
Received 2 December 2023, accepted 5 January 2024, date of publication 30 January 2024, date of current version 7 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3360275

Assessing Critical Adaptations in Automated
Adaptive Software Systems by Stage
Decomposition
SHUJI MORISAKI 1, (Member, IEEE), MICHIYO WAKIMOTO 1, AND NORIMITSU KASAI 2
1Graduate School of Informatics, Nagoya University, Nagoya, Aichi 464-8601, Japan
2Communication Systems Center, Information Security Management and Investigation Department, Security Section, Mitsubishi Electric Corporation, Hyogo
661-0981, Japan

Corresponding author: Shuji Morisaki (s.morisaki.jp@ieee.org)

ABSTRACT In environments involving a variety of connected devices and systems, there is an
ever-increasing demand for automated adaptation. To ensure that all threats are identified and manageable in
such environments, quality assurance activities including testing and inspections in design-time should focus
on assessing the reliability of critical adaptations, which may threaten life, economic property, or important
information. This work proposes an approach for identifying and evaluating critical adaptations on the basis
of their automation level, reliability, detectability, and recoverability by decomposing adaptations into four
stages: monitor, analyze, plan, and execute. This work also empirically evaluates the effectiveness of the
proposed approach by assessing a real safety-critical telecommunication system with critical adaptation
features and comparing the results with the STAMP (SystemTheoretic AccidentModel and Processes)/STPA
(System-Theoretic Process Analysis) approach. The results of the evaluation indicated that the proposed
approach could assess critical adaptation features provided by the system with reasonable effort. Addition-
ally, structured views provided by the proposed approach enable efficient quality assurance activities. In the
evaluation, the proposed approach achieves similar results to the STAMP/STPA approach but requires 33%
less effort.

INDEX TERMS Automated adaptation, inspection, verification and validation, safety.

I. INTRODUCTION
The demand for automated, self-adaptive systems has
increased in heterogeneous environments, where a variety of
devices and systems are connected to the same network. A lot
of research contributes to self-adaptive systems that have
capabilities of automated adaptation at runtime, as defined at
design-time [1], [2], [3], [4], [5], [6]. Many of such research
evaluated their frameworks, approaches, and techniques with
architecture-based adaptations of distribution servers such as
web servers and content delivery servers. The demand for
adaptation in critical systems also increases. Critical adap-
tations are adaptations that have high impacts in areas that
are safety- or mission-critical. A dynamic configuration in an
automotive control software system is an example of critical

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

adaptations because it has a high impact on human safety in
the vehicle. Pairing between a Bluetooth compliant portable
music player and an onboard speaker on the vehicle is an
example of non-critical adaptations.

Automated adaptations in critical systems require more
discussions and empirical evaluations [7]. Since uncertainty
in critical adaptations may threaten assets (e.g., human life,
economic property, or important information), adaptations in
critical systems require more empirical evaluations. While
some previous research pointed out that the human-assisted
adaptations and human in the loop may be required or more
appropriate in critical systems [8], [9], other research referred
to the risk of the uncertainties of human-assisted adapta-
tion and human in the loop [10], [11], [12]. Some research
demonstrated hybrid approaches for automated and human-
assisted adaptations [8], [13], [14]; however, they do not
explicitly assess the impact of adaptations on the assets at

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 17859

https://orcid.org/0000-0002-8290-0584
https://orcid.org/0000-0003-4873-9616
https://orcid.org/0000-0002-1366-037X
https://orcid.org/0000-0002-3685-3879


S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

design-time to reduce the uncertainty at runtime. Without a
proper assessment at design-time, critical adaptations with
unacceptable uncertainty may occur at runtime.

Common safety assessment approaches at design-time for
critical systems such as STAMP (System Theoretic Acci-
dent Model and Processes)/STPA (System-Theoretic Process
Analysis) [15] and FTA (Fault Tree Analysis) do not provide
specific procedures to evaluate the impact of critical adapta-
tions on the assets. Specific procedures such as decomposing
the adaptation phases may verify the acceptability and relia-
bility of critical adaptations.

Similarly, common automation evaluation approaches such
as MAPE-K framework [16], Parasuraman’s model [17], and
adaptation design considering human in the loop [9] do not
explicitly specify a procedure to assess the impact of crit-
ical adaptations on the assets. Although some studies have
proposed assessment methods for risks of critical adapta-
tions [18], [19], the risks do not include threats to the assets.
Specifically, Mostafa et al. defined risk as mission failure
that does not include the threats to the external assets [18].
Roehr and Shi defined the highest risk in a reconfigurable
integrated multi-robot exploration adaptive system as the loss
of the robot [19]. The loss of the robot does not include the
threats to the external assets. Neither of these studies refers
to the impact of the adaptation on the assets as risk.

This work proposes a threat assessment approach for criti-
cal adaptations of the system at design-time. The approach
assesses the impact of critical adaptations on the assets to
validate whether they negatively impact assets such as injury
or damage to human life, damage to economic property,
or important information breaches. This work empirically
evaluated using a real safety-critical telecommunication sys-
tem developed and operated in industry. The proposed
approach is refined from our paper [20] after applying the
previously proposed approach to several adaptive software
systems. The contributions of this work are the following.

- Refinement of the procedure of the previously pro-
posed approach
We applied the previously proposed critical adaptation
detection approach [20] to several adaptive software
systems and discussed the results with practitioners.
The results indicated that moving the last step of the
procedure for the approach defined in [20] to the first
step enables to eliminate of non-critical adaptations
from target adaptations. This leads to effort reduction
for assessment.

- An empirical evaluation of the refined approach in a
real telecommunication system in industry
Moving the step of identification of assets to the begin-
ning of the procedure can reduce adaptations to be
assessed and lead to effort reduction because selecting
assets to be protected can reduce adaptations to be
assessed.

- Comparison of the assessment coverage with a gen-
eral hazard analysis method STAMP/SPTA (Systems-

Theoretic Accident Model and Processes/System-
Theoretic Process Analysis)

The rest of this paper is organized as follows. Section II
introduces related research. In Section III, we propose an
approach to assess critical adaptations by decomposing adap-
tations into four stages. Section IV describes the case study.
Section V discusses the results, and Section VI concludes the
study.

II. RELATED RESEARCH
A. ADAPTATION AND AUTOMATION
Many studies have investigated adjustable autonomy [21],
which allows an adaptive system to change its automa-
tion level at runtime. This feature enhances the flexibility
because human decision-making may be more appropriate
than automated decision-making in some situations [21],
[22]. Dorais et al. noted that adaptive systems should have
specific criteria and circumstances to override manual control
(decision-making transfer) [21], but they did not identify the
procedure, criteria, or circumstances. If the decision-making
transfer results in a safety-critical impact on the assets such
as injury to human life or damage to economic property, the
feasibility of such a transfer must be assessed at design-time
and limited at runtime, if necessary.

Although previous studies referred to decision-making
transfers in adjustable autonomy [23], [24], [25], [26], [27],
they do not explicitly assess the impact of safety-critical
adaptations on the assets. Some studies considered the risk
of adjustable autonomy [18], [19], [26], [28], [29], [30], [31].
Bush et al. defined risk as the degree that the mission goal
cannot be achieved [28]. Durand et al. proposed a formal
modeling method to detect inconsistency of control archi-
tecture, however, the method does not consider the critical
impact of the inconsistency on the assets [29]. Roehr and
Shi defined the highest risk in a reconfigurable integrated
multi-robot exploration adaptive system as the loss of the
robot. They also pointed out that an efficient execution of the
overall mission was essential [19]. Johnson et al. compared
the autonomy level and efficiency of robots and human teams
by measuring the number of hours and work failures (errors)
[30]. None of these studies explicitly considered the critical
impact on the assets.

Mostafa et al. defined risk as mission failure and not as the
critical impact on the assets [18]. Furthermore, they defined
eleven criteria for viability assessments, but did not explicitly
include detectability and recoverability. Although Zieba et al.
proposed the concept of barriers to prevent the unsafe behav-
ior of humans, they did not evaluate barriers to prevent
the unsafe behavior of automated decision-making [31].
Although another study [32] found that unreliability reduces
human trust, the unreliability did not explicitly consider the
critical impact of the assets.

Several approaches and frameworks that evaluate trade-
offs between architecture-based adaptations and their qual-
ities are proposed [14], [33], [34]. In the article [33],

17860 VOLUME 12, 2024



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

Perez-Palacin et al. proposed a self-adaptation approach for
analyzing tradeoffs between system adaptability and its qual-
ity of service. Their approach defines adaptation, quality
attributes, and tradeoff points between them at design-time
and monitors the conditions of the tradeoff points at run-
time. When the conditions are satisfied, the adaptations are
executed. Also, they evaluated that the scalability of the
proposed approach and the performance required by the mon-
itoring is feasible. In the article [34], Zoghi et al. proposed a
search-based adaptive approach that defined control points,
adaptations, and their priorities at design-time and activated
the adaptations using a search-based algorithm at runtime.
Designers define the priorities at design-time according to the
results of the Analytic Hierarchy Process. In the article [14],
Yang et al. proposed an approach for identifying quality
attributes and analyzing their tradeoffs for the target adaptive
system at design-time. Designers analyze the tradeoffs by
using usage scenarios. These approaches and our approach
analyze tradeoffs between adaptation (automation level) and
quality attributes. While their approach assumes that adapta-
tions are architectural adaptations for web systems such as
the number of servers and does not explicitly refer to assess-
ments of critical adaptations, our approach assesses critical
adaptations not limited to such architectural adaptations.

Rainbow is a framework for architecture-based self-
adaptation [1], [2]. In the Rainbow framework, designers
define invariant rules and adaptations strategy rules at design-
time, and the adaptation programs change architecture along
with the defined rules. In the article [1], a web system imple-
mented by the framework was evaluated. The article [13]
evaluated the Rainbow framework in software evolutions
with a case study that developed an adaptive system that
evolved from a non-adaptive system. In the case study, the
effort for non-adaptive system analysis and implementation
for adaptive features by reusing components of the Rainbow
framework is feasible. The framework does not explicitly
refer to critical adaptations and their assessments.

Some research referred to human-assisted adaptations and
human in the loop. Salehie and Tahvildari introduced the
positive and negative sides of human-assisted adaptation
research [35]. Mirial et al. pointed out that experience in
autonomous systems shows that people cannot be excluded
entirely from the adaptation loop, such as autonomous
cars [9]. Weyns et al. referred to human in the loop and uncer-
tainty from human-assisted adaptations [36]. Camara et al.
proposed an approach for managing the uncertainty of
human-assisted adaptation by applying the OWC (Oppor-
tunity willingness capability) human model in the security
domain. These studies did not explicitly refer to critical adap-
tations nor refer to a detailed procedure for tradeoff analysis
on human-assisted adaptations.

Many approaches and frameworks enable various adap-
tation strategies. Elkhodary et al. proposed a framework
that enabled self-adaptive systems to tune their parame-
ters by machine learning [37]. Nakagawa et al. proposed
a configuration compiler that generated architecture design

by specified goal-oriented requirements and design con-
straints [38]. Dorn et al. proposed an approach that defined
not only adaptations but also user models for more accurate
adaptation. Designers define user architecture, system archi-
tecture, and their mapping using mapping templates [39].
Luckey and Engels proposed an approach for separating
adaptation and business logic. The adaptation logic, includ-
ing quality concerns, is defined at design-time and written
in ACML (Adapt Case Modeling Language) [40]. These
research does not distinguish critical adaptations.

B. SAFETY ANALYSIS
Leveson proposes the STAMP/STPA approach [15], [41].
The approach is a safety analysis technique that identi-
fies hazard causality factors and hazardous scenarios by
extracting accidents, hazards, safety constraints, and control
structures of a system. Defining hazard causality factors as
the execution results of critical adaptation features enables
to assess potential hazards caused by the critical adapta-
tions. The results of the assessment can be used for ensuring
that criticalities of critical adaptation features are acceptable.
However, the approach does not provide specific guides to
identify hazardous scenarios such as stage decomposition by
the proposed approach.

Failure mode and effect analysis (FMEA) [42] identifies
possible failure modes of components in the system and
analyzes the resulting effects of the failuremodes to the rest of
the system. Our approach first identifies assets to be protected
and adaptations that may affect the assets, while FMEA iden-
tifies possible failure modes of all components. Furthermore,
our approach does not require identifying failure modes of
components.

Fault tree analysis (FTA) [43] identifies undesirable events
for the system and users and decomposes the undesirable
events into sub-events by using Boolean logic. The decom-
position generates a fault tree with an undesirable event as
the root node and decomposed basic events as leaf nodes.
Reducing the risks of the basic events leads to a reduction in
the risks of the undesirable event. Our approach first identifies
assets to be protected to focus on hazards of the assets,
while FTA does not explicitly specify the step. FTA requires
decomposing the undesirable events into sub-events and basic
events, while our approach does not require decomposition.

Functional hazard analysis (FHA) [44] enumerates com-
ponents of the system, identifies hazards for each of the
components, and refines the components and the architecture
to reduce the risks of the hazards. Although FHA and our
approach are common in identifying hazards for compo-
nents, our approach first enumerates assets to be protected
and extracts adaptations that affect the assets. Our approach
analyzes tradeoffs between adaptations and automation levels
while FHA does not focus on automation level.

Hazard and operability study (HAZOP) [45] identifies
potential deviations that threaten assets to be protected by
guide words such as more, less, and none. HAZOP reviews

VOLUME 12, 2024 17861



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

FIGURE 1. Pseudocode of the proposed approach.

the design and engineering issues by decomposing the entire
system or process into components or nodes. Our approach
also analyzes critical adaptations by decomposing them into
phases and identifying potential deviations. HAZOP does
not limit the target to an automated (adaptation) process nor
specify criteria to determine whether the identified hazards
are acceptable.

C. SOFTWARE REVIEWS
Architecture evaluationmethods including architecture trade-
off analysis method (ATAM) [46], [47] identify important
quality attributes including performance, availability, and
security for system architecture. Then, it identifies architec-

ture tradeoffs that may affect the identified quality attributes.
Finally, it verifies that the architectural decisions affect the
achievement of quality attributes. The quality attributes can
include the reliability of critical adaptations, safety, and secu-
rity to ensure that the criticalities of critical adaptations are
acceptable. However, ATAM does not provide the decompo-
sition and assessment procedures that the proposed approach
provides.

Value-based review [48] provides guides to prioritize
defect types in software reviews. In a VBR, inspectors assign
a higher detection priority to defects categorized as defect
types that have the potential to spoil the higher value capabil-
ities of the target software. The stakeholders of the software

17862 VOLUME 12, 2024



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

determine the order of priority using a checklist to identify
the higher value capabilities. VBR can assess the criticalities
of critical adaptations by prioritizing defects that may affect
the reliabilities of critical adaptations, safety, and security.
However, VBR does not provide the decomposition and
assessment procedures that the proposed approach provides.

Common reading techniques for software inspections can
assess critical adaptations. In defect-based reading [49], [50],
first, the inspection organizer defines defect detection sce-
narios to detect critical adaptations and assigns the scenarios
to inspectors. Next, the inspectors try to detect defects along
with the assigned scenarios. Finally, the inspection organizer
assesses that the criticalities of critical adaptations are accept-
able. In perspective-based reading [51] [52], the inspection
organizer defines perspectives to detect critical adaptations
and assigns the perspectives to inspectors. Next, the inspec-
tors try to detect defects. Finally, the inspection organizer
assesses the criticalities by the result of detected defects.
In usage-based reading [53], [54], by defining use cases as
critical adaptations of the target adaptive software system,
assessment can be performed with the inspection results.
These reading techniques do not refer the stage decomposi-
tion and assessment procedures that the proposed approach
provides.

III. PROPOSED APPROACH
A. OVERVIEW
The proposed approach identifies critical adaptations in sys-
tem X and assesses whether the criticalities of the adaptations
are acceptable. Adaptation addresses software systems that
must change their behavior during execution in response to
environmental changes [55]. Critical adaptations are adap-
tations that have high impacts in areas that are safety- or
mission-critical. A dynamic configuration in an automotive
control software system is an example of critical adaptations
because it has a high impact on human safety in the vehicle.
Pairing between a Bluetooth compliant portable music player
and an onboard speaker on the vehicle is an example of
non-critical adaptations. Facial recognition in an image is an
example of automatic adaptations. When facial recognition
is used in a smartphone image synthesis app to add animal
ears to the recognized face is non-critical adaptation because
the recognition does not have to be of high fidelity. How-
ever, if facial recognition is used for authorization to enter
the server room for a banking system, it will be a critical
adaptation because the adaptation may threaten the property.

First, an assessor identifies hazards H that the critical
adaptations may cause along with the system lifecycle L
and then assesses whether the probabilities of exposure of
the hazards are acceptable. Then, the proposed approach
decomposes critical adaptations into monitor, analyze, plan,
and execute stages defined by MAPE-K framework [16].
Also, the definitions of automation levels are based on the
Parasuraman’s model [17]. Table 9 (in Appendix A) shows a
detailed description of the decomposition of critical adapta-

tions into four stages by the automation level in the proposed
approach: monitor, analyze, plan, and execute. Fig. 1 shows
the pseudocode of the proposed approach. The assessor eval-
uates the levels of automation, reliability, detectability, and
recoverability for each decomposed stage and ensures that the
criticalities of the adaptation are acceptable.

B. ASSETS AND LIFECYCLE
Assets S, including human life, economic property, and
important information, are supposed to be protected by sys-
tem X . Lifecycle L is the lifecycle process of system X .
As defined by ISO [56], [57], the lifecycle includes the system
launch, the start and end of the service, system maintenance,
system updates and evolutions, and system disposal. Critical
adaptations (critical adaptation executions) Ae are identified
along with lifecycle L. Although the proposed approach
does not assume a specific lifecycle, this work considers
the general lifecycle, which includes initialization, startup,
monitoring, shutdown, reconfiguration, update/evolution, ter-
mination, and disposal. This lifecycle should be replaced
or adjusted to suit the target system. It can also be nested,
as defined by the guide in [58]. For example, a UNIX back-
ground process (daemon) is initialized and started during the
UNIX system initialization (boot) process.

C. HAZARDS
The proposed approach assumes that sufficient completeness
of the list of hazards or hazard identification procedures is
provided. If standards or laws provide shared hazards or
hazards identification procedures in the domain, the asses-
sor selects applicable hazards in the critical adaptations.
In case of absence of standards or laws, the assessor selects
applicable hazards from in-house hazard repository, experts’
knowledge, organization’s standard quality assurance proce-
dure, or results of root cause analyses in the past development.
The proposed approach also assumes that the assessor has
expertise on hazards and their causality in critical adapta-
tions as well as other criticality assessment approach requires
assessors with such expertise [59], [60].

D. ADAPTATION STAGES
A set of critical adaptationsA consists of adaptations that may
threaten assets S. Each critical adaptation Ai (∈ A) is decom-
posed into four stages as defined by MAPE-K framework:

(a) Monitor stage Ami
System X monitors and acquires information for critical

adaptation Ai.
(b) Analyze stage Aai
System X analyzes the monitored information in the mon-

itor stage Ami for critical adaptation Ai.
(c) Plan stage Api
System X selects a plan and action by the analysis result in

the analyze stage Aai for critical adaptation Ai.
(d) Execute stage Aei

VOLUME 12, 2024 17863



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

System X carries out a plan that is selected in the plan stage
Api for critical adaptation Ai.

Each critical adaptation is denoted as a four-tuple Ai =

(Ami, Aai, Api, Aei). The selected plan in plan stage Api is
executed in execute stage Aei. When plan stage Api uses two
or more results of analyze stage Aai, each analyze stage is
denoted as an n-tuple Aai = (Aai.1, Aai.2, Aai.3, . . . ). Similarly,
two or more monitor stages are denoted as Ami = (Ami.1,
Ami.2, Ami.3, . . . ). In cases where plan stage Api corresponds to
two analyze stages Aai.1 and Aai.2 and each analyze stage Aai
corresponds to two monitor stage Ami, the critical adaptation
is denoted as Ai = (((Ami.1.1, Ami.1.2), (Ami.2.1, Ami.2.2)), (Aai.1,
Aai.2), Api, Aei).
First, the proposed approach identifies critical adaptation

execution Aei. Then corresponding stages Api, Aai, and Ami
are extracted in this order due to the dependencies among Aei,
Api, Aai, and Ami.
Parasuraman proposed the Parasuraman’s model [17],

which consists of acquisition, analysis, decision, and action
stages. Stages in the proposed approach are similar to their
framework. Phases defined in the MAPE-K framework,
which the proposed approach uses, and phases defined in
the Parasuraman’s model are mutually exchangeable. Boyd
proposed the OODA loop as a military strategy [61], [62].
Then, widely used in various areas, including business strate-
gies. OODA consists of observation, orientation, decision,
and action processes [62]. Phases in the proposed approach
are similar to the OODA loop. However, in the OODA loop,
the observed process is not required to be a predefined way.

E. AUTOMATION LEVEL AND ITS QUALITY ATTRIBUTES
The criticalities can be assessed by determining automa-
tion level el and estimating its quality attributes consisting
of reliability er , detectability ed , and recoverability ec for
each stage of critical adaptation Ai. Table 1 shows five
possible automation levels: 1 (fully manual), 2 (partially
automated), 3 (semi-automated), 4 (automated with human
override), and 5 (fully automated). Fig. 2 shows a flowchart
for determining the automation level, which corresponds to
the ‘determining_automation_level()’ function in Fig. 1. Note
that the original Parasuraman’s model categorized 10-level
model [17]. For the proposed approach, we reduced 5-level
model because 10-level is redundant. As shown in Table 1,
the proposed approach categorizes the ten levels in Parasur-
aman’s model into five levels. Levels 1, 2, 3, 4, and 5 in the
proposed approach correspond to levels 1, 2–4, 5, 6–9, and
10, respectively.

Table 2 summarizes the quality attributes. Reliability er is
estimated from the accuracy of the results, using a five-point
scale from 1 (lowest) to 5 (highest). Detectability ed is esti-
mated from the probability of finding an incorrect result using
a five-point scale from 1 (lowest) to 5 (highest). Recover-
ability ec is estimated from the probability of correcting an
incorrect result on a five-point scale from 1 (lowest) to 5
(highest). Levels of three quality attributes er , ed , and ec
can be categorized as coverage of nominal (goal fulfillment)

FIGURE 2. Flowchart of determining the automation level.

TABLE 1. Automation level el .

behavior group (levels 1, 2, and 3) and coverage of excep-
tional (exception and error handling) behavior group (levels
4 and 5). The nominal behavior group has no exception
and error handling. Level 1 indicates that correct results for
nominal behavior are rarely obtained. Level 2 indicates that
correct results for nominal behavior are obtained excluding
some cases. Level 3 indicates that correct results for nominal
behavior are always obtained. Level 4 indicates that correct
results for nominal behavior are always obtained and that cor-
rect results for exceptional behavior are obtained excluding
rare cases. Level 5 indicates that correct results for nominal
and exceptional behavior are always obtained. Fig. 3 shows a
flowchart for determining the quality attributes, which corre-
sponds to the ‘determining_quality_attributes()’ function in
Fig. 1.
The proposed approach determines the automation level

and estimates reliability, detectability, and recoverability for
each stage in critical adaptation Ai (∈ A) as follows:

1) MONITOR Am

The input data are monitored. At automation level 1, the data
is provided from (outside of system X ) such as a manual

17864 VOLUME 12, 2024



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

TABLE 2. Reliability er , detectability ed , and recoverability ec .

FIGURE 3. Flowchart of determining the quality attributes.

input or input from an external system. At automation level 5,
data is obtained fully automatically from a subsystem or
device consisting of system X such as images captured by a
camera device. Reliability er is estimated from the accuracy
of the input data. Detectability ed and recoverability ec are
estimated from the probabilities of detecting and correcting
incorrect input data.

2) ANALYZE Aa

The monitored data is interpreted. At automation level 1,
analysis is performed outside of system X such as a user or an
external system. At automation level 5, it is fully automated
such as human facial recognition in the captured image.
Reliability er is estimated from the interpretation accuracy.
Detectability ed and recoverability ec are estimated from the
probabilities of detecting and correcting incorrect interpreta-
tion.

3) PLAN Ap

Aplan is selected depending on the interpretation. At automa-
tion level 1, the plan is made outside of system X such as
a user or external system. At automation level 5, it is fully
automated such as an internal authentication for the recog-
nized face. Reliability er is estimated from the plan selection
accuracy. Detectability ed and recoverability ec are estimated
from the probabilities of detecting and correcting incorrect
plan selection.

4) EXECUTE Ae

A plan is carried out to execute the selected plan. At automa-
tion level 1, the execution is performed by a user or external
system. At automation level 5, it is fully automated such as
opening an automatic door for entrance control of a room via
facial authentication. Reliability er is estimated from the plan
execution accuracy. Detectability ed and recoverability ec are
estimated from the probabilities of detecting and correcting
incorrect plan execution.

F. CRITICALITY EVALUATION
Fig. 4 shows a flowchart of the criticality evalua-
tion procedure, which corresponds to the ‘determin-
ing_acceptable_adaptation()’ function in Fig. 1. First,
an assessor determines acceptable level ALi from 1 to
5 according to the required quality of the adaptation to
protect asset Si. The assessor can use several safety criteria
as acceptable levels defined by safety standards, including
IEC 61508 and the US government’s Mil-Std882D [63], [64],
[65]. Second, the assessor assesses that the reliability level
eri satisfies acceptable level ALi. If the reliability level eri
satisfies the acceptable level ALi, the criticality is acceptable.
If the reliability level eri does not satisfy the acceptable level
ALi, recoverability eci and detectability edi levels are assessed.
Recoverability and detectability levels are assessed because
canceling, correcting, or redoing can cover insufficient reli-
ability under some conditions such as loose constraints on
realtimeness and resources. If the reliability eri, recoverability

VOLUME 12, 2024 17865



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

FIGURE 4. Flowchart for determining whether criticality is acceptable.

FIGURE 5. Procedure of the proposed approach.

eci, and detectability edi levels do not satisfy acceptable level
ALi, refine the adaptation and start re-assessment.

G. PROCEDURE
Assessor evaluates critical adaptations with the procedure at
design-time. The input is artifacts for system X and hazard
information. The artifacts for system X include require-
ments and design documents. From the artifacts, the assessor
extracts a set of assets to be protected S, system lifecycle
L, and a set of critical adaptations A. The hazard informa-
tion includes a hazards list shared in the domain of system
X , in-house hazard repositories, the organization’s standard
procedure for quality assurance, root cause analysis results in
past developments, and experts’ knowledge. From the hazard
information, the assessor extracts a set of hazards H . The
guidelines of hazard lists are available in standards and laws
(e.g., IEC 61508 [64]). In the case of experts’ knowledge, the
experts and assessors discuss potential hazards.

Fig. 5 overviews the proposed procedure. Below it is
described in detail.

Step 1. Identify the assets to be protected and the system
lifecycle

The assessor determines the set of assets S= {S1, . . . ,
Sm} such as human life, economic property, or important
information that system X should protect and lifecycle L of
system X .

Step 2. Identify hazards and critical adaptation executions
The assessor determines the set of hazards H = {H1, . . . ,

Hn} that have the potential to threaten assets S obtained in
step 1. III-H over system lifecycle L. If shared hazards in
the domain of system X or results of root cause analyses in
the past system development in the domain are available, the
assessor uses it. Additionally, the assessor identifies a set of
critical adaptation executions Ae = {Ae1, . . . , Aen} that have
the potential to cause hazards H . If traceability among arti-
facts of system X is available, by using the traceability tool,
the assessor can semi-automatically trace the correspond-
ing specification, subsystem, algorithm, or program module
that implements adaptation executions Ae from requirements
including assets Si. If diagrams that provide the entire images
of system X, such as an architectural diagram, entire timing
chart, and sequence diagram are available, the assessor can
trace the asset, hazard, and adaptation executions easily.

Step 3. Identify critical adaptations
The assessor determines a set of critical adaptations A =

{A1, . . . , An} and corresponding monitor Ami, analysis Aai,
and plan Api to critical adaptation execution Aei for each
critical adaptation from set Ae obtained in step 2 by trac-
ing specification, sequence chart, timing chart, algorithms,
or programmodules. As mentioned in step 2 in the procedure,
if artifact traceability is available, this procedure can be per-
formed semi-automatically. Also, if the diagrams in step 2 are
available, the assessor can trace them easily.

Step 4. Determine automation level el and estimate the
quality attributes

The assessor determines el and estimates er , ed , and ec
for each stage in critical adaptation Ai = (Ami, Aai, Api, Aei)
obtained in step 3. Fig. 2 shows the procedure for determining

17866 VOLUME 12, 2024



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

the automation level el . Fig. 3 shows the procedure for deter-
mining the quality attributes er , ed , and ec.
Step 5. Assess the criticality of critical adaptations A
The assessor evaluates the probability of cause hazard Hi

by critical adaptation Ai using el , er , ed , and ec for each
stage (el , er , ed , and ec are obtained in step 4 by the critical
evaluation described in subsection III.III-F. If the evaluated
probability is unacceptable, the corresponding critical adap-
tation is replaced with an alternative solution. Then, the
alternative solution is evaluated and assessed.

H. EXAMPLE ASSESSMENT
As an example, we assess an imaginary train speed limit
enforcement system T using the proposed approach. This
system is assumed to be implemented as part of the train’s
onboard equipment and to receive radio signals from base
stations on the train station platforms.

The requirements for system T , which are taken from the
requirements document of the Institution of Railway Signal
Engineers [66], are:
Controls should be in place to prevent and/or mitigate the

consequences of:
Trains exceeding the maximum permitted speed.
In this example, each train has a device tomeasure its speed

and secondary braking equipment. If its speed exceeds the
predefined maximum speed permitted, the secondary braking
system automatically decreases its speed. Trains may move
between jurisdictions of different transport operators (e.g.,
international trains or through-services between a subway and
a local railway). The maximum speeds permitted depend on
the country and transport operator, but they are fixed for a
given operator.

We apply the five steps of the proposed approach to this
scenario, which are outlined below. Table 3 summarizes the
results.

Step 1. The set of assets S that system T should protect are
{S1: Safety of passengers, crew, and others including nearby
residents, S2: Equipment (i.e., trains, rails, and stations)}.
Lifecycle L of system T is {L1: Initialization, L2: System
startup, L3: Service startup, L4: Service (speed monitoring),
L5: Operators change, L6: Service termination, L7: System
shutdown, L8: Reconfiguration, L9: System update/evolution,
L10: System disposal}.

Step 2. Since we could not find publicly shared hazard
information on this domain, we extracted hazards from the
requirements document of the Institution of Railway Signal
Engineers [66] mentioned above. The set of hazards H are
{H1: Malfunction of train speed limit enforcement system T
causing threats to the safety of passengers, crew, and others
and equipment health}. A set of critical adaptation execution
Ae are {Ae1: System T uses the secondary braking system to
reduce the train’s speed when the maximum permitted speed
is exceeded.}

Step 3. Corresponding plan stage Ap1 to execute stage
Ae1 judges whether the current speed exceeds the maximum

permitted speed by comparing the current train speed and
the maximum permitted speed. As shown in Table 3, the
corresponding analyze and monitor stages to plan stage Ap1
obtain the current speed and maximum permitted speed. The
current train speed is measured by a speed measurement
device without analysis. Thus, the stages to obtaining the
current train speed are (Am1.1: System T obtains the cur-
rent train speed from speed measurement device, Aa1.1: No
interpretation or analysis required). The maximum permit-
ted speed is obtained and set at service startup. The train
driver inputs the service ID to system T . A train operator,
the corresponding maximum permitted speed, and departure
and arrival stations are obtained by searching a table with
the service ID. Thus, the stages to obtain the maximum
permitted speed at service startup are (Am1.2: Driver inputs
service ID to system T at service startup, Aa1.2: System T
obtains the transport operator at departure from the service
ID and searches for the maximum permitted speed in a table).
When the train operators change, system T receives a radio
signal that represents the station ID from the train station
platform. The stages to obtain maximum permitted speed at
reconfiguration are (Am1.3: System T receives train station
ID by radio signal from the train station platforms during the
service,Aa1.3: System T obtains transport operator at a station
from the station ID and searches for the maximum permitted
speed in a table).

Step 4. Table 3 summarizes the automation levels and the
quality attributes. Automation level el for Ae1 and Ap1 is
5 because the plan and execute stages are fully automatic.
Detailed descriptions for the estimated quality attributes are
shown in Table 10 (in Appendix B). Automation level el
for Aa1.2 and Aa1.3 are 5. Automation level el for Am1.1 is
5 because the measurement is fully automated. Automation
level el for Am1.2 is 2 because the driver inputs the service
ID at the service startup. Automation level el for Am1.3 is
5 because the radio signal receiver is always monitoring radio
signals that indicate station ID.

Step 5. The acceptable critical level is determined as level
4 for all of the adaptations. The results show that the estimated
reliability er for Am1.3 does not satisfy the acceptable critical
level. There are two possible solutions to avoid this. One is
to increase reliability er for Am1.3. Improving noise proofing
ability or using other communication media will increase
reliability. The other is to increase detectability ed and recov-
erability ec for Am1.3 and Aa1.3. Increasing awareness by
driver or external system leads to increasing the detectability.
For example, adding a maximum permitted speed display or
a maximum permitted speed change alert for the driver will
increase the detectability.

IV. CASE STUDY
A. OVERVIEW
We conducted a case study to evaluate whether the proposed
approach can assess a system with critical adaptation features
and to compare the results of the proposed approach and

VOLUME 12, 2024 17867



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

TABLE 3. Results of the example.

the results of STAMP/STPA approach [15]. STAMP/STPA
is used as an approach of conventional hazard analysis. One
of the authors conducted the assessment with the proposed
approach followed by analysis with STAMP/STPA along
with the procedures defined in the document [67].
First, STAMP/STPA identifies accidents, hazards, safety

constraints, and control structures of the system. Second,
the approach extracts unsafe control actions (UCA) using a
table, where the columns correspond to the four-hazard guide
words and rows correspond to the controls identified in the
control structure. Third, the approach selects unsafe control
actions from the table and creates the corresponding safety
constraints. Finally, the approach identifies causal factors.
In this case study, we added an assessment process with iden-
tified causal factors because STAMP/STPA does not define
an assessment process.

B. MATERIAL
Our case study involved a safety-critical telecommunication
monitoring and switching system for Japanese public orga-
nizations (including local government) in actual use. The
system checks the connection availability and switches to
available connections. Fig. 6 shows the telecommunication
monitoring and switching system in the case study. The
telecommunication system transports safety-critical emer-
gency information, including voice, video, and data com-
munications. The communication network is a star network
consisting of one control node and two or more terminal
nodes. Each terminal node is connected to the control node by
long-distance wired and long-distance wireless connections.
The telecommunication monitoring and switching system
monitors both the wired and wireless connections, including
the communication terminal devices on both sides. Fig. 7
shows the control structure of the system. The control struc-
ture consists of the monitoring and switching system, the
communication terminal device, the wired/wireless network,
and the communication device.

In the operation, the telecommunication monitoring and
switching system selects an available connection and
switches the connection, if needed. The switching feature
is a critical adaptation feature because communication is

TABLE 4. Effort required for the proposed approach.

unavailable when switching to an unavailable connection.
Moreover, environmental noise affects long-distance wireless
network and the redundant architecture of communication
terminal devices must be considered. The long-distance wire-
less connection is easy to be affected by environmental noise.
Communication terminal devices in terminal nodes have dif-
ferent redundant architectures for each terminal node such
as fully redundant hot standby for both wired and wireless
connections (terminal node 1 in Fig. 6) and a shared commu-
nication terminal device for wired and wireless connections.

C. RESULTS BY THE PROPOSED APPROACH
Table 4 shows the required effort for the case study. The
required effort for the proposed approach was three person-
hours. Step 4 required 1.0 person-hour, while the effort for the
other steps was 0.5 person-hours. Tables 5 and 6 summarize
the results. The detailed descriptions are as follows.

Step 1. The set of assets S that the system should protect
is {S1: Safety-critical emergency communication}. Lifecy-
cle L is {L1: Setup for the control node and the terminal
nodes, L2: Startup of control node, L3: Startup of terminal
nodes, L4: Connection setup, L5: Monitoring system startup,
L6: Monitoring the control node and the terminal nodes,
L7: Maintenance and reconfiguration of terminal nodes, L8:
Nodes and system shutdown, L9: System disposal}.

Step 2. The assessor used architectural design documents
as diagrams providing entire images of the system and the
results of root cause analysis in past development as the haz-
ard information. The set of hazardsH is {H1: Communication
is unavailable due to failure to select an available connection,
H2: Communication is unavailable due to failure to detect

17868 VOLUME 12, 2024



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

FIGURE 6. Telecommunication monitoring and switching system in the case study.

FIGURE 7. Control structure of the system.

control node failure}. A set of critical adaptation execution
Ae is {Ae1: System switches the connection upon detecting a
failure of the connection in use, Ae2: System raises an alert
when a control node failure is detected}.

Step 3. Corresponding plan stage Ap1 to execution stage
Ae1 is used to judge whether the current connection is avail-
able. As shown in Table 4, the corresponding analyze stages
to plan stage Ap1 are to analyze whether the wired and
wireless connections are available. Connection availability
is analyzed by receiving acknowledgment packets that are
commonly used as a simple connectivity check and by ensur-
ing that redundant or spare communication terminal devices
are available. Corresponding plan stage Ap2 to execution
stage Ae2 is to judge the health status of the control node.
The health status is analyzed from the self-diagnostic results
in communication terminal devices. The availability of the
wired and wireless connection is checked by sending and
receiving acknowledgment packets from the control node to

the terminal nodes. Monitor stages Am1.1 and Am1.2 send
and receive acknowledgment packets for the wired and wire-
less connections. Analyze stages Aa1.1 and Aa1.2 analyze
the connectivity for the wired and wireless connections, the
health status of the communication terminal devices from the
acknowledgment packets, and the redundancy architecture of
the devices.
Step 4. Tables 5 and 6 summarize the results. Automation

level el for Ae1 and Ap1 in the system is 2 because the
switching plan requires not only the connection availability
but also a forecast for noise affecting the wireless connection.
Tables 11 and 12 (in Appendix C) show detailed descriptions
for the estimated quality attributes for Ae1 and Ae2, respec-
tively.
Automation levels el for Am1.1 and Am1.2 are 5 because

the sending and receiving of acknowledgment packets are
fully automated. Automation levels el for Aa1.1 and
Aa1.2 are 3 because the analysis includes redundancy of

VOLUME 12, 2024 17869



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

TABLE 5. Result for H1.

TABLE 6. Result for H2.

communication terminal devices. The redundant architec-
tures among the terminal nodes differ. In case of communica-
tion terminal device failures, the operator must consider the
redundant architectures.

Automation level el for Ae2 is 4 because the operator
can stop an alert if needed. Automation level el for Ap2 is
4 because the operator must intervene in rare cases. In rare
cases, the communication terminal device redundancy is not
sufficient. Automation levels el for Aa2 and Am2 are 5 because
the health check analysis from the self-diagnostic is fully
automated.

Step 5. The acceptable critical level is determined as level
4 for all of the adaptations. The results show that estimated
reliabilities el for A1((Am1.1, Am1.2), (Aa1.1, Aa1.2), Ap1, Ae1),
and A2(Am2, Aa2, Ap2, Ae2) satisfy the critical level. Thus, the
criticality of hazardsH1 andH2 are acceptable, except in rare
cases.

D. RESULTS BY STAMP/STPA
Table 7 shows the required effort for the case study. The
required effort was 4.5 person-hours. The proposed approach
required 33% less effort than that of STAMP/STPA. An acci-
dent of the system is ‘‘unable to communicate with a terminal

TABLE 7. Effort required for STAMP/STPA.

node.’’ The hazards are the same as the results by the proposed
approach, H1: Communication is unavailable due to failure
to select an available connection and H2: Communication
is unavailable due to failure to detect control node failure.
Safety constraints are C1: System selects available connec-
tion when the wired or wireless connection is available and
C2: Control node is available.
Table 8 shows the identified unsafe control actions, where

brackets denote unsafe controls that may cause hazardsH1 or
H2. The causal factors for the critical adaptation features are
equivalent as described in plan stages Ap1 and Ap2 in Tables 5
and 6. The assessment results indicate that criticalities are
acceptable.

V. DISCUSSION
A. ASSESSMENT AS A QUALITY ASSURANCE ACTIVITY
The case study shows that the proposed approach can assess
the criticalities of a safety-critical telecommunication system.
Even if a self-assessment is implemented (the assessor of the
proposed approach is one of the developers of the adaptive
software system), the assessor should be able to effectively
assess from different viewpoints at development time. In ad
hoc reviews, the effectiveness of the review decreases when
the developer reviews an artifact that he or she developed.

The case study shows empirical evidence that the pro-
posed approach could assess criticality by focusing on
safety-critical adaptations and obtain equivalent results of
STAMP/STPA. The proposed approach can analyze tradeoffs
between human-assisted and automated critical adaptations,
which other assessment techniques did not explicitly specify
any procedure. Furthermore, if hazard information and dia-
grams providing entire images of the system are available,
the required effort for step 3 in the proposed approach is
expected to be less because mapping hazards to critical adap-
tations requires less effort. Also, in the case that traceability
management is required by safety regulations, a part of steps
2 and 3 in the proposed approach can be performed semi-
automatically.

The assessment by the proposed approach clarified the
criteria to increase the automation level while discussing the
reason for the low automation level of critical adaptations
Ae1 and Ap1, which were attributed to redundant architectures
among the terminal nodes and difficulties predicting trends of
the noise affecting wireless connection quality. The discussed
criteria were deploying the same redundant architectures in
all terminal nodes and developing technology to predict wire-
less noise trends.

17870 VOLUME 12, 2024



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

TABLE 8. Unsafe control actions.

TABLE 9. Automation level in each of the phases.

B. THREATS TO VALIDITY
Although the results of the proposed approach and the
STAMP/STPA approach indicate that the criticalities of the
adaptations are acceptable, the assessment results in the case
study should be verified. The safety-critical telecommuni-
cation system in the case study has been in operation for
more than 10 years. During the operation, critical adaptations
have worked as expected, which may be considered as a
verification of the assessment results.

The evaluation was conducted by one of the authors
because the assessors in the case study must fully under-
stand the target system and no other qualified assessor was
available. Although the assessor carefully tried to use both

approaches without bias and the STAMP/STPA approach was
conducted after the proposed approach, conducting another
case study with assessors that excluded the authors is an
important future work.

The adaptive software system in the case study had a
few critical adaptations. Although the critical adaptations in
the system are not specific to the target system, investiga-
tions with a larger number of critical adaptations enable the
effectiveness and efficiency of the proposed approach to be
generalized.

Investigating the required skill and experience for the
assessor is also an important future work. Identifying crit-
ical adaptations and decomposing critical adaptations into

VOLUME 12, 2024 17871



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

TABLE 10. Detailed description of the quality attributes in the example.

TABLE 11. Detailed descriptions of the quality attributes for Ae1 in the case study.

the stages require that the assessor understands the critical
adaptations and target system well.

The proposed approach can assess adaptations, including
dynamic configurations and autonomy adjustment mecha-
nisms. Adaptations with dynamic configurations and auton-
omy adjustments are added to the critical adaptation execu-
tions Ae (Step 2 in Subsection III-G) and assessed as critical
adaptations A (Step 3 in Subsection III-G). The subsequent
analysis (Steps 4 and 5 in Subsection III-G) assesses whether
the critical adaptations are acceptable. Here, we use the six
levels of driving automation (Levels 0 to 5) defined by SAE

J3016 [68], [69] as an example. SAE J3016 defines ‘‘Level
2: Partial Driving Automation’’ as the driver must constantly
supervise driver support features and ‘‘Level 3: Conditional
Driving Automation’’ as the system can drive the vehicle
under limited conditions but when the system requests, the
driver must take over. If the limited condition of Level 3 is on
the highway (the vehicle is on the highway), and Level 2 is
used on local roads. When a vehicle takes local roads from
the highway, an adjustable autonomy is required to transition
from Level 3 to Level 2. In this case, the assessments should
include not only adaptations in Levels 2 (A1) and 3 (A2)

17872 VOLUME 12, 2024



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

TABLE 12. Detailed descriptions of quality attributes for Ae2 in the case study.

but also the adjustable autonomy from Level 3 to Level 2
(A3). The autonomy adjustment must consider two factors:
(1) the driver is ready to take over and (2) the automation
system of Level 3 does not control the vehicle for emergency
avoidance of obstacles. In this case, the proposed approach
can assess the adjustable autonomy by adding A1, A2, and A3
to adaptations A.

VI. CONCLUSION AND FUTURE WORK
In this work, we propose an approach for identifying and
assessing critical adaptations by decomposing adaptations in
adaptive software systems into stages. First, the approach
identifies assets that should be protected by the system.
Next, it identifies hazards and critical adaptations, which are
decomposed into monitor, analyze, plan, and execute stages.
Then, the proposed approach determines the automation level
for each stage and estimates its quality attributes, which
consist of reliability, detectability, and recoverability. Finally,
the proposed approach assesses whether the possibilities of
threats exposed by critical adaptations are acceptable from
the decomposed stages and their quality attributes.

We conducted a case study to evaluate the effectiveness
and efficiency of the proposed approach in a safety-critical
telecommunication system developed in industry. The pro-
posed approach identified two critical adaptations, decom-
posed them into four stages, and assessed whether their
criticalities were acceptable. In the evaluation, the proposed
approach with structured views, including hazards and crit-
ical adaptations, achieves similar results to those of the
STAMP/STPA approach but requires 33% less effort.

The case study shows that the proposed approach and the
STAMP/STPA approach yield equivalent results. Hence, the
proposed approach enables fine-grained analysis to clarify
criteria to increase the automation level by considering the
quality attributes. The proposed approach can be used in
safety assessment approaches such as STAMP/STPA and
FTA. It is also applicable as a safety analysis technique
required by safety standards, including IEC 61508 [64] and

ISO 26262 [70]. In addition, the structured views provided
by the proposed approach enable efficient quality assurance
activities.

Future works include refining the procedures in the pro-
posed approach so that they are automated, which may
realize runtime assessments such as analyzing and assessing
dynamic mechanisms to enable adaptive software systems to
change their automation levels at runtime such as dynamic
configurations and adjustable autonomies.

APPENDIX A
Detailed descriptions of automation levels in Section III

APPENDIX B
Detailed descriptions of quality attributes in the example in
Section III

APPENDIX C
Detailed description of the quality attributes in Section IV

ACKNOWLEDGMENT
The authors would like to thank the members of the work-
ing group on IoT High Reliability, Software Reliability
Enhancement Center, technology headquarters, Information-
Technology Promotion Agency, Japan.

REFERENCES
[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,

‘‘Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,’’ Computer, vol. 37, no. 10, pp. 46–54, Oct. 2004.

[2] B. Schmerl, G. A. Moreno, A. Mellinger, J. Camara, and D. Garlan,
Architecture-based Self-adaptation for Moving Target Defense. Pittsburgh,
PA, USA: Carnegie Mellon University, 2014.

[3] G. A.Moreno, J. Cámara, D. Garlan, andM. Klein, ‘‘Uncertainty reduction
in self-adaptive systems,’’ in Proc. IEEE/ACM 13th Int. Symp. Softw. Eng.
Adapt. Self-Managing Syst. (SEAMS), Gothenburg, Sweden, May 2018,
pp. 51–57.

[4] C. J. Foster, K. L. Plant, and N. A. Stanton, ‘‘A delphi study of human
factors methods for the evaluation of adaptation in safety-related organisa-
tions,’’ Saf. Sci., vol. 131, Nov. 2020, Art. no. 104933.

VOLUME 12, 2024 17873



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

[5] M. Chaal, O. A. V. Banda, J. A. Glomsrud, S. Basnet, S. Hirdaris, and
P. Kujala, ‘‘A framework to model the STPA hierarchical control structure
of an autonomous ship,’’ Saf. Sci., vol. 132, Dec. 2020, Art. no. 104939.

[6] C. Krupitzer, T. Temizer, T. Prantl, andC. Raibulet, ‘‘An overview of design
patterns for self-adaptive systems in the context of the Internet of Things,’’
IEEE Access, vol. 8, pp. 187384–187399, 2020.

[7] R. Calinescu, R. Mirandola, D. Perez-Palacin, and D. Weyns, ‘‘Under-
standing uncertainty in self-adaptive systems,’’ in Proc. IEEE Int. Conf.
Autonomic Comput. Self-Organizing Syst. (ACSOS), Washington, DC,
USA, Aug. 2020, pp. 242–251.

[8] J. Cámara, G. Moreno, and D. Garlan, ‘‘Reasoning about human participa-
tion in self-adaptive systems,’’ in Proc. IEEE/ACM 10th Int. Symp. Softw.
Eng. Adapt. Self-Managing Syst., Florence, Italy, May 2015, pp. 146–156.

[9] M. Gil, V. Pelechano, J. Fons, and M. Albert, ‘‘Designing the human in
the loop of self-adaptive systems,’’ in Proc. UCAmI, Int. Conf. Ubiquitous
Comput. Ambient Intell., Gran Canaria, Spain, 2016, pp. 437–449.

[10] J. Andersson, R. De Lemos, S. Malek, and D. Weyns, ‘‘Modeling dimen-
sions of self-adaptive software systems,’’ in Software Engineering for
Self-Adaptive Systems. New York, NY, USA: Springer, 2009, pp. 27–47.

[11] J. O. Kephart, ‘‘Research challenges of autonomic computing,’’ in Proc.
ICSE 27th Int. Conf. Softw. Eng., New York, NY, USA, 2005, pp. 15–22.

[12] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, and G. Johnson,
‘‘An architecture-based approach to self-adaptive software,’’ IEEE Intell.
Syst. Appl., vol. 14, no. 3, pp. 54–62, Jun. 1999.

[13] J. Cámara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl,
and R. Ventura, ‘‘Evolving an adaptive industrial software system to
use architecture-based self-adaptation,’’ in Proc. 8th Int. Symp. Softw.
Eng. Adapt. Self-Managing Syst. (SEAMS), San Francisco, CA, USA,
May 2013, pp. 13–22.

[14] J. Yang, G. Huang, W. Zhu, X. Cui, and H. Mei, ‘‘Quality attribute tradeoff
through adaptive architectures at runtime,’’ J. Syst. Softw., vol. 82, no. 2,
pp. 319–332, Feb. 2009.

[15] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied to
Safety. Cambridge, MA, USA: MIT Press, 2016.

[16] J. O. Kephart and D. M. Chess, ‘‘The vision of autonomic computing,’’
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[17] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, ‘‘A model for types
and levels of human interaction with automation,’’ IEEE Trans. Syst., Man,
Cybern. A, Syst. Humans, vol. 30, no. 3, pp. 286–297, May 2000.

[18] S. A. Mostafa, M. S. Ahmad, A. Ahmad, M. Annamalai, and
S. S. Gunasekaran, ‘‘An autonomy viability assessment matrix for agent-
based autonomous systems,’’ in Proc. Int. Symp. Agents, Multi-Agent Syst.
Robot. (ISAMSR), Putrajaya, Malaysia, Aug. 2015, pp. 53–58.

[19] T. M. Roehr and Y. Shi, ‘‘Using a self-confidence measure for
a system-initiated switch between autonomy modes,’’ in Proc. Int.
Symp. Artif. Intell., Robot. Automat. Space, Sapporo, Japan, 2010,
pp. 507–514.

[20] S. Morisaki and N. Kasai, ‘‘An approach for detecting critical adapta-
tions in automated adaptive software systems,’’ in Proc. IEEE Int. Conf.
Softw. Qual., Rel. Secur. Companion (QRS-C), Lisbon, Portugal, Jul. 2018,
pp. 526–530.

[21] G. A. Dorais, R. P. Bonasso, D. Kortenkamp, B. Pell, and
D. Schreckenghost, ‘‘Adjustable autonomy for human-centered
autonomous systems,’’ in Proc. IJCAI’99 Workshop Adjustable Autonomy
Syst., Stockholm, Sweden, 1999, pp. 16–35.

[22] D. Kortenkamp, R. P. Bonasso, D. Ryan, and D. Schreckenghost, ‘‘Traded
control with autonomous robots as mixed initiative interaction,’’ in Proc.
AAAI Spring Symp., Palo Alto, CA, USA, 1997, pp. 89–94.

[23] M. Y. K. Cheng and R. Cohen, ‘‘A hybrid transfer of control model
for adjustable autonomy multiagent systems,’’ in Proc. 4th Int. Joint
Conf. Auto. Agents Multiagent Syst., The Netherlands, Jul. 2005,
pp. 1149–1150.

[24] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh, ‘‘Coor-
dinated multiagent teams and sliding autonomy for large-scale assembly,’’
Proc. IEEE, vol. 94, no. 7, pp. 1425–1444, Jul. 2006.

[25] P. Scerri, D. V. Pynadath, and M. Tambe, ‘‘Why the elf acted
autonomously: Towards a theory of adjustable autonomy,’’ in Proc. 1st Int.
Joint Conf. Auto. Agents Multiagent Syst. (AAMAS), Bologna, Italy, 2002,
pp. 857–864.

[26] S. Mercier, F. Dehais, C. Lesire, and C. Tessier, ‘‘Resources as basic
concepts for authority sharing,’’ in Proc. Humans Operating Unmanned
Syst. (HUMOUS), Brest, France, 2008, pp. 31–42.

[27] C. A. Miller and R. Parasuraman, ‘‘Designing for flexible interaction
between humans and automation: Delegation interfaces for supervisory
control,’’ Hum. Factors, J. Hum. Factors Ergonom. Soc., vol. 49, no. 1,
pp. 57–75, Feb. 2007.

[28] L. A. M. Bush, A. J. Wang, and B. C. Williams, ‘‘Risk-based sensing in
support of adjustable autonomy,’’ in Proc. IEEE Aerosp. Conf., Big Sky,
MT, USA, Mar. 2012, pp. 1–18.

[29] B. Durand, K. Godary-Dejean, L. Lapierre, and D. Crestani, ‘‘Inconsis-
tencies evaluation mechanisms for an hybrid control architecture with
adaptive autonomy,’’ in Proc. 4th Nat. Conf. Control Archit. Robots,
Toulouse, France, 2009.

[30] M. Johnson, J. M. Bradshaw, P. Feltovich, C. Jonker, B. van Riemsdijk,
and M. Sierhuis, ‘‘Autonomy and interdependence in human-agent-robot
teams,’’ IEEE Intell. Syst., vol. 27, no. 2, pp. 43–51, Mar. 2012.

[31] S. Zieba, P. Polet, F. Vanderhaegen, and S. Debernard, ‘‘Principles of
adjustable autonomy: A framework for resilient human–machine coopera-
tion,’’ Cognition, Technol. Work, vol. 12, no. 3, pp. 193–203, Sep. 2010.

[32] M. Ball and V. Callaghan, ‘‘Explorations of autonomy: An investigation of
adjustable autonomy in intelligent environments,’’ in Proc. 8th Int. Conf.
Intell. Environments, Guanajuato, Mexico, Jun. 2012, pp. 114–121.

[33] D. Perez-Palacin, R. Mirandola, and J. Merseguer, ‘‘On the relationships
between QoS and software adaptability at the architectural level,’’ J. Syst.
Softw., vol. 87, pp. 1–17, Jan. 2014.

[34] P. Zoghi, M. Shtern, and M. Litoiu, ‘‘Designing search based adaptive
systems: A quantitative approach,’’ in Proc. 9th Int. Symp. Softw. Eng.
Adapt. Self-Managing Syst., Hyderabad, India, Jun. 2014, pp. 7–16.

[35] M. Salehie and L. Tahvildari, ‘‘Self-adaptive software: Landscape and
research challenges,’’ ACM Trans. Auto. Adapt. Syst., vol. 4, no. 2,
pp. 1–42, May 2009.

[36] D. Weyns, ‘‘Perpetual assurances for self-adaptive systems,’’ in Software
Engineering for Self-Adaptive Systems III. Assurances. New York, NY,
USA: Springer, 2017, pp. 31–63.

[37] A. Elkhodary, N. Esfahani, and S. Malek, ‘‘FUSION: A framework for
engineering self-tuning self-adaptive software systems,’’ in Proc. 18th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., Santa Fe, NJ, USA,
Nov. 2010, pp. 7–16.

[38] H. Nakagawa, A. Ohsuga, and S. Honiden, ‘‘Gocc: A configuration
compiler for self-adaptive systems using goal-oriented requirements
description,’’ in Proc. 6th Int. Symp. Softw. Eng. Adapt. Self-Managing
Syst., Honolulu, HI, USA, May 2011, pp. 40–49.

[39] C. Dorn and R. N. Taylor, ‘‘Coupling software architecture and human
architecture for collaboration-aware system adaptation,’’ in Proc. 35th Int.
Conf. Softw. Eng. (ICSE), San Francisco, CA, USA, May 2013, pp. 53–62.

[40] M. Luckey and G. Engels, ‘‘High-quality specification of self-adaptive
software systems,’’ in Proc. 8th Int. Symp. Softw. Eng. for Adapt.
Self-Managing Syst. (SEAMS), San Francisco, CA, USA, May 2013,
pp. 143–152.

[41] N. G. Leveson and J. P. Thomas, STPA Handbook. Cambridge, MA, USA:
MIT Press, 2018.

[42] Failure Modes and Effects Analysis (FMEA and FMECA), document IEC
60812:2018, 2018.

[43] Fault Tree Analysis (FTA), document IEC 61025:2006, 2006.
[44] C. A. Ericson, Hazard Analysis Techniques for System Safety. New York,

NY, USA: Wiley, 2015.
[45] Hazard and Operability Studies (HAZOP Studies)-Application Guide, doc-

ument IEC 61882:2016, 2016.
[46] R. Kazman, G. Abowd, L. Bass, and P. Clements, ‘‘Scenario-based analysis

of software architecture,’’ IEEE Softw., vol. 13, no. 6, pp. 47–55, Nov.
1996.

[47] R. Kazman, M. Barbacci, M. Klein, S. J. Carrière, and S. G. Woods,
‘‘Experience with performing architecture tradeoff analysis,’’ in Proc. 21st
Int. Conf. Softw. Eng., Los Angeles, CA, USA, May 1999, pp. 54–63.

[48] K. Lee and B. Boehm, ‘‘Empirical results from an experiment on value-
based review (VBR) processes,’’ in Proc. Int. Symp. Empirical Softw. Eng.,
Noosa Heads, QLD, Australia, 2005, p. 10.

[49] A. Porter and L. Votta, ‘‘Comparing detection methods for software
requirements inspections: A replication using professional subjects,’’
Empirical Softw. Eng., vol. 3, no. 4, pp. 355–379, 1998.

[50] A. A. Porter, L. G. Votta, and V. R. Basili, ‘‘Comparing detection methods
for software requirements inspections: A replicated experiment,’’ IEEE
Trans. Softw. Eng., vol. 21, no. 6, pp. 563–575, Jun. 1995.

17874 VOLUME 12, 2024



S. Morisaki et al.: Assessing Critical Adaptations in Automated Adaptive Software Systems

[51] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, and
M. V. Zelkowitz, ‘‘The empirical investigation of perspective-based read-
ing,’’ Empirical Softw. Eng., vol. 1, no. 2, pp. 133–164, 1996.

[52] O. Laitenberger, ‘‘Cost-effective detection of software defects through
perspective-based inspections,’’ Empirical Softw. Eng., vol. 6, no. 1,
pp. 81–84, 2001.

[53] T. Thelin, P. Runeson, and B. Regnell, ‘‘Usage-based reading—An exper-
iment to guide reviewers with use cases,’’ Inf. Softw. Technol., vol. 43,
no. 15, pp. 925–938, Dec. 2001.

[54] T. Thelin, P. Runeson, and C. Wohlin, ‘‘An experimental comparison
of usage-based and checklist-based reading,’’ IEEE Trans. Softw. Eng.,
vol. 29, no. 8, pp. 687–704, Aug. 2003.

[55] H. Gomaa, K. Hashimoto, M. Kim, S. Malek, and D. A. Menascé, ‘‘Soft-
ware adaptation patterns for service-oriented architectures,’’ in Proc. ACM
Symp. Appl. Comput., Sierre, Switzerland, Mar. 2010, pp. 462–469.

[56] Systems and Software Engineering—System Life Cycle Processes, docu-
ment ISO/IEC/IEEE 15288:201, 2015.

[57] Systems and Software Engineering—Life Cycle Management—Part 1:
Guidelines for Life Cycle Management, document ISO/IEC/IEEE 24748-
1:2018, 2018.

[58] S. R. E. Center, Guidance for Practice Regarding IoT Safety/Security
Development Guidelines. Tokyo, Japan: Information-technology Promo-
tion Agency, 2017.

[59] M. Yazdi, ‘‘Improving failure mode and effect analysis (FMEA) with
consideration of uncertainty handling as an interactive approach,’’ Int. J.
Interact. Design Manuf. (IJIDeM), vol. 13, no. 2, pp. 441–458, Jun. 2019.

[60] T. Myklebust, J. Eriksen, A. Hellandsvik, and G. Hanssen, ‘‘The agile
FMEA approach,’’ in Proc. SCSC 26th Safety-Critical Syst. Symp.,
New York, NY, USA, 2018, pp. 1–17.

[61] J. R. Boyd, ‘‘The essence of winning and losing,’’ 1996. [Online].
Available: https://fasttransients.files.wordpress.com/2010/03/essence_of_
winning_losing.pdf

[62] J. R. Boyd, A Discourse on Winning and Losing. Maxwell AFB, AL, USA:
Air Univ. Press, 2018.

[63] W. R. Dunn, ‘‘Designing safety-critical computer systems,’’ Computer,
vol. 36, no. 11, pp. 40–46, 2003.

[64] Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems, document IEC 61508:2016, 2016.

[65] Standard Practice for System Safety, Standard MIL-STD-882D:2000,
2000.

[66] F. How. (2014). IRSE Fundamental Requirements for Train Control Sys-
tems. [Online]. Available: https://www.rissb.com.au/wp-content/uploads/
2019/03/AS-7711-2018_Signalling-Principles_Preview.pdf

[67] AS Primer. (2015). An STPA Primer. [Online]. Available:
http://psas.scripts.mit.edu/home/wp-content/uploads/2015/06/STPA-
Primer-v1.pdf

[68] Taxonomy and Definitions for Terms Related to Driving Automation Sys-
tems for On-Road Motor Vehicles, Standard SAE J3016_202104, 2021.

[69] SAE International. (2021). SAE J3016 Levels of Driving Automation.
[Online]. Available: https://www.sae.org/binaries/content/assets/
cm/content/blog/sae-j3016-visual-chart_5.3.21.pdf

[70] Road Vehicles - Functional Safety—Part 6: Product Development At the
Software Level, Standard ISO 26262-6:2018, 2018.

SHUJI MORISAKI (Member, IEEE) received the D.E. degree in information
science from the Nara Institute of Science and Technology, Japan, in 2001.
He is currently an Associate Professor with the Graduate School of Informat-
ics, Nagoya University, Japan. Previously, he has been a Software Engineer
in the Japanese software industry. His research interests include empirical
software engineering and software quality.

MICHIYO WAKIMOTO received the Master of Management of Technology
degree from Ritsumeikan University, Japan. She is currently pursuing the
Ph.D. degree with the Graduate School of Informatics, Nagoya University,
Japan. Her research interests include empirical software engineering and
software quality.

NORIMITSU KASAI received the Doctor of Engineering degree from the
Nara Institute of Science and Technology, Japan, in 2014. He is currently a
SystemEngineer withMitsubishi Electric Corporation. His research interests
include software/system engineering and source code analysis.

VOLUME 12, 2024 17875


