferencemodel f (X): Rd → [1,0] to infer 12 GSI factors into
groundwater spring indices. Subsequently, these indices are
utilized to produce a map indicating the potential locations
of groundwater springs using ArcGIS Pro. A typical deep
learning structure network is shown in Figure 1, featuring one
input layer, one output layer, and some hidden layers.

B. BENCHMARK MACHINE LEARNING
In order to confirm the effectiveness of the proposed TF-DNN
model, five benchmark algorithms, DT (Decision Trees),
SVM (Support Vector Machines), LR (Logistic Regres-
sion), RF (Random Forest), and CART (Classification and
Regression Trees) were used for the purpose of performance
comparison. They are well-known and widely used machine
learning algorithms in the field of environmental modeling.
Herein, the selected algorithms represent different types of
machine learning techniques to ensure the presence of diver-
sity. DT is based on a series of if-else conditions, SVM finds
optimal hyperplanes for classification, LR models probabil-
ities, RF combines multiple decision trees, and CART can
handle both classification and regression tasks [53], [54],
[55]. Because the detailed description of these benchmark
algorithms is overwhelming in literature, only salient features
were outlined here.

In this research, the DT algorithm, which is a Java
implementation (J48) of the C4.5 algorithm introduced by
Quinlan [56], was used. This algorithm has been widely
used in environmental modeling applications because it
can generate interpretable models and handle various types
of multisource geospatial data. The algorithm utilizes the
groundwater training dataset DT to construct a decision tree,
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TABLE 1. Popular deep-learning frameworks.

beginning with a root node and progressively expanding
to leaf nodes until the tree is fully formed. The min-
imum number of instances per leaf and the confidence
factor are salient parameters controlling the performance of
the DT.

SVM, which was introduced by Vapnik [57], is a powerful
machine learning algorithm and widely applied to ground-
water modeling [58] due to its ability to handle non-linearly
separable geospatial data by transforming it into a higher-
dimensional space. It is effective in high-dimensional spaces
and offers flexibility in capturing complex decision bound-
aries without explicitly transforming the data [59]. In the
SVMwith Radial Basis Function (RBF), the hyperparameters
C and gamma are crucial in influencing the model’s perfor-
mance. Therefore, they should be carefully selected.

LR, which was developed by Cox [60] is a widely used
statistical model for groundwater mapping [59], [61]. It esti-
mates the probability of an input sample belonging to one
of two classes and maps it to probabilities by using the
sigmoid function. The probability is used as the groundwater
spring potential index, with 1– groundwater and 0 – non-
groundwater. Thus, the LR model is simple yet effective,
making it a popular choice for various environmental appli-
cations, including groundwater studies.

Introduced by Breiman [62], RF is a potent ensemble
learning method known for its exceptional performance in
various environmental modeling domains, including ground-
water studies [63], [64]. It constructs an ensemble of decision
trees by randomly generating subsets from the groundwa-
ter training dataset DT and building a tree for each subset.
The final groundwater indices are obtained through majority
voting (for classification) or averaging (for regression) of
individual tree predictions. This makes RF a versatile and
powerful algorithm for spatial prediction in diverse environ-
mental domains. Thus, the number of decision trees in the RF
is the most important parameter.

Regarding CART, which was also introduced by
Breiman [65], this algorithm constructs a tree-like model by
recursively splitting the groundwater data into subsets based
on the most significant input factors. CART can be used
for classification and regression tasks and is valued for its
simplicity, interpretability, and ability to handle discrete and
continuous geospatial data.

III. STUDY AREA AND DATA
A. STUDY AREA
The study area is the Kon Tum province, located in the
Central Highland of Vietnam, between longitudes 107◦19′ E
and 108◦33′ E and latitudes 13◦53′ N and 15◦25′ N. The
province covers an area of 9691.6 km2 and has a diverse
landscape characterized by mountains, hills, and valleys. The
altitude ranges from approximately 140.1 m in the Sa Thay
area in the south to 2600.3 m above sea level in the Tu Mo
Rong in the north (Figure 2), with a mean of 882.2 m and
a standard deviation of 391.4 m. The slope in the study area
ranges from 0o to 86.8o. Approximately 79.7% of the study
area consists of slopes less than 25◦, while only 3.9% has
slopes greater than 35◦. Based on our statistical analysis of
land use/land cover, approximately 70.6% of the province is
covered by forest land, with deciduous broadleaf forest being
the dominant type. Woody crops account for 24.2% of the
study area. Scrub/Shrub land, rice paddies, and residential
areas comprise 1.6%, 1.4%, and 0.7% of the region.

The province belongs to the tropical monsoon climate,
which is characterized by distinct wet and dry seasons. The
wet season typically lasts from May to October, whereas the
dry season usually from November to April. The average
annual rainfall in Kon Tum province varies from 1700 mm
to above 3000 mm [66]. The province’s mountainous ter-
rain contributes to rainfall variability across different areas,
with some regions experiencing more precipitation than
others [67].
Regarding the geology, the study area is situated within the

Kon Tum uplift block, positioned on the eastern side of the
Indosinian orogeny [66]. Over 33 geological formations or
complexes have been identified; however, their distribution
varies significantly (Figure 3 and Table 2). Ten formations
or complexes account for 87.8% of the study area (Table 2).
Around 22.8% of the study area is covered by Tac Po for-
mation. It is followed by Hai Van complex (13.5%), Van
Canh complex (8.8%), Kham Duc formation (8.5%), BG-QS
complex (8.3%), andMang Yang formation (8.1%) (Table 2).
Particularly 81.1% of the groundwater spring locations

observed in the study area are located in the Tac Po
formation (15.6%), Kham Duc formation (14.9%), Van
Canh complex (12.7%), Mang Yang formation (9.4%),
Hai Van complex (7.4%), Dak Long formation (6.2%),
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FIGURE 2. Location of Kon Tum province and groundwater spring locations.

BS-QS complex (5.1%), Kon Tum formation (5.1%), and
Tuc Trung formation (4.8%) (Table 2). The main litholo-
gies are gneiss, plagiogneiss, schist, granite, granodior-
ite, conglomerate, sandstone, biotite, quartzite, schist, and
tholeiitic.

B. GROUNDWATER SPRING LOCATIONS
The modeling approach in this research uses available
groundwater spring as a key for spatial predictions of
groundwater spring potential. Therefore, the collection of
groundwater spring locations in the Kon Tum province is an
essential task. For this task, a total of 733 groundwater spring
locations were derived from fieldwork under B2021-MDA-
12 project and from the national projects on groundwater
in the Central Highlands of Vietnam [68], [69], [70], [71].
Accordingly, each spring location was surveyed and recorded
using handheld GPS devices. The coordinates of these points
were then imported into ArcGIS Pro to create a compre-
hensive groundwater spring inventory map. The measured
water flow at these locations ranges from 0.01 to 10.89 l/s,
with an average of 0.37 l/s. Notably, 54 locations exhibit
water flow greater than 1.0 l/s, while 652 locations have

water flow ranging from 0.1 l/s to 0.91 l/s. The degree of
the mineralization of the water in these locations ranges from
0.01 to 0.99 g/L, which is within the permissible standard for
the domestic water supply. Among them, only five locations
have a mineralization larger than 0.5 g/L, whereas 412 loca-
tions have a mineralization from 0.1 to 0.5 g/L.

C. INFLUENCING FACTORS
Determining the influencing factors for groundwater spring
modeling is crucial for accurately understanding and predict-
ing the behavior of groundwater springs. These influencing
factors can vary depending on the specific characteris-
tics of the geo-environmental conditions in the Area being
considered. Through the analysis of groundwater spring loca-
tions and the characteristics of the study area, a total of
12 influencing factors were considered: slope, aspect, eleva-
tion, curvature, Landuse/landcover (LULC), NDVI, NDMI,
NDWI, distance to fault; distance to river; lithology, and
rainfall.

First, a digital elevation model (DEM) for the Kon Tum
province is derived fromALOSGlobal Digital SurfaceModel
‘‘ALOS World 3D - 30m (AW3D30)’’, measured in degrees
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FIGURE 3. Geologic map of the Kon Tum province.

(Figure 2) [72]. Then, four topographic factors, slope, aspect,
elevation, and curvature, were extracted and constructed
based on the DEM. These topographic factors should be
selected because they control groundwater flow and the for-
mation of springs. Slope refers to the steepness or inclination
of the land surface [73] that plays a significant role in ground-
water flow patterns. Herein, groundwater tends to flow along
the path of least resistance [74], typically toward the steepest
slope. Aspect can influence the amount of solar radiation and
moisture distribution on the land surface, potentially affect-
ing groundwater recharge rates [75]. Elevation influences
the gravitational potential energy of groundwater and can
determine the direction and speed of groundwater flow [76].
Springs often occur where the water table intersects the land
surface, which is more likely to happen in lower-lying regions
or at specific elevation thresholds [77].

Curvature refers to the degree of curvature in the land
surface [78]. It is essential in groundwater potential mapping
as it impacts the direction and rate of water flow, impacting
groundwater recharge and storage. Herein, areas of positive
curvature, such as hills or ridges, may indicate groundwa-
ter recharge zones where water is infiltrating the ground.
In contrast, areas of negative curvature, such as valleys, may
represent groundwater discharge zones where water is dis-
charged as spring [79].
LULC refers to the types of vegetation, crops, and land use

activities in a specific region, which is an essential factor in
groundwater potential mapping because it impacts the rate of
infiltration, evapotranspiration, and soil moisture [4]. In this
study, we use the High-Resolution Land Use and Land Cover
(LULC) Map from the Japan Aerospace Exploration Agency
(JAXA) Earth Observation Research Center [80]. It was
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TABLE 2. Overview of the geological formations and complexes in the Kon Tum province.

created using multiple remotely sensed databases (Landsat,
Sentinel, and ALOS.) and field survey data. The LULC of
the study area is complex, with a mix of different land types,
including forested areas, croplands, and scrub/shrub areas
(Figure 4e). However, forest and scrub/shrub lands are the
most dominant areas in the region.

Indexes can provide additional information in groundwa-
ter potential mapping [81]. For example, the Normalized
Difference Vegetation Index (NDVI) [82], Normalized Dif-
ference Moisture Index (NDMI), and Normalized Difference
Water Index (NDWI) [83] are able to provide information
on vegetation cover, moisture content, and water content,
respectively. These indexes can be used to identify areas
with high vegetation cover, soil moisture, or water content,
which can indicate potential groundwater recharge areas.
This study uses Landsat 8 OLI to extract these indexes
(Figures 4f, 4g, and 4h).
The distance to faults in an area is likely to impact the

groundwater potential of the region [84]. Faults can act as
conduits for groundwater flow and improve adjacent areas’
recharge rates. However, faults can cause water loss through
leakage or lead to the depletion of groundwater resources.
Here, data on fault locations and their attributes are obtained
from the Geological andMineral Resources Map (1:200,000)
created by the Ministry of Natural Resources and Environ-
ment (Vietnam) [85]. As shown in Figure 4i, most faults lie
in the north-south direction.

The distance to rivers is vital in replenishing groundwater
resources. The proximity of a study area to a river can affect
its groundwater potential. Rivers can be sources of recharge
that increase the water table elevation. In other words, the

over-extraction of groundwater near rivers can cause a reduc-
tion in river flow, likely leading to environmental issues.
In this study, we extract data on river locations and their
attributes from the National Topographic Map (1:50,000)
developed by theMinistry of Natural Resources and Environ-
ment (Vietnam) [86]. We derive river networks by utilizing
ArcGIS Pro software. As shown in Figure 4j, the study catch-
ment has a dense river network.

Lithology with the rock types and their structure can
impact the groundwater potential [87]. Some rocks are more
permeable than others, allowing more effortless water flow
and recharge. Impermeable layers can hinder groundwater
flow, while faults can act as conduits. Data on lithology are
obtained from the Geological and Mineral Resources Map
(1:200,000) created by the Ministry of Natural Resources
and Environment (Vietnam). The lithology of the study
area is diverse, with 40 formations, complexes, and lay-
ers (Figure 3), and they were grouped into 28 categories
(Figure 4k).
Rainfall is one of the primary sources of groundwater

recharge. The amount and distribution of rainfall can impact
the groundwater potential of an area. Areas with higher rain-
fall have a higher recharge rate, leading to higher groundwater
potential. We derive rainfall data from the POWER project,
National Aeronautics and Space Administration (NASA),
USA. In this research, the total rainfall in the last 30 years was
used to generate the rainfall map using the Inverse Distance
Weight method [88]. As can be seen from Figure 4m, rainfall
is highly distributed in the east-north rather than the west-
south. It ranges from around 40,000 mm to 60,000 mm over
the study area.
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FIGURE 4. Influencing factors: (a) Slope, (b) Aspect, (c) Elevation, and (d) Curvature.

IV. TENSORFLOW DEEP NEURAL NETWORK FOR
SPATIAL PREDICTION OF GROUNDWATER
SPRINGS POTENTIAL WITH GIS
This section presents the proposed approach (see Figure 5)
for predicting the potential locations of groundwater springs
using a combination of TensorFlow Deep Neural Network
(TF-DNN), multi-geospatial data, and GIS. In this study,

ArcGIS Pro 3.0 was utilized to process the groundwater
springs inventory and the influencing factors. The Deep
Learning Framework within ArcGIS Pro 3.0 was employed,
which includes several pre-built modules for TensorFlow,
Keras, and PyTorch for training and validating the TF-
DNN model. The Python code used to develop the TF-DNN
can be accessed at www.tensorflow.org. In addition, the
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FIGURE 4. (Continued.) Influencing factors: (e) LULC, (f) NDVI, (g )NDMI, and (h) NDWI.

authors created a Python script that operates within the
Spyder 3.9 environment (available at www.spyder-ide.org).
The script’s purpose is to normalize and encode the raster
maps of the influencing factors, extract them into both
the training and validation datasets, and ultimately link
them to the TF-DNN model. The script used was also

used to compute the groundwater springs potential (GSP)
index as the output of the TF-DNN model, which was then
transformed into a GSP map. Regarding the three bench-
marked methods, DT, SVM, LR, RF, and CART, the Python
Wrapper for the Weka (https://github.com/fracpete/python-
weka-wrapper3) [89] was employed to build these models.
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FIGURE 4. (Continued.) Inluencing factors: (i) Distance to fault; (j) Distance to river; (k) Lithology, and (m) Rainfall.

A. GROUNDWATER SPRING DATABASE
For groundwater springs potential modeling with TF-DNN,
creating a groundwater spring database in a GIS is essential
because it enables the integration of multisource geospatial
data, including geological maps, topographical information,
and satellite imagery. Combining these geospatial data allows

a more comprehensive analysis of the study area, leading to a
better understanding of the factors that influence the location
of groundwater springs. For this task, a groundwater database
was established for the study area in ArcGIS Pro 3.0, utilizing
the ESRI File Geodatabase format. This format is known for
its durability and dependability, as it can effectively manage
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FIGURE 5. Flowchart of the proposed TF-DNN for spatial prediction of groundwater potential.

extensive amounts of data while maintaining high perfor-
mance [90].

Besides, the ESRI File Geodatabase offers several advan-
tages over other multisource geospatial data formats. Its
ability to process multisource data with different coordinate
systems and bring them into a unique coordinate system.
This feature ensures that all pixels from different GIS layers
can be superimposed accurately, which is crucial for precise
groundwater spring modeling in this research. It is noted that
the ability to manage data from multiple sources with vary-
ing coordinate systems is especially important in complex
geospatial projects, where datasets may come from various
sources and require integration into a unified system.

After completing the multisource geospatial data pro-
cessing, illustrated in Figure 5, ten influencing factors for
groundwater spring potential were derived. These factors
included slope, aspect, elevation, curvature, land use and
land cover (LULC), normalized difference vegetation index
(NDVI), normalized difference moisture index (NDMI), nor-
malized difference water index (NDWI), distance to fault,

distance to river, lithology, and rainfall. The resulting data
had a spatial resolution of 30 meters and was projected in
UTM Zone 48 before being exported into the groundwater
spring database. This process allowed for the integration of
a range of geospatial data types into the database for further
analysis and modeling. In the next step, the ten influencing
factors were normalized into the range 0.01 to 0.09 [91] using
the following equation.

NF i =
IF i −Min(IF)

Max (IF) −Min(IF)
[0.99 − 0.01] + 0.01 (1)

where IFi is the current value of the pixel of the influencing
factor,Max(IF) and Min (IF) are the maximum value and the
minimum value of that factor, and NFi is the calculated value
for that factor.

Next, the process involved importing a total of 733 ground-
water spring locations to the database, which were subse-
quently randomly split into two parts, following a 70:30 ratio.
Part 1, consisting of 513 locations, was used to build the
training dataset, while Part 2, containing 220 locations,
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was utilized for model validation. In this study, modeling
groundwater spring potential was considered a binary clas-
sification problem, where the probability of belonging to
the groundwater spring class was used as the groundwater
spring index. Therefore, an equivalent number of locations
were randomly chosen from non-groundwater spring areas
within the study area. The groundwater spring locations were
assigned a value of ‘‘1,’’ while a value of ‘‘0’’ was assigned
to the non-groundwater spring locations. Finally, an extrac-
tion process was performed to create ten raster values for
these locations, and the training and validation datasets were
derived.

B. INFLUENCING FACTOR ANALYSIS
Feature selection in groundwater spring potential modeling
is crucial due to the analysis of numerous factors associated
with geological, topographic, hydrological, and land cover
attributes. Therefore, it is imperative to identify the most
informative and pertinent factors. This process simplifies
the modeling procedure and improves model performance.
Incorporating irrelevant or redundant features in a model can
result in overfitting, reduced model accuracy, and heightened
computational complexity. Thus, careful selection of features
becomes essential.

In this analysis, a variable selection procedure using the
wrapper random forests classifier (VSP-WrapRFC) [92],
[93] was adopted for the Influencing factor analysis and
quantifying the most informative and pertinent factors for
groundwater spring potential modeling. The VSP-WrapRFC
was selected due to its comprehensive evaluation, ability to
capture nonlinear relationships and interactions, robustness
to noise and outliers, handling of correlated features, and
flexibility in different domains [94], [95].

C. SETTING UP THE TENSORFLOW
DEEP NEURAL NETWORK
For groundwater spring potential (GSP) modeling, a deep
neural networkmodel is designed to be a pattern recognizer to
infer the input factors to two classes, groundwater springs and
non-groundwater springs. A key feature of designing a deep
neural network is the ability to optimize the network’s param-
eters and architecture for the GSPmodeling task at hand. This
involves determining the number of layers and neurons in
the network, selecting appropriate activation functions, and
adopting the optimizer function.

The architecture of the TensorFlow deep neural network
(TF-DNN) used in this research is depicted in Figure 6,
consisting of an input layer, three hidden layers, and an
output layer. The input layer receives information related to
the 12 GSI factors and passes it on to the three hidden layers
for analysis, allowing for discovering meaningful patterns in
the collected data. These hidden layers extract useful knowl-
edge, which is then used to generate numerical values within
the range of [0, 1]. Finally, the output layer produces numer-
ical values, with a threshold of 0.5 being adopted to divide

TABLE 3. The weights and bias of the TF-DNN model for groundwater
spring potential mapping in this research.

the output indices into two classes for model performance
evaluation. The probability belonging to the groundwater
spring class is used as the GSP index and then utilized to
generate a GSP map. The rectified linear unit (ReLU) (Eq.2)
is selected as the activate function, whereas the sigmoid
(Eq. 3) is used as the transfer function [96].

fa(x) = max(0, x) (2)

σ (x) =
1

1 + exp(−x)
(3)

where x denotes an input signal to a neuron, fa represents the
activation function, and σ represents the transfer function.

A summary of the weights and biases of the TF-DNN
model for groundwater spring potential mapping in this
research is shown in Table 3. A total of 2561 parame-
ters controlling the performance of the TF-DNN model are
determined, including 2464 weights and 97 biases. These
parameters are searched and optimized in the training phase.

For optimizing the 2561 parameters of the TF-DNNmodel,
the Adaptive Moment Estimation (ADAM) algorithm intro-
duced by Kingma and Ba [97] was employed due to its
effectiveness and efficiency in training deep learning models
in various spatial domains [66], [96], [98]. Thus, various com-
binations of 2561 parameters were checked through training
iterations. Besides,Mean Squared Error (MSE) (Eq.4) is used
to measure the overall performance of each combination.

MSE =
1
n

∑n

i=1
(GSPI i − GSPOi)2 (4)

where GSPIi is the groundwater spring potential value in the
inventory dataset, whereas, GSPOi is the groundwater spring
potential output computed from the TF-DNN model; n is the
total samples used.

D. PERFORMANCE ASSESSMENT
In this study, the GSP modeling is treated as a form of binary
pattern recognition. Consequently, we employ well-known
statistical metrics such asKappa, F-score, Receiver Operating
Characteristic (ROC) curve, Area under the curve (AUC),
classification accuracy (Acc), true positive (TP), true negative
(TN), false positive (FP), false negative (FN), Sensitivity
(Sens), and specificity (Spec) [99], [100] to evaluate and
analyze the performance of the model. Because these metrics
have been extensively documented in the literature, especially
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FIGURE 6. TensorFlow Deep Learning (TF-DNN) model for groundwater spring potential
mapping in this research.

TABLE 4. Role of the ten groundwater spring influencing factors.

concerning groundwater modeling [101], [102], [103]; there-
fore, wewon’t delve into a comprehensive description of each
metric in the aforementioned papers.

V. RESULTS AND ANALYSIS
A. FACTOR ANALYSIS
The role of the ten groundwater spring influencing (GSI)
factors, which impact or affect the behavior, availability,
and characteristics of groundwater springs in the study
area, is shown in Table 4. It could be seen that, among
the 12 GSI factors, NDWI, NDVI, and geology have the
highest importance. The merit value is 0.256, 0.186, and
0.155, respectively. They are followed by elevation (0.131),
slope (0.129), and rainfall (0.124). In contrast, distance to
river and distance to fault have the lowest contribution to
the groundwater spring. The merit value is 0.006 and 0.012,
respectively.

B. MODEL TRAINING AND VALIDATION
Using 12 GSI factors and the training dataset with 1026
samples, the TF-DNN model was trained using the ADAM

optimizer, and the result is shown in Figure 7. Our observa-
tions indicate that the proposed TF-DNN model exhibits a
strong level of fitting with the training dataset, where MSE
is 0.115, Error mean is 0.026, and Error Standard is 0.338.
Besides, the distribution of the error follows the normal
distribution (Figure 7). As mentioned in Section IV, the
groundwater spring locations were assigned a value of ‘‘1,’’
while a value of ‘‘0’’ was assigned to the non-groundwater
spring locations; therefore, a threshold of 0.5 was used to
separate the two classes, spring and non-spring. As a result,
the output values of the TF-DNNmodel and statisticalmetrics
were computed and shown in Table 5. The results reveal that
the TF-DNN model achieved high accuracy, with values of
84.2% for Acc, 0.684 for Kappa, and 0.837 for F-score. These
metrics demonstrate the model’s effective classification of
the training dataset samples. The global performance of the
TF-DNN model is evaluated and presented through the ROC
curve and AUC (Figure 9). As illustrated in Figure 9, with
an AUC value of 0.918, the TF-DNN model demonstrates
its ability to effectively distinguish between groundwater
spring and non-groundwater spring samples in the training
dataset. The remaining statistical performance measures of
the TF-DNN model on the training dataset are shown in
Table 5.

C. MODEL COMPARISON
In order to draw more definitive conclusions regarding the
applicability of the proposed TF-DNN model, it is crucial
to validate its efficacy in spatially predicting groundwater
spring potential. This entails assessing its predictive capabil-
ities more, including a comparison with other benchmarked
methods. Such an analysis will provide valuable insights
into the model’s performance and suitability for the specific
task. For this purpose, five popular machine learning models
were selected: Decision Tree (DT), Support Vector Machine
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FIGURE 7. Performance of the TF-DNN model in the training dataset.

FIGURE 8. Performance of the TF-DNN model in the validating dataset.

(SVM), Logistic Regression (LR), Random Forest (RF), and
Classification and Regression Trees (CART). For DT, the
C4.5 algorithm was utilized with default values for the con-
fidence factor and the minimum number of instances per
leaf. The Radial Basis Function was employed with SVM,
and its two parameters, C = 14 and gamma = 0.52, were
determined through the grid search method. LR adopted the
sigmoid function, while RF utilized 100 trees with the other
parameters set to default values. For CART, all parameters
were set to their default values.

The training and validating results of the six models are
shown in Tables 4 and 5. The results reveal that the RF
model (Acc = 80.0%, F-score = 0.800, Kappa = 0.600,
and AUC = 0.888) demonstrates a good fit with the
training dataset, where the DT model (Acc = 75.0%,

F-score = 0.747, Kappa = 0.501, and AUC = 0.779), the
SVMmodel (Acc= 76.0%, F-score= 0.763, Kappa= 0.520,
and AUC = 0.822), the LR model (Acc = 68.5%,
F-score = 0.696, Kappa = 0.370, and AUC = 0.743),
and the CART model (Acc = 76.9%, F-score = 0.767,
Kappa= 0.538, andAUC= 0.843) yield poorer performance.
Overall, all five models, DT, SVM, LR, RF, and CART,
exhibit inferior performance compared to the proposed TF-
DNN model.

Regarding the prediction power, among the five mod-
els, the RF model (Acc = 79.5%, F-score = 0.791,
Kappa = 0.591, and AUC = 0.887) provides the highest
prediction. It is followed by the CART model (Acc = 76.8%,
F-score = 0.769, Kappa = 0.536, and AUC = 0.847), the
SVM model (Acc = 73.9%, F-score 0.738, Kappa = 0.477,
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TABLE 5. Performance of the proposed TF-DNN model and the DT, SVM, LR, RF, and CART models in the training dataset.

TABLE 6. Prediction power of the proposed TF-DNN model and the DT, SVM, LR, RF, and CART models in the validating dataset.

FIGURE 9. ROC curve and Area under the curve (AUC) of the TF-DNN
model.

and AUC = 0.810), the DT model (Acc = 74.3%, F-
score = 0.746, Kappa = 0.486, and AUC = 0.788), and the
LR model (Acc = 63.4%, F-score = 0.645, Kappa = 0.268,
and AUC = 0.683). Nevertheless, when compared to the pro-
posed TF-DNN model, all four models (DT, SVM, LR, and
CART) demonstrate lower predictive power, as indicated by
the results presented in Table 6. For the RF model, although
AUC = 0.887 is slightly higher than that of the TF-DNN
model (AUC = 0.864). However, The three metrics, Acc,
F-score, Kappa of the RFmodel is lower than those of the TF-
DNN model, therefore, the prediction of the TF-DNN model
is higher than that of the RF model.

We further conducted a statistical comparison to assess
whether the groundwater springs prediction performance of
the proposed TF-DNNmodel is significantly higher than that
of the five benchmark models, namely, DT, SVM, LR, RF,
and CART. To achieve this, we utilized the paired-samples

sign test [104], where the null hypothesis (H0) assumes no
significant difference in prediction performance between the
TF-DNN model and the aforementioned benchmark mod-
els. Subsequently, we computed the Z-value and p-value.
If the p-value is less than or equal to 0.05 and the absolute
value of the observed test statistic lies outside the range of
−1.96 to+1.96, we reject the null hypothesis. As a result, we
established that the prediction power of the TF-DNN model
is statistically significantly higher than that of the benchmark
models.

The comparison results are presented in Table 7. It can be
observed that all Z-values for the five pairs (TF-DNN vs. DT,
TF-DNN vs. SVM, TF-DNN vs. LR, TF-DNN vs. RF, and
TF-DNN vs. CART) are greater than +1.96. As a result, it is
concluded that the prediction power of the TF-DNNmodel is
statistically higher than the five benchmark models.

D. GENERATING THE GROUNDWATER SPRINGS
POTENTIAL MAP
Using the trained TF-DNN model explained in the previous
section, the groundwater springs potential (GSP) index for
each pixel in the study area was computed. The GSP indices
were converted into the ESRI File Geodatabase format,
as described in Section IV-A, to align with the established
georeferenced settings (i.e., UTM Zone 48) implemented
in this project. Herein, the GSP indices vary from 0.00 to
1.00. Finally, the GSP map was derived by reclassifying the
GSP indices into five zones using the natural break tool in
ArcGIS Pro: very low (0.00-0.19), low (0.20-0.41), moder-
ate (0.42-0.63), high (0.64-0.83), and very high (0.84-1.00)
(Figure 10).

VI. DISCUSSION
Groundwater spring potential is significant for sustainable
water management, ecological preservation, environmental
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TABLE 7. Paired-samples sign test of the proposed TF-DNN model and the DT, SVM, LR, RF, and CART models.

FIGURE 10. Groundwater springs potential map for Kon Tum Province
using the TF-DNN model.

monitoring, and overall socio-economic development [105],
[106], [107]. Therefore, studying and developing highly accu-
rate models for spatial prediction of groundwater spring
potential are essential. These models can serve as fundamen-
tal tools for informed decision-making in water management,
conservation efforts, and sustainable development, ensuring
this valuable natural resource’s wise use and protection.
In this research paper, we introduce and validate a novel
modeling approach that leverages deep neural networks and
multisource geospatial data for the spatial prediction of
groundwater spring potential, with a case study at the Kon
Tum province in the central highland Area of Vietnam.

The performance of the TF-DNNmodel for the spatial pre-
diction of groundwater spring potential is highly dependent
on their architecture or structure, activation function, transfer
function, and optimizer; therefore, it is crucial to determine
them to ensure optimal performance carefully. The high pre-
diction power of the proposed TF-DNN model substantiates
the appropriateness of its structure, featuring three hidden

layers with 32 neurons each, for the specific dataset used in
this study. Additionally, the use of ReLU as the activation
function and sigmoid as the transfer function, along with the
ADAM algorithm for optimizing the network weights, proves
to be appropriate choices for the model’s successful perfor-
mance. The findings are in line with other recent research
on the application of deep learning in various environmental
modeling tasks, such as flash floods [96], landslides [98], and
forest fires [108]. However, it is challenging to definitively
claim that the current structure of the TF-DNN model is
optimal. As a result, further research should be conducted to
establish a formula or methodology for determining the most
suitable TF-DNN architecture.

The effectiveness of the TF-DNN model has been con-
firmed by its statistically significant higher prediction power
compared to the benchmark models, namely DT, SVM,
LR, RF, and CART models. Therefore, the TF-DNN model
represents a new tool for spatially predicting groundwater
spring potential. The result confirms a recent statement in
the literature that deep learning can provide more accurate
results [109], [110]. This is because the TF-DNN model
is capable of automatically learning hierarchical representa-
tions from the multisource geospatial data for groundwater
spring potential modeling. Thus, its ability to extract intricate
features and patterns from 12 GSI factors enables it to handle
complex, high-dimensional data more effectively.

The findings in this study also show that the effectiveness
and generalization capability of the TF-DNN model heavily
depends on the quantity and quality of the GSI factors used.
In this analysis, 12 GSI factors were prepared from different
geospatial sources with different georeference systems; there-
fore, it is vital to convert, process, and transfer these data to
a unique coordinate system and spatial resolution. Thus, the
ESRI File Geodatabase and various spatial analysis tools in
ArcGIS Pro 3.0 are suitable.

Among the 12 GSI factors, NDWI, NDVI, and geology
are essential for the spatial prediction of groundwater spring
potential. This is a reasonable result because the areas with
high NDWI and NDVI values in the Kon Tum province are
related to higher water content regions (Figures 3f and g),
while for the case of geology, the groundwater spring poten-
tial (GSP) points distribute mostly in the Tac Po formation,
the Kham Duc formation, the Van Canh formation, and the
Mang Yang formation, compared to the other formations and
complexes. In contrast, distance to river has the lowest con-
tribution to the groundwater spring potential, mainly because
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the distribution of the GSP points is not close to the river
network of the Kon Tum province.

VII. CONCLUSION
In the present study, we introduced and evaluated a novel
modeling approach for spatial prediction of groundwater
spring potential using Tensorflow Deep Neural Networks
(TF-DNN) and multisource geospatial data. The research
focused on the Kon Tum province, Vietnam, and incorporated
groundwater spring potential locations along with 12 influ-
encing factors for modeling. Our investigation yielded the
following conclusions.

• The TF-DNN model demonstrates the capability to map
groundwater spring potential in tropical areas accurately.

• The TF-DNN model exhibits statistically significantly
higher global prediction performance than benchmark
models, such as DT, SVM, LR, RF, and CART. Thus, the
TF-DNNmodel emerges as a novel and valuable tool for
spatially predicting groundwater spring potential.

• NDWI, NDVI, and geology stand out as the most crit-
ical factors for spatially predicting groundwater spring
potential in the Kon Tum province.

• Future work should investigate further variations in
Deep Neural Network architectures to enhance predic-
tion accuracy. Additionally, uncertainty analysis should
be included. This analysis should explore uncertainties
associated with the predictions, considering the inher-
ent uncertainties in geospatial data and neural network
models. Understanding these uncertainties is crucial for
decision-makers relying on planning and policy formu-
lation predictions.

• As the final conclusion, the groundwater spring poten-
tial map produced in this research may be useful for
local authorities in the province for developing mea-
sures related to water management and socio-economic
development.
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