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ABSTRACT The introduction of pre-trained large language models (LLMs) has transformed NLP by fine-
tuning task-specific datasets, enabling notable advancements in news classification, language translation,
and sentiment analysis. This has revolutionized the field, driving remarkable breakthroughs and progress.
However, the growing recognition of bias in textual data has emerged as a critical focus in the NLP
community, revealing the inherent limitations of models trained on specific datasets. LLMs exploit these
dataset biases and artifacts as expedient shortcuts for prediction. The reliance of LLMs on dataset bias and
artifacts as shortcuts for prediction has hindered their generalizability and adversarial robustness. Addressing
this issue is crucial to enhance the reliability and resilience of LLMs in various contexts. This survey provides
a comprehensive overview of the rapidly growing body of research on shortcut learning in language models,
classifying the research into four main areas: the factors of shortcut learning, the origin of bias, the detection
methods of dataset biases, and understanding mitigation strategies to address data biases. The goal of this
study is to offer a contextualized, in-depth look at the state of learning models, highlighting the major areas
of attention and suggesting possible directions for further research.

INDEX TERMS Dataset biases, deep learning, natural language processing, shortcut learning, transfer
learning.

I. INTRODUCTION
In the field of Natural Language Processing, pre-trained
large language models have gained significant attention.
Notably, language models like BERT [1], Roberta [2], and
GPT-3 [3] have shown their abilities in performing several
high-level NLP tasks, such as natural language inference,
question answering, text summarization, sentiment analysis,
etc. BERT and its variants are trained using masked language
modeling objectives, where a portion of the input text is
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randomly masked, and the model is tasked with predicting
the original masked tokens (e.g. ‘‘I love to [MASK] on the
beach’’). The model leverages contextual information from
both the left and right sides to understand the masked token.
Formally, given an input sequence as w = [w1,w2, . . . ,wn]
and a position 1 ≤ i ≤ n, the model estimates the token by
considering its neighboring left and right contexts by p (w) =

p (wi |w1,w2, . . . ,wi−1,wi+1,wi+2, . . . ,wn).
While this training objective is effective in capturing con-

textual relationships and improving language understanding,
it introduces a challenge known as shortcut learning. In the
case of masked language models, the models may learn to
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rely on prominent patterns or contextual clues rather than
deeply understanding the semantics or meaning of the text.
For example, the models could learn associations between
specific words or phrases with certain labels or predictions,
without truly grasping the underlying concepts.

Secondly, LLMs often rely on transfer learning, where
they are pre-trained on a large corpus of text data and fine-
tuned on specific downstream tasks. During this fine-tuning
process, the model adapts its parameters to the new task
while leveraging the knowledge gained from the pre-training
phase. The adaptation of large language models to down-
stream tasks typically involves employing three conventional
approaches as shown in Figure 1. The general principle states
that increasing the number of fine-tuned layers typically leads
to improved performance. So, the approach of employing pre-
trained LLMs to downstream tasks as shown in Fig. 1(iii) may
produce higher accuracy than the other approaches shown in
Fig. 1(i) and 1(ii). However, if the fine-tuning process is not
carefully managed, shortcut learning can occur.

FIGURE 1. (i) represents a feature-based approach for adapting the model
on downstream tasks, (ii) and (iii) represent fine-tuning approaches.

Thirdly, LLMs have exhibited exceptional proficiency in
addressing significant challenges and achieving outstanding
performance across a wide range of Natural Language Pro-
cessing (NLP) problems. However, despite their remarkable
performance on in-distribution test data, face challenges in
terms of generalization when applied to out-of-distribution
(OOD) test data. These models exhibit reduced performance
on OOD samples and are susceptible to various adversarial
attacks, which collectively contribute to their vulnerability
and low robustness [4]. The significant contributing factor to
the low robustness observed in LLMs is Shortcut Learning.

In all these cases, the learning of shortcuts in natural
language understanding (NLU) models may be influenced
by multiple factors including the dataset biases, training and
fine-tuning processes, as well as potential biases present in

the embedding spaces [5]. A significant area of concern
regarding large language models is the possibility of biases
and unfairness in their predictions, particularly when trained
on datasets that themselves contain biases [6]. If the training
data is skewed or biased towards certain patterns, topics,
or demographics, LLMs may inadvertently learn and amplify
these biases. These shortcuts can lead to models relying on
biases in the data rather than developing a deep understanding
of the underlying semantics. As a result, the models tend to
exhibit biased behavior and may make unfair or inaccurate
predictions when applied to diverse or underrepresented sam-
ples. This raises the following research questions for us to
consider.

1. Can transfer learning approaches be used to train pre-
trained LLMs that are less prone to shortcut learning by
actively encouraging the model to acquire task-specific
features rather than relying on shortcuts?

2. Can techniques be developed to prevent pre-trained LLMs
from being overly reliant on certain features that they
frequently utilize as shortcuts?

3. How can regularization approaches be improved to reduce
shortcut learning in pre-trained LLMs without compro-
mising their capacity to recognize complex linguistic
patterns?

4. Are there pre-training process changes that can be made
to reduce or avoid shortcut learning in pre-trained LLMs?

Some studies have aimed to propose modifications to
the training process that effectively address the issue,
by introducing task-specific regularization techniques [7],
[8], adversarial examples [9], or applying data augmenta-
tion techniques during training [10], ultimately promoting
a more precise and unbiased understanding of natural lan-
guage. To ensure that algorithm-guided outcomes are fair and
unbiased, three formal definitions of fairness have emerged
from the literature: (1) anti-classification, which states that
protected attributes such as race, gender, and their proxies
are not explicitly used to make decisions; (2) classification
parity, which states that common measures of predictive per-
formance (e.g., false positive and false negative rates) are
equal across groups defined by the protected attributes; and
(3) calibration, which states that outcomes are independent
of risk estimates and unfairness in such models’ predictions,
particularly when trained on biased datasets.

Stronger anti-classification theories have been put out to
prevent the use of unprotected features as substitutes for
protected attributes [11]. These more robust ideas seek to
address the problem of bias and discrimination in machine
learning systems. In the subsequent section of the paper,
we explore specific studies focusing on dataset biases in
machine learning systems. These studies mention the moti-
vations behind identifying and understanding how machine
learning system behaviors (particularly language models for
solving NLP problems) can be perceived as harmful.

The robustness of the models has been significantly
harmed by shortcut learning due to dataset biases, drawing
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increased attention from the NLP community to find a solu-
tion. The background of the Dataset biases in the context of
shorting learning problems in LLMs is given in Section II.
The existing studies focus on Shortcut learning explanations
are reviewed in Section III, dataset-bias detection methods in
Section IV, mitigation methods in Section V, and a compari-
son of bias measures in Section VI.

II. BACKGROUND: ORIGIN OF DATASET BIASES
Recent studies have brought to light significant biases in
Natural Language Processing (NLP), showcasing potential
harm. However, a common shortcoming in many of these
studies is a lack of critical engagement with the fundamental
definition and understanding of the ‘‘bias’’ [12]. The term is
frequently employed broadly, encompassing various system
behaviors in NLP, such as gender and racial bias. Even when
scrutinizing bias in NLP systems designed for a common
objective, diverse research endeavors may exhibit distinct
understandings and conceptualizations of what constitutes
bias. For instance, the behaviors of systems, such as deeming
the statement ‘‘You are a goodwoman’’ as sexist when trained
on a particular dataset [13]. Additionally, reliance on the
Equity Evaluation Corpus has uncovered instances where
certain methods consistently predict sentiment intensity lev-
els slightly higher for specific races or genders [14]. This
diversity in biases underscores the complexity of addressing
bias in NLP systems and highlights the necessity for nuanced
considerations in research and mitigation efforts.

From the examples, it is clear that the performance and
behavior of NLP models are significantly influenced by the
datasets that are used, as both researchers and practitioners
have come to understand over time [15]. The ability of the
model to generalize, identify patterns, and make reliable
predictions can be significantly impacted by the quality, size,
diversity, and representativeness of the data. The model may
pick up on and reinforce biases present in the training data,
producing biased results or reaffirming preexisting societal
biases. The history of dataset development in the fields of
data science and machine learning can be seen as a depiction
of resistance against perceived unfairness and bias [16].
Each successive dataset has developed in response to the

biases and constraints present in preceding datasets, to high-
light the context more thoroughly and objectively. On the one
hand, this change in theway datasets are being developedmay
be a sign of advancement. On the other side, a slight vicious
cycle was also apparent. We as a community consistently
reject the present datasets because we believe they are biased.
Yet each time we construct a new dataset, it turns out to be
biased in the same way, although in a little different way.
We are destined to make the same mistakes over and over
again, therefore what seems to be lacking is a clear knowledge
of the different forms and origins of bias [17].

Biases are divided into two types; dataset bias and model-
ing bias. CNNs trained on ImageNet typically identify images
based on texture rather than shape is an example of modeling

bias [18]. It is also found that CNNs learn to classify by shape
at least as quickly as by texture when trained on datasets
containing images having conflicting shapes and textures.
On the other hand, unbalanced sample sizes for each category,
correlations between categories and unrelated attributes, and
data distribution that reflects social assumptions are a few
examples of dataset biases.

Cognitive sciences have been researching various biases
for many years. Bias has been recognized for a long time
as a natural human directorial approach. Consider the pos-
sibility that inferential judgments guide intuitive predictions.
By using this criterion, individuals make predictions based on
what the evidence suggests will happen. Therefore, contrary
to the logic of statistical prediction, intuitive forecasts are
immune to the validity of the evidence or the prior probability
of the result. An imperfect induction method or learning from
others are two ways that bias can be developed. A bias may
lead to a manner of thinking that departs from actual logic in
any event [19].

In a machine learning environment, when a model’s results
do not discriminate based on specific features, it is said to be
unbiased. The confusion matrices for various targeted classes
can be used to estimate bias [16]. In other words, we can
calculate confusion matrices and derived rates for each subset
of data that was created by segmenting the complete col-
lection of samples on a particular feature. If these rates are
significantly different from one another, this may indicate
the lack of unbiased behavior on the part of the prediction
system, or rather, an obvious bias in decision-making based
on the importance of that particular attribute. Divergences in
prediction rates among various population groups have been
studied using a variety of measurements, and it is now obvi-
ous how to interpret these measures in light of each system’s
purpose. Machine learning algorithms for prediction have
been applied in important decisions affecting human life for
many years. The predictions made by the algorithms utilizing
them would also differ greatly since certain formalizations
of fairness can contradict others. Therefore, from a practical
point of view, measures should have been studied on how
fairness is formalized in the literature ofmachine learning and
the effects of various formalizations [20].
The need to provide a wider context and a more realistic

depiction of real-world settings wheremachine learningmod-
els are deployed has motivated the creation of new datasets.
Dataset building has been crucial in reducing biases and
progressing the industry towards more equitable and reliable
machine learning systems by aiming for fairness, inclusion,
and a more thorough representation of many groups and
perspectives. It is important to keep in mind that dataset
development is still a dynamic, iterative process. By con-
tinually updating and enhancing databases, researchers aim
to mitigate biases and produce more impartial and reli-
able outcomes in various applications of machine learning.
The following section delves into a more detailed survey
of the recent insights into the factors of shortcut learning
in LLMs.
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III. RELATED WORKS
In recent studies, the limitations and drawbacks of large
language models have gained attention. Notably, when con-
fronted with shifts in input distribution, such as those encoun-
tered during domain adaptation, with out-of-distribution
examples, or when faced with novel scenarios, LLMs exhibit
challenges in adapting and providing reliable predictions.
This suggests that LLMsmay encounter difficulties in adjust-
ing to new input distributions, potentially relying on biases
ingrained during training [21], [22], [23]. One type of bias
observed is the strong co-occurrence correlation between cer-
tain class labels and specific lexical features. These features
typically include low-level functional words like stop words,
numbers, negation words, and similar elements. For instance,
in the NLI task, the presence of the word ‘not’ often serves
as a convenient shortcut to identifying contradictions in most
training data. However, relying solely on this shortcut without
fully understanding the semantic context of the text leads
to suboptimal performance when the model encounters a
distribution shift in the input data [24], [25]. A focal point
of concern has been the need to address lexical bias, denoting
the inclination of NLUmodels to depend on spurious correla-
tions between shortcut words and corresponding labels [26],
[27]. It becomes essential to tackle this bias to enhance the
robustness and reliability of large language models.

Furthermore, it has been observed that the performance of
BERT-like models in the NLI task can be largely explained
by relying on fictitious statistical inputs such as the unigrams
‘neither’, ‘did’, ‘has’, and the bigrams ‘need not’. These
statistical patterns play a significant role in contributing
to the models’ performance in NLI tasks [4]. Concerning
this, the long-tailed phenomenon is suggested as a poten-
tial explanation for the fast learning capabilities of NLU
models. It involves the use of local mutual information as
a measure [28] between feature x and label y resulting in a
representation of features that follows a long-tailed distri-
bution in the training set [29]. Equation (1) describes this
distribution, where certain words or phrases with high mutual
information display strong associations with specific class
labels.

LMI (x, y) = p (x, y) .log(
p (y | x)
p (y)

) (1)

Here, (x, y) =
count(x,y)

|N |
, p (y | x) =

count(x,y)
count(x) , |N | is

the number of features in the training samples, count(x, y)
represents co-occurrence of feature x with label y, count(x) is
the total features in the training samples. These NLU models
focus mostly on information near the top of the distribu-
tion [22], which typically corresponds to non-generalizable
shortcut features, by using an interpretation approach to ana-
lyze model behavior.

Additionally, during the training process, NLU models
frequently detect shortcut features in very early iterations.
To discourage the NLU model from producing overconfident
predictions for training samples with high shortcut degrees,
LTGR (Long-Tailed Distribution Guided Regularizer) is

implemented using the knowledge distillation framework.
It compels the model to smooth the original probability sj,
as given in (2). The logit value and softmax value of the train-
ing sample xj are derived using the biased teacher model as

zTj and σ
(
zTj

)
respectively, where σ is the softmax function.

sj =

σ
(
zTj

)1−bj
m∑L

l=1 σ
(
zTj

)1−bj
l

(2)

Here, L represents the total labels. If bj = 0, then sj will

be as same as σ
(
zTj

)
, means there will be no penalization.

If bj = 1, then sj will have the same value for all L labels.
Based on the greater of the shortcut degree measurement of
each training sample bj discouraging the NLU model from
making excessively accurate predictions for instances that
have a substantial shortcut degree.

Similarly, in the reading comprehension task, models often
rely solely on the lexical correlation between the words in
the question and the source material, overlooking the design
of the reading comprehension task itself [30]. Consequently,
the evaluation of LLM-based reading comprehension (RC)
models has primarily focused on their ability to handle chal-
lenging RC tasks by effectively understanding the semantic
relationships between words. However, it has been acknowl-
edged that LLMs often lack sufficient training and knowledge
in this regard. To address this issue, artificial adversarial
examples are generated to study shortcut learning processes
and use adversarial data augmentation to strengthen the mod-
els [31]. Mathematically, the model f is evaluated by taking
paragraph-question pair (p,q) and outputting the answer â to
check between the true answer a and the predicted answer
f (p,q) using the F-1 score s. The standard accuracy for a test
sample Ttest is given in (3).

Accuracy (f ) =
1
Ttest

∑
(p,q,a)∈Ttest

s ((p, q, a) , f ) (3)

These studies claim to have high success rates for fake
adversarial examples, however, it is unclear how well they
are still effective for distributions from real-world appli-
cations [32]. In the literature, the Semantic Role Labeling
combined with Ant Colony Optimization technique is used
to generate additional training data for sentiment analysis
task [33]. Comparatively, the adversarial evaluation shows
that the current models are too resistant to alterations that
change semantics. There may be a need for new training
model procedures to optimize adversarial evaluation metrics.
The adversary function F takes an instance (p, q, a), with
model f, and creates a new instance

(
p′, q′, a′

)
. The accuracy

of the adversary w.r.t. F is given in (4).

Adversary (f ) =
1
Ttest

∑
(p,q,a)∈Ttest

s (F (p, q, a, f ) , f )

(4)

The adversarial accuracy estimates the fraction of the time
that the model is robustly correct in the face of adversarially
chosen changes. The

(
p′, q′, a′

)
should be close to (p, q, a).
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It has been stated that spurious feature-label correlations
arise due to biased data distributions in the training datawhich
are frequently exploited as shortcuts by the models [34] and
specifically, for any input x and associated label y, a classifier
F concentrates to approximate the underlying distribution
p = (y | x) for every (x, y) ∈ S, where S is the whole
input-output space for the task. Data is often taken from
a constrained domain, Sa ∈ S. Consider fe(.) represents a
spurious feature extractor. While spurious features have no
causal relationship to the label in the general domain S as
given in (6) and are therefore useless for prediction there, they
can be used efficiently for prediction in the confined domain
Sa as in (5).

p (y | fe (x)) ≈ p (y | x) , (x, y) ∈ Sa (5)

p (y | fe (x)) ≈ p(y), (x, y) ∈ S (6)

To address data bias in classification problems, it is essen-
tial to avoid assigning excessive weight to any specific input
feature when constructing a classifier from labeled data. This
helps to create a more robust classifier [35]. Regulariza-
tion is a common technique employed to distribute weights
more evenly among features, thereby enhancing robustness.
However, since regularization is a general approach, it may
not provide tailored resilience specific to the classification
problem at hand. To overcome this limitation, researchers
have proposed the use of game-theoretic formalization to
analyze resilience and prevent the over-weighting of individ-
ual features. By adopting this approach, classifiers can be
developed that are optimally resilient to feature deletion in
a minimax sense [24]. The classifiers created in this work
are designed to be resilient to feature deletion in a minimax
sense. The goal is to develop classifiers that can maintain
their performance even when certain features are removed
or altered. The study proposes a method utilizing quadratic
programming to construct such classifiers. By optimizing
certain objective functions through quadratic programming
techniques, the resulting classifiers exhibit robustness against
feature deletion, ensuring their durability and effectiveness
in various scenarios. The classifiers created by the authors
are resistant to feature deletion where a labeled instance
(x t , yt ) (i = 1, .., n) along with input feature vectors xt ∈

Rn and yt ∈ {±1}. The constant K denotes the maximum
number of features that can be deleted for any given point x.
When training the classifier, the hinge loss

∑
t
[1 − ytw.xt ]+

is intended to be utilized to measure the objective function
to maximize [27]. The classifier may develop resistance to
random feature value set to zero, or to test-time feature
deletion from the input vectors. Due to the possibility of
deleting up to K features from each data vector, a classifier
must be developed that minimizes the worst-case hinge loss.
Equation 7 provides the worst-case hinge loss for example t
in this situation.

hwc (w, ytxt) = max
[
1 − ytw.

(
x◦
t (1 − αt)

)]
+

s.t. αt ∈ {0, 1} ,
∑
j

αtj = K (7)

The maximization in this case is across all permissible
assignments to αt , where αtj stands for the jth element of αt
that equals 1 if the jth feature of xt is removed (the symbol ◦

dot represents the element-wise multiplication operation).

FIGURE 2. Pre-training and fine-tuning training mechanism of large
language model.

Shortcut learning in the context of Large LanguageModels
(LLMs) has become a focal point of investigation due to its
potential to impact the reliability and generalization capabil-
ities of these models. The problem of learning shortcuts in
Large Language models is driven by a variety of factors in
the training process as illustrated in Fig. 2. This literature
review seeks to dissect and analyze these factors, shedding
light on the complexities of shortcut learning in LLMs. Spe-
cial emphasis is placed on two critical dimensions: dataset
biases during training, and the robustness challenges faced
by LLMs.

A. DATASET BIASES: TRAINING IMBALANCED DATASETS
The presence of annotation artifacts and collection artifacts
in training data can contribute to shortcut learning in large
languagemodels. Annotation artifacts refer to biases or errors
introduced during the data labeling or annotation process,
while col-lection artifacts are biases introduced due to the
specific way data is collected or sampled. Large language
models have the potential to pick up biases from a variety of
textual sources, including biased or unreliable material from
the web. This can lead to the presence of collection artifacts
in the training data. When multiple crowd workers are used to
annotate data, biases, errors, or consistency issues may occur.
These issues are known as annotation artifacts.

The studies revealed how LLMs take advantage of annota-
tion artifacts in datasets to achieve high accuracy even when
the sentence is not understood [35]. The use of heuristics
by annotators to quickly and effectively create hypotheses
could be one justification for the emergence and compara-
tive reliability of such dataset artifacts [36]. These artifacts
can be unintentional, resulting from varying interpretations,
subjective judgments, or inherent biases of the annotators.
Annotation artifacts can harm the reliability and accuracy
of labeled data used to train large language models. These
biases may manifest in several ways, such as the use of biased
phrases, the underrepresentation of particular demographics
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or viewpoints, or the spread of stereotypes. Language biases
need to be quantified and understood since they can serve
to support the psychological status of certain demographic
groups [37].

Furthermore, it has been shown that supervised linguistic
interpretation models depend substantially on dataset arti-
facts, specifically the inclination of some words to function
as prototype hypernyms [38]. The article highlights how
modern visual question-and-answer systems take advantage
of annotation biases in the dataset [39]. It was revealed that
sophisticated models for referencing expression identifica-
tion operate well even in the absence of text input [40]. These
results are consistent with prior studies and strongly imply
that supervised models will make use of data shortcuts to
manipulate the benchmark if any exist [41].
The authors demonstrate that even when two phrases have

highly different meanings, such as ‘‘The famous and snobbish
cat isn’t nastier than the dog in a white dress and glasses’’
and ‘‘The dog in a white dress and glasses isn’t nastier than
the famous and snobbish cat’’, for sentences with significant
word overlap, models can still be employed to predict the
entailment relation [42] which leads to overlap bias. Para-
phrase identification has also had similar failures. A dataset
with a substantial lexical overlap of paraphrase and non-
paraphrase pairs has been created. Simple BOW models are
poor at capturing non-local contextual information, as shown
by their inability to learn from such training datasets [43].
In numerous contexts over several decades, gender bias in
language has been investigated [17].
A new NLI test set was developed to demonstrate the

shortcomings of recent models in conclusions that require
lexical and contextual knowledge. The modern NLI systems
have a limited capacity for generalization and frequently miss
out on simple inferences that require lexical and contextual
knowledge [44]. The goal of typical de-biasing techniques is
to eliminate biased features from the learned representation.
However, biased features in textual data frequentlymix super-
ficial cues with useful semantic information, so eliminating
them might have a significant negative impact on forecasting
accuracy [45]. Nevertheless, we are certain that the bias won’t
affect prediction, the research demonstrates the inadequacy
of current bias reduction techniques [46]. Some methods
use ‘‘hard’’ examples to account for category shifts given
biased features that cannot be accurately predicted using only
biased features, as op-posed to de-biasing the data represen-
tation [47].
It has long been understood that training dataset biases

provide a challenge for machine learning algorithms. Even
‘‘big data’’ have a high size and range exhibit biases, therefore
many enormous real-life datasets typically provide plenty of
shortcut opportunities. Even if eliminating bias is crucial,
finding techniques to stop models from exploiting well-
known biases may permit us to continue to utilize current
datasets and to update the methodologies as the knowledge
of the biases is wish to evade grows.

B. ROBUSTNESS ISSUES IN LLMS
Large language models (LLMs) can exhibit vulnerabilities
in terms of robustness, including sensitivity to input pertur-
bations and susceptibility to adversarial attacks. LLMs can
be highly sensitive to minor changes or perturbations in the
input, resulting in significant variations in their outputs. The
authors gave a neural machine translation (NMT) example
where a single character change in the input caused the model
to provide a worse translation [48]. Translation Quality (TQ)
is given as a metric for measuring quality, such as BLEU [49].
And robustness is measured with TQ as given in Equation 8.
Suppose an NMT model M was to translate an input x to
y′ and its perturbed version xδ to y′δ , the translation quality
(TQ) on these datasets would be evaluated in comparison
to reference translations y : TQ

(
y′, y

)
and TQ

(
y′δ, y

)
and

robustness is defined as follows in (8).

ROBUST (M | x, y, δ) =
TQ

(
y′δ, y

)
TQ (y′, y)

(8)

Using the dataset (x, y) ,ROBUST (M | x, y, δ) comes less
than 1 indicates that the model M ′s translation qual-
ity degrades in the presence of perturbation, whereas
ROBUST (M | x, y, δ) = 1 shows that the model M is robust
to perturbation δ.

The robustness issue in LLMs has been investigated con-
cerning adversarial attacks, where purposely crafted input
examples are used to manipulate the model’s behavior,
resulting in inaccurate or unexpected outputs. The authors
specifically focus on evaluating reading comprehension
systems, including LLM-based models, using adversarial
instances that demonstrate the models’ sensitivity to even
minor changes in input [31]. They highlight that small pertur-
bations can significantly alter themeaning of a document, and
despite attempts to enhance robustness through adversarial
training, improvements are not observed. This emphasizes
the resilience and diversity of adversarial examples [50].
Additionally, to generate adversarial samples that deceive
well-trained sentiment analysis and textual entailment mod-
els, a black-box population-based optimization approach is
employed, which ensures the creation of semantically and
syntactically similar adversarial instances. To quantitatively
assess the vulnerability of neural networks to adversarial
attacks, the authors introduced a robustness score [51]. They
also presented an evaluation framework that encompasses
both white-box and black-box attack scenarios, providing a
comprehensive assessment of the network’s resilience.

The authors provide evidence that by emphasizing
term/phrase level matching rather than compositionality
learning, NLI models can attain a high level of accuracy.
This approach has the potential to alleviate the brittleness
commonly observed in LLMs, enhancing their robustness
and performance [52]. By changing the MNLI development
set, the authors created datasets that demonstrate bias [53].
To ensure the uniformity of the input text distribution,
it [54] additionally mines new crowds out of the existing
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MNLI dataset in their evaluation in addition to using the
datasets from the existing study [53]. Data augmentation and
enhancement techniques were used to mitigate bias in the
dataset. However, the authors found that despite these efforts,
the approach was not sufficient to eliminate model bias.
To ensure reliable and consistent performance in real-world
circumstances, it is essential to comprehend and mitigate
these difficulties. The following section discusses the origin
of dataset bias followed by sections on detection methods and
mitigation strategies of dataset bias to avoid shortcut learning.

IV. DATASET-BIAS DETECTION FOR LANGUAGE MODELS
In recent years, numerous metrics have been developed to
measure bias in language models. There are two types of
bias measures, based on the extent that the language model
has been modified for downstream tasks: intrinsic and extrin-
sic measures [55], [56]. The earlier, which relies on the
Masked Language Model (MLM), assesses the bias present
in pre-trained language models through several methods for
estimating the probability of sensitive features. The likeli-
hood of true as well as false positives is then calculated to see
how bias spreads in downstream tasks. Next, this possible bias
is removed for the downstream task by employing consistent
regularisation to differentiate between biased and unbiased
sample illustrations or probability distributions [57]. There
has been little research into how bias influences the effi-
ciency of pre-trained language models (PLMs), although
PLM biases have been removed and decreased in numerous
research, a field where bias is pervasive. How the correspond-
ing bias changes as PLMs are trained andmodified in the field
is unknown. Furthermore, there is still scope for research into
how to reduce the bias in PLMs. Some techniques can help
detect bias in the dataset for LLMs.

•Bias in NLP systems can be introduced by training data,
resources, pre-trained models such as word embeddings, and
algorithms, which might result in predictions that are skewed
towards one gender or another. The semantic meanings of
words are captured by word embeddings, which are numer-
ical representations of words. Any biases in the data can be
found by looking at the word embeddings in the training set.
For instance, the languagemodel may be biased if some terms
are more frequently linked with one demographic group than
another. In addition to proposing amethod for debiasing word
embeddings, the authors suggested the idea of employing
word embedding analysis to identify bias in LLMs [17].
A technique was used for quantifying stereotype bias in word
embeddings and how it might be applied to reduce bias in
LLMs [58].

•Biases in the emotional tone of the training data can be
found through sentiment analysis. This entails examining the
text data sentiments in the training dataset, such as positive
or negative sentiment toward particular demographic groups
and can assist in locating any causes of bias. Analyzing
demographic disparities entails evaluating how well the lan-
guage model performs for various demographic groups. This

can reveal any performance gaps or a bias in the model’s
predictions in favor of particular groups [59].

•In counterfactual analysis, biased sources are removed
from the training data. This may entail producing artificial
data to represent various demographic groups or altering
existing data to correct for biases. The model can be retrained
using the updated data and then tested to see if bias has been
decreased. Indirect bias in LLMs, which can happen when
specific racial or ethnic groups are overrepresented in the
training data, was addressed in the research [60].

•The fairness of the language model’s predictions for var-
ious demographic groups can be evaluated using fairness
metrics. A fairness indicator, for instance, can quantify the
percentage of accurate forecasts for various demographic
groups and reveal any bias or discrepancies in the model’s
predictions. According to the study, a fairness indicator
dubbed ‘‘disparate mistreatment’’ can be used to assess how
fair LLMs are to certain demographic groups [61].

Current research on gender bias in NLP has concentrated
on quantifying bias using psychological testing, performance
variations between genders for different tasks, and the geom-
etry of vector spaces. The Implicit Association Test (IAT) is
a tool used in psychology to assess unconscious gender bias
in people. It measures how quickly and accurately people
categorize words as belonging to two ideas that are similar or
dis-similar [5]. The authors used the Word Embedding Asso-
ciation Test (WEAT) to quantify bias in word embeddings
utilizing the IAT’s central idea of determining gender bias
through differences in the strength of concept association [5].
Several bias metrics have since been created, including

the relational inner product association (RIPA) [62], mean
average cosine similarity (MAC) [63], relative negative norm
distance (RND) [64], relative negative sentiment bias (RNSB)
[65], and a kNN-based metric [46]. Recent Language Models
have made these metrics ineffective or require modifica-
tion to work with state-of-art word embeddings. To detect
bias in recent context-aware language models, in extrinsic
approaches, bias detection algorithms analyze the perfor-
mance difference for terms related to two separate target
groups in downstream tasks like text classification [56]. The
study focuses on identifying a bias subspace inside intrin-
sic bias detection methods, which examines the influence
of the context and modifies direct bias to work for ELMo
representations of occupation terms [66]. It also monitors a
two-dimensional gender subspace, where bias is visualized
by projecting ELMo embeddings of occupation terms [67].

The methods for detecting intrinsic bias make use of sev-
eral word association tests and can be further separated into
LM (language models) and WEAT-based (word embedding
association test ) techniques. The WEAT is a statistical test
based on data and results from the IAT. The authors agree
with the existence of human biases in GloVe and Word2Vec
embeddings that were discovered during IAT tests. Second,
WEAT-based tests let us compare bias in language mod-
els based purely on embeddings and predictions. Finally,
WEAT-based tests, which have received the largest research

VOLUME 12, 2024 26189



V. Dogra et al.: Shortcut Learning Explanations for Deep NLP: A Survey on Dataset Biases

contributions, need to be incorporated. It calculates the dis-
tances between word representations in sets of target and
attribute words. The strategies for identifying and reducing
bias in machine learning models, including LLMs, were sur-
veyed in recent research studies [59]. However, it becomes
essential to examine several methods to mitigate dataset bias
in Language Models (LLMs).

V. STRATEGIES FOR MITIGATING DATASET BIAS IN
LANGUAGE MODELS
Especially in applications that have practical implications,
such as natural language processing (NLP) for healthcare,
education, or finance, mitigating dataset bias is crucial while
developing LLMs. It is crucial to properly assess the training
data and make sure that it is representative of the target
distribution to mitigate the negative impacts of dataset bias
on shortcut learning in language models. Different strategies
and techniques are used to mitigate the effects of bias in the
training data while minimizing dataset bias in LLMs. The
objective is to create a more reliable and unbiased LLM that
can delivermore accurate and equitable predictions or outputs
across various demographic groups.

Recent research has offered a variety of countermeasures
to language model shortcut learning caused by dataset bias:

•By performing various transformations or adjustments
on the initial dataset, data augmentation includes producing
extra training data. Enhancing the diversity of the training
data and ensuring that the model is exposed to a larger range
of input patterns, can aid in the reduction of bias. The authors
propose a method called ‘‘back-translation’’ that generates
augmented data by translating sentences into a different lan-
guage and then back to the original language on the IMDb
text classification dataset which improves the generalization
performance of models and reduces biases [68].

•By using information from a relevant source domain,
domain adaptation strategies seek to enhance the effective-
ness of a model on a target domain. Enabling the model to
generalize to new domains and input patterns, can help to
reduce the impacts of bias. The study explores such tech-
niques as domain adversarial training and self-training to
enable models to generalize to new domains and reduce the
impact of bias [69].

•Regularization approaches can aid in lowering a model’s
sensitivity to erratic or pointless input elements. Regularisa-
tion can assist in preventing the model from overfitting to
biased input patterns by penalizing excessively complex or
specific patterns in the training data. The study investigates
the effects of techniques such as dropout, weight decay,
and input noise injection on improving model robustness by
penalizing the influence of erratic or irrelevant input ele-
ments. It explores the Meta-learning method that learns to
weight training samples based on gradient directions [70].

•To make sure that the model generates output that is fair
and unbiased concerning delicate traits like race or gender,
fairness limits might be included in the training process.
The research shows that it is possible to reduce bias while

keeping critical contextual information for high-fidelity text
generation [71].

•Bias can be reduced by selecting the training data care-
fully. This can entail selecting samples from a wider range
of sources or meticulously selecting the dataset to guarantee
that it accurately reflects the target distribution. The authors
provide a strategy for gathering training data from a variety
of sources, assuring a more diverse representation of insights
and lowering the possibility of bias in the final models [72].

Several studies follow the above-mentioned approaches in
different applications of natural language processing to avoid
dataset biases. The study proposes to use adversarial learning
to reduce undesired biases in machine learning models [73]
and it explores that a neural network’s latent representation
can be modified using an adversarial training technique to
exclude information about the sensitive attribute. The authors
emphasize that biases existing in the training data might
be amplified and perpetuated by machine learning models,
including LLMs. The debiasing model is trained to identify
and eliminate the bias signals that are present in the input data,
while the classifier model is trained on the original dataset
to carry out the classification task. To reduce the classifier’s
capacity to predict the biased attribute, the debiasing model
is trained as an adversary to the classifier.

The authors demonstrate that the performance of text clas-
sification algorithms can be significantly impacted by dataset
biases, such as label imbalance or skewed data distribu-
tions, the authors point out. Biases in the data can produce
biased model predictions and have a detrimental effect on
the model’s overall efficacy [33]. The authors suggest an
approach termed ‘‘instance weighting with majority class
correction’’ (IW-MCC), which modifies the weight of each
training instance based on its class distribution. To balance the
influence of majority and minority classes, they specifically
provide a strategy for modifying the instance weights in the
training data. The following section compares different bias
measures for shortcut learning in language models.

VI. COMPARATIVE ANALYSIS OF BIAS MEASURES FOR
SHORTCUT LEARNING IN LARGE LANGUAGE MODELS
Machine learning uses data to create models that can evaluate
the categories and attributes of new data. However, training
data often includes biases in areas that we would prefer not
to use for decision-making. Machine learning creates models
that are accurate to training data, which might lead to the
perpetuation of these unwanted biases. While the ability to
generate coherent text is becoming more and more useful,
it also encourages models to internalize social biases found in
training corpora. Thus, there has been a lot of research interest
in examining the social impact and fairness of text produced
using language models [74]. A range of cultural connec-
tions and unfavorable social biases can be detected by NLP
algorithms. Numerous NLP tasks showed comprehensive
imbalances, including gender biases in word embedding [58]
and [67], biases in sentiment analysis [74], and linguistic
generational biases due to demographics [65].
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TABLE 1. NLP subjects and bias measures. In the ideal scenario, we would be able to create a model
that accurately captures the generalizations from the data that
are required for completing a task but does not discriminate
in a manner that the models deem unjust. Several useful
measurements for fairness have been defined in the work of
training machine learning systems to output fair decisions:
Conditional Demographic Parity, Counterfactual Fairness,
Equalized Odds, and more. The context of adversarial debi-
asing is used to investigate these fairness measures [73].
In another study, counterfactual data augmentation was sug-
gested as a solution to occupation-specific gender biases,
and it was discovered that it can significantly better main-
tain model performance than debiasing word embeddings,
notably in language modeling [75]. There are some points
for comparative analysis of mitigating strategies to deal
with shortcut learning in large language models by different
authors as shown in Table 1.

VII. CONCLUSION AND FUTURE DIRECTION
It is concluded that dataset bias can have a considerable
impact on the performance of language models, especially
when it comes to shortcut learning. It is mentioned that
when a language model learns to rely on overrepresented
input patterns or features in the training data, it may lead
to poor generalization to new inputs, particularly those that
do not correspond to the biased patterns. There are several
pieces of literature discussed to reduce the effects of dataset
bias on shortcut learning, it was highlighted that the training
data has to be checked carefully and appropriate mitiga-
tion approaches have to be used such as data augmentation,
domain adaption, model regularization, data selection, and
fairness constraints. In situationswhere shortcut learningmay
be particularly harmful, such as in critical applications like
healthcare, finance, and law enforcement, it is possible to
mitigate the effects of dataset bias and increase the accuracy
and fairness of language models by doing this. Due to dataset
bias in LLMs, the review on shortcut learning was necessary
to focus on existing research that is generating more effective
mitigation strategies that can handle the problems with bias
and shortcut learning in a range of contexts.

Some possible research directions could deal with the
research questions stated in Section I, reduce the effect of
dataset bias on shortcut learning in LLMs, and enhance the
accuracy and fairness of language models in several applica-
tions through the following strategies.

A. DATA AUGMENTATION METHODS
It is possible to reduce the impact of dataset biases on shortcut
learning in LLMs by developing more advanced data aug-
mentation techniques that produce synthetic training data that
simulate the distribution of real-world inputs. The models can
be exposed to a wider range of situations by supplementing
the training data with synthetic instances that capture the
diversity and complexity of real-world inputs, which reduces
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their reliance on shortcuts generated from biased or limited
training data. The models can generalize more effectively
and counteract the negative effects of dataset biases when
using these enhanced data, which can give a more accurate
representation of the underlying input distribution. To enable
the models to learn robust representations and prevent short-
cut learning based just on biases or surface-level patterns,
it is necessary to produce augmented data that includes the
variations, nuances, and unusual situations present in the real-
world inputs.

In this study, EDA (Easy Data Augmentation) [82],
a straightforward yet efficient data augmentation technique
for text classification tasks, is introduced. To create aug-
mented data, EDA uses four different text transformations:
synonym replacement, random insertion, random swap, and
random deletion. This successfully expands the size and
diversity of the training set. Data augmentation for low-
resource neural machine translation is the primary focus
of other research [83]. It investigates several augmentation
methods, including back-translation, which creates fictitious
source-target sentence pairs by applying a reverse transla-
tion model, thereby enhancing the training data and better
representing the target distribution. Additionally, the authors
offer a data augmentation technique created especially for
BERT-based text classification models [84]. It suggests sev-
eral augmentation methods, including synonym substitution,
random insertion, random swapping, and random deletion,
to produce varied training examples that enhance model per-
formance and reduce shortcut learning.

B. REGULARIZATION METHODS
It is possible to reduce the impact of dataset biases on
shortcut learning in LLMs by improving model regular-
ization techniques to prevent biased patterns from being
overfitted without sacrificing precision. Researchers started
hoping to encourage fair and robust learning while keeping
high precision by incorporating regularization approaches
that specifically discourage the models from depending on
false correlation and biased patterns. To reduce the effects
of dataset biases, the authors suggest a fairness regulariza-
tion strategy that penalizes models for producing predictions
based on protected and biased features [85]. Furthermore,
a framework for classification that is fairness-aware and
uses regularization methods to enforce fairness requirements
is proposed. The strategy tries to reduce biases and avoid
overfitting biased patterns by introducing fairness restrictions
during model training [70].

C. 7.3. EXPLAINABLE AI TOOLS
An important research direction to reduce dataset bias and
accelerate learning in LLMs is the creation of explainable
AI tools to aid in identifying and diagnosing bias in lan-
guage models and devising efficient mitigation techniques.
These techniquesmay help academics and practitioners better
understand and address bias-related problems by supplying

insights into the decision-making process of the model and
locating potential sources of bias. To identify and diag-
nose shortcut learning in transformer-based languagemodels,
an explainable AI tool called ‘‘Probing Learning Explainers’’
(PROLEX) is designed [86]. Researchers can find and exam-
ine the model’s shortcuts through PROLEX’s fine-grained
explanations of model predictions. Based on the knowl-
edge gathered from the explainable tool, it also suggests
methods for reducing shortcut learning. The ‘‘DIAG’’ diag-
nostic framework is also introduced, which makes it easier
to recognize and measure shortcut learning. It offers insight
into creating stronger regularization approaches to mitigate
the shortcomings and difficulties related to shortcut learn-
ing [87].
These future directions highlight the significance of dif-

ferent approaches in uncovering and diagnosing bias in
language models and designing effective mitigation mech-
anisms. By using these techniques, researchers can gain a
better understanding of shortcut learning, identify biases, and
develop strategies to reduce dataset bias and improve the
overall fairness and accuracy of LLMs.
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