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ABSTRACT Tuberculosis (TB), primarily affecting the lungs, is caused by the bacterium Mycobacterium
tuberculosis and poses a significant health risk. Detecting acid-fast bacilli (AFB) in stained samples is
critical for TB diagnosis. Whole Slide (WS) Imaging allows for digitally examining these stained samples.
However, current deep-learning approaches to analyzing large-sizedwhole slide images (WSIs) often employ
patch-wise analysis, potentially missing the complex spatial patterns observed in the granuloma essential for
accurate TB classification. To address this limitation, we propose an approach that models cell characteristics
and interactions as a graph, capturing both cell-level information and the overall tissue micro-architecture.
This method differs from the strategies in related cell graph-based works that rely on edge thresholds based
on sparsity/density in cell graph construction, emphasizing a biologically informed threshold determination
instead. We introduce a cell graph-based jumping knowledge neural network (CG-JKNN) that operates on
the cell graphs where the edge thresholds are selected based on the length of themycobacteria’s cords and the
activated macrophage nucleus’s size to reflect the actual biological interactions observed in the tissue. The
primary process involves training a Convolutional Neural Network (CNN) to segment AFBs andmacrophage
nuclei, followed by converting large (42831*41159 pixels) lung histology images into cell graphs where an
activated macrophage nucleus/AFB represents each node within the graph and their interactions are denoted
as edges. To enhance the interpretability of our model, we employ Integrated Gradients and Shapely Additive
Explanations (SHAP). Our analysis incorporated a combination of 33 graph metrics and 20 cell morphology
features. In terms of traditional machine learning models, Extreme Gradient Boosting (XGBoost) was the
best performer, achieving an F1 score of 0.9813 and an Area under the Precision-Recall Curve (AUPRC)
of 0.9848 on the test set. Among graph-based models, our CG-JKNN was the top performer, attaining an
F1 score of 0.9549 and an AUPRC of 0.9846 on the held-out test set. The integration of graph-based and
morphological features proved highly effective, with CG-JKNN and XGBoost showing promising results
in classifying instances into AFB and activated macrophage nucleus. The features identified as significant
by our models closely align with the criteria used by pathologists in practice, highlighting the clinical
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applicability of our approach. Future work will explore knowledge distillation techniques and graph-level
classification into distinct TB progression categories.

INDEX TERMS Acid-fast bacilli, cell graphs, convolutional neural network, granuloma, jumping knowledge
neural network, pulmonary tuberculosis, whole slide image.

A. ABBREVIATIONS AND ACRONYMS
The abbreviations and acronyms used throughout the paper
are tabulated in the Table 1.

I. INTRODUCTION
Tuberculosis (TB) is a contagious disease that is a significant
cause of ill health and one of the leading causes of death
worldwide. In 2022, it was diagnosed in 10.6 million human
patients and resulted in 1.6 million deaths [1]. The infectious
bacterium is the primary cause of pulmonary tuberculosis,
which usually affects only the lungs after an airborne
infection. Granulomas in the lung tissue are a defining feature
of pulmonary TB in human and experimental animal models.
The critical role of detecting acid-fast bacilli (AFB) in stained
samples for TB diagnosis is a significant step in tuberculosis
identification. WSI enables the digital examination of stained
samples and allows for the analysis of tissues at amuch higher
resolution.

For many years, research on inbred laboratory mice has
been instrumental in understanding the host reactions to
Mycobacterium tuberculosis (M. tb), governed by individual
cell types and genes. However, recently, researchers have
focused on the introduction of genetically diverse animal
models to pinpoint factors influencing lung damage from
M.tb in immune-adequate hosts and the adoption of novel
techniques to discover biomarkers in line with the World
Health Organization’s (WHO) Target Product Profiles [2].
A new population of mice called Diversity Outbred (DO)
mice, which has a level of genetic diversity comparable to
that of humans is used in this study.

Currently, there are few known [3] automated algo-
rithms that can identify specific, isolated cells within TB
granulomas, such as specific AFB or specific activated
macrophage nucleus. Several methods are in practice for
TB diagnosis. These range from plain microscopic smears
like Ziehl-Neelsen (ZN) stain to fluorescence smears such
as auramine O and auramine-rhodamine stain. Molecular
tests include transcription-mediated amplification, strand-
displacement amplification, conventional PCR, and Xpert
MTB/RIF. Other techniques include mycobacterial culture,
drug susceptibility tests, histopathologic examinations, and
immunologic tests like the tuberculin skin test (TST) and
interferon-gamma releasing assay (IGRA) [4]. The ZN
stained histopathological examination, recognized as the
standard approach, is commonly adopted for diagnosing
pulmonary TB because of its cost-effectiveness [5].
In digital pathology, deep learning techniques have been

utilized to analyze WSI to predict lung and prostate cancer
diagnoses and detect breast cancer metastases [6]. [7].

WSIs present a unique computational challenge due to their
immense size, often exceeding one gigapixel. The predomi-
nant approach in deep learning forWSIs involves extracting a
limited number of patches, typically ranging from 32× 32 to
224*224, to manage the high dimensionality [8], [9], [10],
[11], [12]. This selective input method is akin to manual
feature selection and restricts the analysis to a fraction of
the available data. Existing patch-based methods of WSI
suffer from a trade-off between each image patch’s resolution
and the available context. Working at higher resolutions
enables the capture of finer cellular details, but it fails to
capture the global tissue microenvironment. On the other
hand, working at lower resolutions hinders access to cellular
properties. Even if we could employ larger convolutional
kernels to build Convolutional Neural Networks (CNNs)
that handle larger images, the computational complexity of
this operation would increase quadratically with the kernel
size [13]. Another method known as a ‘‘bag of images’’
(a form of multi-instance learning) involves aggregating
patch representations using autoregressive or attention-
based methods to create a complete slide representation,
disregarding regions outside of the tissue [14], [15], [16],
[17]. However, they overlook crucial spatial relationships
between patches by focusing on aggregated local features.

An emerging solution to fully leverage the rich information
within WSIs is using cell graph representations that map
the granuloma into a graph. However, existing methodolo-
gies [18], [19] for constructing cell graphs employ edge
thresholding techniques, which can inadvertently discard
vital biological information. This oversight may result in
losing subtle yet crucial insights by producing overly sparse
or dense graphs. Furthermore, the black-box nature of these
models adds to the challenge by limiting interpretability,
a critical aspect for domain experts who depend on transpar-
ent and actionable findings. Additionally, current approaches
tend to simplify spatial interactions, ignoring the complexity
of cellular interplay and thus compromising the predictive
accuracy of the models.

The granuloma cell distribution is not random; instead,
it is related to the underlying functional state. Cell graphs
use graph features to mimic the interaction between different
cells and the granuloma. We postulate that intricate spatial
distribution information of the tissue environment is infor-
mative for predicting TB and that a graph neural network
(GNN) model can efficiently utilize the functional patterns
generated by cell graphs. A cell graph is constructed directly
from the WSI, where the nucleus of activated macrophage
and AFB are nodes, and graph edges are potential cellular
interactions. The interactions are shaped using the biological
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TABLE 1. Abbreviations and acronyms.

context to provide a more informed representation. Our study
introduces a Cell Graph JumpingKnowledgeNeural Network
(CG-JKNN) for node-level classification. To construct the
feature set, we extract local and global graph-level attributes
and neighborhood overlap features. Additionally, we derive
the morphological features from the WSI without employing
downsampling. Within our proposed graph model, we use
the ideas of ‘jumping knowledge’ [20] from GraphSAGE
layers. It gathers information from multiple network layers,
not just the last one, allowing it to capture vital insights
about each node. This jumping knowledge is then enhanced
with GATv2’s attention mechanism, ensuring that the model
pays the right amount of attention to the most informative
nodes. We trained a set of ML algorithms, such as Random
Forest [21], XGBoost [22], LightGBM [23], and Extra
Trees [24], using our feature sets to assess their efficacy.
Our proposed graph model’s performance was benchmarked
against other graph models, including GraphSAGE with
various aggregators [25] and Graph Attention Networks
(GATv2 and GATConv) [26]. To better understand the
decision-making process of our model, we utilized model
interpretation methods like Shapely values and Integrated
Gradients. The significance and logic behind these model
interpretations were later interpreted with the help of the
domain expert.

The major contributions of this work can be summarized
as follows:

• We introduced a novel approach to construct cell
graphs by incorporating interaction threshold values
based on the cord of mycobacterium and macrophage
nucleus radius. This method enabled the creation of
a biologically meaningful cell graph that accurately
represented cell interactions.

• To the best knowledge of the authors, this is the first
study to utilize local and global neighborhood overlap
features extracted from the cell graphs for TB detection.

• AGraph neural networkmodel with jumping knowledge
that leveraged cell graphs, cell morphology features,
and spatial information to achieve accurate node
classification.

• Conducted a thorough comparison of node classification
performance between our graph-based and traditional
machine learning (ML) models.

• Conducted four ablation studies, focusing on diverse
node aggregation techniques, combinations of features,
the impact of jumping knowledge, and the impact of
random weight initialization along with different data
subsets.

• Employed model interpretation techniques, including
Shapely additive explanation (SHAP) [27] and Inte-
grated Gradients [28], to gain insights into the model’s
decision-making process and collaborated closely with
domain experts to analyze the significance and rationale
behind these interpretations.

The rest of the paper is organized as follows: Section II
explains the related works. The methodology of the proposed
work is described in Section III. The evaluation criteria are
shown in Section IV. Section V represents the classification
results of the study. The results of model interpretation are
shown in Section VI. The results of the XGBoost with top K
features are presented under section VII. The ablation studies
are shown in the Section VIII. Section IX presents the work’s
conclusion and future directions.

II. RELATED WORKS
Characterization of TB in Animal Models: In tuberculosis
research, using mice and other rodents has provided helpful
information about the host’s susceptibility to M.tb infection.
This knowledge has been used to know the pathological
pathway of the bacteria once it infects a host and to
create perfect tools for diagnosing, treating, and preventing
tuberculosis [5]. Mice are commonly chosen as model
animals for several practical reasons. These include the ready
availability of immunological tools specifically designed
for mice, the presence of genetically modified mouse
strains that enable targeted research, and the convenient
attributes of mice, such as their compact size and cost-
effective maintenance in laboratory settings [29], [30],
[31], [32]. In the literature, works involved designing a
histological categorization system to assess the advancement
of pulmonary lesions in TB animal models. This system
involved evaluating granulomatus lesions and assigning
numerical categories based on the number of inflammatory
cells present and the pattern of their infiltration within the
tissue [33]. In [2], they infected DO mice with aerosolized
M.tb, resulting in a range of human-like phenotypes. After
examining gene expression and immune responses, they
measured 11 proteins in 482 mice (453 infected, 29 non-
infected). Two mouse lung biomarkers were chosen through
exhaustive testing of various classification algorithms and
biomarker combinations. Their effectiveness in diagnosing
active TB was tested on human samples from the Foundation
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for Innovative NewDiagnostics. Deep learning methods have
recently gained widespread adoption in this field, revolution-
izing the analysis of pulmonary tissues in the tuberculosis
mouse model. CNNs were utilized in [34] to classify seven
distinct pathology features found in pulmonary tissues of the
C3HeB/FeJ tuberculosis mouse model. In [35], the authors
employed Attention-based deep learning to identify and
quantify histopathology-based biomarkers in M.tb infected
DO mice lung tissue samples. Unlike human pathologists,
the model could accurately measure these features, making
it a powerful tool for statistical analysis. The authors in [36]
presented a novel approach that predicted specific gene
expression values using histopathological images, serving as
an intermediary step to detect ‘supersusceptible’ pulmonary
tuberculosis in DO mice subjected to experimental infection.
Cell Graphs: Cell graphs are a representation of the

interactions between cells in the tissue. They are built by
transforming tissue images into a graph structure, where each
node represents a single cell, and the connections between
nodes reflect possible interactions between cells. Adding
incorrect information to graph formulations could harm the
training process, highlighting the necessity for thorough
examination [37]. The cell graph can be analyzed using
various graph theoretical methods to extract information
about the organization and behavior of cells in the tissue.
This can be used to gain insights into cell behavior and aid
in understanding biological processes.

Graph edges are configured to denote the potential cellular
interactions. It is assumed that nearby cells are more
likely to interact with one another. Researchers frequently
construct graphs using Delaunay triangulation [38], [39] or
the K-nearest-neighbor (KNN) approach [18], [19], [40], [41]
to depict these interconnections. The Waxman model [42] is
another alternative strategy that uses exponential decay based
on Euclidean distance to represent cell interactions.

Based on the spatial proximity of the cells, edges are
formed between individual cells or cell clusters that create
a Delaunay triangle in the Delaunay triangulation technique.
On the other hand, the K-nearest-neighbor technique links
each cell or cluster to its K-nearest neighbors, highlighting
the local cell-cell relationships. Cell graphs have applications
in various biology and biomedical research tasks, from mod-
eling bone tissue to predicting cancer and estimating distant
metastasis. In [43], the authors combined the ECM formation
with the distribution of cells in hematoxylin and eosin (H&E)
stained histopathological images of bone tissue samples to
achieve bone tissue modeling and classification. Cell graphs
offer insights into the heterogeneity and complexity of the
tumor microenvironment (TME), aiding in cancer staging.
A hierarchical Transformer Graph Neural Network trained on
cell graphs was employed for the colorectal adenocarcinoma
grading task in [41], and a novel cell-graph convolutional
neural network was employed for colorectal cancer grading
in [40]. Graphs featuring 1000-3000 cells with 2000-10,000
links determined by spatial proximity enabled the distinction

between cancerous, healthy, and inflamed cells in brain
cancer tissue [44]. CGSignature, an AI-powered graph neural
network approach utilizing spatial TME patterns from mIHC
images to stage TME and digitally predict patient survival in
gastric cancer, was proposed in [45]. All the abovementioned
methods used simple spatial information, global graph-level
features, or morphology features for further classification
or clustering. In [37], the authors introduced a framework
combining the global image-level insights obtained from
CNNswith the cell-level spatial geometry captured byGNNs,
enhancing overall image representation. They chose the edge
threshold based on the tissue structure, image category,
and magnification of the WSI. Augmented cell graphs with
multilayer perceptron (MLP) were employed to classify brain
cancer samples in [46]. Cell clusters were utilized as nodes in
the cell cluster graph (CCG) constructed in [47]. Edges in the
CCG were established using a decaying probability function
with an exponent of -α. In [48], the authors introduced the
Feature Driven Local Cell Graph (FeDeG) for constructing
cell graphs from H&E stained tissue images and derived
predictive metrics to train a linear discriminant classifier to
predict lung cancer survival. A hierarchical cell-to-tissue-
graph (HACT) model was developed in [49] that, compared
to existing models, closely resembled pathological diagnostic
procedures and captured both cellular interactions and tissue
morphology for detecting breast cancer. By positioning nodes
in Euclidean space and linking them with edges where the
likelihood of a link exponentially decays with their Euclidean
distance, the Waxman model proposed in [42] created a cell
graph that reflected the incidence of cancer or disease-related
traits.
Graph Neural Network With Cell Graphs for Disease

Prediction/Classification:
There have been recent advancements in using GNN

to learn patterns from the TME [40]. The detailed spatial
distribution within the TME holds valuable information that
plays a vital role in predicting diseases. A GNN model can
understand the intricate patterns in cell graphs, turning them
into valuable insights for diagnosis and prognosis. In [45],
the authors constructed and compared four distinct GNN
model architectures: GCNSag, GCNTopK, GINSag, and
GINTopK to achieve accurate prediction of patient survival
in gastric cancer. Adaptive GraphSAGE was employed
in [40] to dynamically merge multi-scale graph features
to classify colorectal cancer cases. In [50], the authors
utilized a Graph Convolutional Network combined with
Jumping Knowledge and GraphSAGE to distinguish between
Dysplastic and normal intestinal glands. They explored
various message-passing neural network variants, contrasting
them with a traditional graph method using approximated
graph edit distance and a K-nearest neighbors classifier. The
authors in [41] introduced a hierarchical network to achieve
the grading of colorectal cancer images. It integrated the
GIN module with the Min-CutPool module for enhanced
graph differentiation. Additionally, a Transformer module
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was incorporated to capture long-distance dependencies.
The authors in [19] introduced the CGAT network for
precisely classifying pancreatic cancer and its precursors
from immunofluorescence histology images. It integrated
a unique self-attention mechanism at its output, enhancing
interactions among graph nodes. This mechanism assigned
weights to node embeddings, with higher-weighted nodes
playing a more significant role in model predictions.

In existing studies, cell graph construction lacked biologi-
cal context, often prioritizing proximity-based interactions or
striving for a balance between connected-only and complete
graphs. Additionally, they either focused on simple spatial
metrics such as the X and Y coordinates of the cell (center
of the cell) or the morphology of the cells. Furthermore, they
used the same settings across different models and did not
fine-tune the model’s hyperparameters for each feature set.
CT and X-Ray Imaging in Tuberculosis Diagnosis:
In [51], the authors proposed a 3D-ResNet framework

based on Computed Tomography (CT) Scan images to
differentiate nontuberculous mycobacterium lung disease
(NTM-LD) from mycobacterium tuberculosis lung disease
(MTB-LD). Using data from 301 NTM-LD and 804 MTB-
LD patients, the model achieved AUCs of 0.90, 0.88, and
0.86 in training, validation, and testing, respectively, and
0.78 on an external test set. The study concluded that 3D-
ResNet, significantly outperforming radiologists in detecting
lung abnormalities, was an effective rapid diagnostic tool for
NTM-LD and MTB-LD, offering the potential for improving
treatment strategies. In [52], they introduced Healthcare-
As-A-Service (HAAS), a novel cloud-based lung cancer
diagnosis service utilizing HAASNet, a CNN with a 96.07%
accuracy rate. Integrating cloud technology and the Internet
of Medical Things, HAAS offered accurate, globally acces-
sible lung cancer diagnostics, achieving precision, recall,
and F1-scores of 96.47%, 95.39%, and 94.81%, respectively.
In [53], the authors introduced a depth-enhanced 3D block-
based ResNet (depth-ResNet) for classifying the severity of
TB from CT pulmonary images, addressing challenges in
small datasets and localized abnormalities. The depth-ResNet
demonstrated superior performance with a 92.70% accuracy
in predicting TB severity scores, outperforming the standard
ResNet-50. It also effectively assessed high severity proba-
bilities, achieving average accuracies of 75.88% and 85.29%
using innovative probability-based severity measures.

LungNet, a novel hybrid deep-convolutional neural net-
work model that leveraged CT scans and medical IoT data to
diagnose lung cancer accurately, was proposed in [54]. With
its unique 22-layer CNN architecture, LungNet achieved a
high accuracy of 96.81% and a low false positive rate of
3.35%, efficiently classifying lung cancer into five classes
and further into sub-stages 1A, 1B, 2A, and 2B with 91.6%
accuracy. This advanced diagnostic capability positioned
LungNet as a significant advancement in automatic lung
cancer detection systems. In [55], a multiclass lung disease
classification using a fine-tuned CNN model was proposed

to identify ten different lung diseases from chest X-rays,
including COVID-19, Tuberculosis, and Pneumonia. Ini-
tially employing eight pre-trained models like VGG16 and
ResNet50, the VGG16 was then enhanced into LungNet22,
a customized model achieved by adding several layers to
the VGG16 model. This model achieved a notable accuracy
of 98.89%. This approach, validated through performance
metrics like ROC curves and AUC values, marked a
significant step in efficient, reliable lung disease diagnosis
using X-ray imaging. The works discussed here utilize CT
scan andX-ray images for diagnosing lung diseases. CT scans
are invaluable for identifying granulomas’ location, size, and
spread. However, CT scans and X-rays, while effective for
macroscopic analysis, do not allow for direct observation
of tissues at the cellular level, such as individual cells
or bacteria. This limitation is due to the nature of CT
imaging and X-rays, which are not designed for cellular-
level detail, unlike WSI, which offers rich microscopic
information.

The summary of the works that use cell graphs for disease
classification is tabulated in Table 2.

III. METHOD
The workflow of the proposed study is presented in figure 1.

A. DATASET
Eight-week-old female DO mice, sourced from The Jackson
Laboratory in Bar Harbor, ME, were accommodated in a
Biosafety Level 3 facility at the New England Regional
Biosafety Laboratory, part of Tufts University’s Cummings
School of Veterinary Medicine in North Grafton, MA. These
mice underwent an infection process, exposing them to
20-100 Colony Forming Units of M.tb Erdman, utilizing
the CH Technologies nose-only exposure technique, as cited
in prior studies [57], [58]. WSI was then generated from
these stained lung tissue samples for further analysis in our
proposed method.

For this work, we used 44 WSI with an average size
of 42831*41159 at 40X magnification. The cells in the
images are divided into AFB and the nucleus of activated
macrophage. The dataset was split into training, validation,
and test sets, with 34 WSI in the training and validation set
and 10 in the test set. Given that the focus of the study was
primarily on infected samples, only two were uninfected,
with the majority being infected. This resulted in more AFBs
than the nucleus of activated macrophages, leading to an
imbalanced dataset. Sample images from the dataset are
shown in figure 2.

B. DETECTION AND SEGMENTATION OF NUCLEUS OF
ACTIVATED MACROPHAGES AND AFB
The detection of M.tb, which stains positive using the
modified Ziehl-Neelsen method, plays a crucial role in
diagnosing tuberculosis. Activated macrophages are a vital
component of the immune response to infection. A two-layer

17168 VOLUME 12, 2024



V. Acharya et al.: Prediction of TB From Lung Tissue Images of Diversity Outbred Mice

TABLE 2. Related works.

FIGURE 1. Overall Workflow: (a). Specimen processing: Extract lung tissues from DO mice and stain them with Ziehl-Neelsen stain. (b). Detect cells,
construct cell graphs, and process them. (c). A total of 44 cases are considered (Images of mice in this figure are adapted from The Jackson Laboratory
(2023). Retrieved from https://www.jax.org/strain/009376). (d). Split of Data. (e). Overall Methodolog.

CNN was developed to detect these two types of cells
using Aiforia Cloud version 5.1.1 from Aiforia Technologies

in Helsinki, Finland. The main advantage of using this
platform is that the researchers can focus on data annotating
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FIGURE 2. Sample images. (A) and (B). TB infected. (C) and (D). Uninfecte.

and improving AI models’ performance without worry-
ing about fine-tuning hyperparameters. The model was
trained on WSI from experimental mouse tuberculosis
infections.

The training set consisted of 18 whole slide images
from the lungs of DO mice, C57BL/6J mice, and BALB/c
mice [59]. The first layer was trained to segment the tissue
in the WSI, while the second layer was trained to classify
three different types of objects within the segmented tissue
layer: individual AFB, clusters of AFBs, and nuclei of
activated macrophages. The training images were manually
annotated by a second-year veterinary student (Diana Choi,
DC) under the supervision of a board-certified veterinary
pathologist (Gillian Beamer, GB). The individual and cluster
of AFBs were recognized by their dark red color, small
size in longitudinal, oblique, or cross-sectional profiles,
and intracellular or extracellular location. The macrophage
nucleus was recognized by its relatively large size, ‘‘open-
faced’’ appearance, and abundant cytoplasm. AFBs were
annotated using an object diameter of 5µm and the nucleus of
activatedmacrophage was annotated using an object diameter
of 10µm. In this two-layered training approach, the first layer
is designed to identify and remove non-relevant elements,
such as artifacts and white spaces, from the images. The
second layer is specifically trained to focus on distinguishing
and excluding histological features that are neither acid-fast
bacilli (AFBs) nor the nuclei of activated macrophages. The
model was tested on 160 WSI. The error rate was used as a
performance metric to evaluate the accuracy of the model’s
predictions. The algorithm successfully detected lung tissue,
the nucleus of activated macrophage, and AFBs with error
rates of 3.09%, 2.27 %, and 9.05% (when compared with
ground truth annotations). Figure 3 displays a heatmap of the
regions segmented, while Figure 4 illustrates an example of
a false positive result produced. In the rest of this article, the
term ‘nuclei’ is used to refer to the nucleus of an activated
macrophage.

FIGURE 3. (a) Green region indicates model detection of lung tissue from
a whole slide image. (b) The heat map shows activated macrophage
nuclei detected by the model. (c) The heat map shows AFB detected by
the model. The heat maps demonstrate the location and spatial
information of AFB and activated macrophage nuclei within lung tissue.

1) PROCESSING OF AFB AND NUCLEUS FOR
MORPHOLOGICAL FEATURE EXTRACTION
The OpenSlide library [60] facilitated direct access to the
high-resolution SVS files (WSI) without downsampling. The
AFB and nucleus of activated macrophage were extracted
with dimensions (40 × 40) centered around specific coor-
dinates in the input image provided by our model and
then converted to grayscale. The bounding box dimensions
were chosen based on the object detector size used in the
cell detection stage. A series of morphological operations,
including top-hat and black-hat transforms with structuring
elements of size (3,3), were applied to enhance the grayscale
image. A threshold value obtained using global Otsu’s
threshold was used to convert the image to binary. Post-
processing was considered in the proposed method to get
an accurate region of interest. Morphological opening and
erosion using an ellipse-shaped structuring element of size
(1,1) were performed to remove noise and imperfections from
the binary image [61].
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FIGURE 4. Verification of model training: example of a false negative
result. (A) A human annotation of 6 single AFBs (red open circles) and
1 normal nucleus (blue open circle) within the training region. (B) The AI
model detected 5 AFBs and one nucleus. The filled in circles indicate
successful detection, true positives. The red open circle indicates where
the model did not detect.

FIGURE 5. Upper Row: (A). Original Image. (B). Region of Granuloma with
AFB. (C). Single AFB at the location (pixel) (46200,12954)in the original
image. (D). Grayscale image. (E). Enhanced image. (F). Binary image
before post-processing. (G). AFB. Lower Row: (A). Original Image. (B).
Activated macrophage nucleus at the location (pixel) (25424,16909) in the
original image. (C). Grayscale image. (D). Enhanced image. (E). Image after
morphological operations. (F). Nucleus.

The hole-filling operation was performed as it helps
to complete regions that might have been missed during
the previous processing steps. The distance transform
was computed using ‘‘ndi.distance_transform_edt()’’. Peak
local maxima within this distance-transformed image were
detected using ‘‘peak_local_max().’’The identified peak
maxima were used to generate a marker image by applying
the ‘‘ndi.label()’’ [62] function, which assigns unique labels
to each detected maximum. Watershed segmentation was
then performed on the distance-transformed image using
the marker image as the input. This segmentation technique
effectively separated overlapping objects and defined their
clear boundaries. The processing quality was validated in
collaboration with a domain expert, who assessed the results
using a representative sample of images. The final image
with the region of interest was considered for morphological
feature extraction. The cell processing stages are shown in
Figure 5.

C. CONSTRUCTION OF THE CELL GRAPH
The threshold (edge threshold) for intercellular communica-
tion plays a pivotal role in cellular studies, and many studies
have been conducted to determine the effective distance
threshold for intercellular communication. The inputs from
pathologists can offer valuable insights for improving the
graph representation, ensuring it accurately reflects the
biological relationships between the cells [50].

Euclidean distance as a proximity measure is a com-
mon approach in image analysis. A threshold distance of
20 micrometers between cell-cell pairs was used in [45]. Any
cell-cell pairs closer than this distance would be connected
by an edge in the graph. A fixed distance was used in [40]
to assign an edge between two nuclei. Each node’s maximum
degreewas also set to k, the number of its k-nearest neighbors.
Graphs with three different edge thresholds, 60, 75, and
90µm, were constructed and tested to identify the suitable
threshold value in [63]. The threshold value 75µm resulted
in a densely connected graph and was finally opted. The
likelihood of nodes being connected decreased as a function
of the distance in [64]. The probability of two cells being
linked (i.e., being grown from the same parent cell) was
related to the distance between them. The closer the cells were
to each other, the more likely they were linked. A slightly
different approach was employed in [18] where a hierarchical
graph was formed by first identifying individual cells in
the breast tissue image, and a grid was used to divide the
image into smaller regions. The probability that each region
is a cluster (lobe) of cells was calculated by dividing the
number of cells in the region by the region’s size. A threshold
value was set, and regions with a probability more significant
than this threshold were considered clusters. In [65], the
threshold values were chosen based on nucleus-membrane
ratio and cell diameter. A 10-fold cross-validation approach
was employed to identify the threshold value between the
cells in the bone tissue modeling [43]. The threshold ranging
from 20 to 60 pixels with increments of 5 pixels was selected
that determined the sparsity or density of the resulting
graphs. Lower thresholds resulted in sparser graphs, and
higher thresholds resulted in denser graphs with more distant
nodes being connected [66]. In [37], the authors chose the
edge threshold based on the tissue structure, image category,
and magnification of the WSI. A dataset was developed to
forecast microanatomical tissue structures using cell graphs
derived from placenta histology whole slide images in [56].
The authors of this paper constructed the intersection graph
by combining two edge-building algorithms, KNN, and
Delaunay Triangulation, using a value of k=5. A cell graph
was generated in [42] using the Waxman model with edges
where the probability of a link exponentially decayed with
their Euclidean distance.

The cords of the M.tb infected cells are very long,
reaching a length of up to 150 micrometers after 72 hours of
infection [67]. Unlike the nucleus of activated macrophages,
which are typically spherical, AFBs exhibit a distinct shape.
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TABLE 3. Distance thresholds.

FIGURE 6. Blue nodes indicate nucleus of activated macrophage. Red
nodes denoted AFB. Black lines (edges) denote the interactions between
the nodes. (A). Cell graph of an uninfected sample. (B). Cell graph of an
infected sample.

This non-spherical morphology facilitates more significant
detection as the macrophages extend pseudopods to sense
their environment [68]. The position of the cells in the tissue
affected by M.tb determines which cells will interact with
each other. Cells can extend part of their body (pseudopods)
beyond their normal boundary (radius) to detect other cells
that are farther away, allowing the detection range to exceed
the standard limit of the cell’s radius [68].

We hypothesize that AFBs can interact with other AFBs
within 150 µm [67]. It is equivalent to 615 pixels in
the magnification of this study. The nucleus of activated
macrophages can interact among themselves and other AFBs
if they are at a distance of 200 times [68] their radius,
which comes up to 500 µm. It is equivalent to 2049 pixels
in the magnification of this study. These threshold values
have also been reviewed and approved by our domain expert.
As a result of these interactions, the cell graphs in our study
exhibited an average of 3.2k nodes per graph. This number
was comparable to the number of nodes per graph reported
in [40]. The adjacency matrix can be computed as follows:

Aij

{
1 if Distance(u, v) < d
0 otherwise.

Distance denotes Euclidean distance computing using the
equation 1. The coordinates (xu, yu) belongs to node ‘u’ and
the coordinates (xv, yv) belons to node ‘v’ in the image.

d(u, v) =

√
(xu − xv)2 + (yu − yv)2 (1)

The distance threshold values chosen are tabulated in the
table 3.

Figure 6, (A) shows the cell graph of an uninfected
case. (B) shows the cell graph of an infected case. The

density of cell interactions is observed to be higher in
cases of infection. This can be attributed to the presence of
granulomas in the infected lung tissues, which are absent in
uninfected lung tissue samples. This difference in the number
of cell interactions between the two cases can be used as a
diagnostic marker for infection or disease progression, and it
also provides insight into the underlying mechanisms of the
disease. Figure 7 presents the cell graphs overlaid on theWSI.

D. ARCHITECTURE OF CELL GRAPH NETWORK
A graph is defined asG = (V ,E), where V denotes the set of
nodes. Each node v is associated with a d-dimensional feature
vector xv ∈ Rd . Edges are denoted as E where eu,v = (u, v) ∈

E signifies the presence of an edge between nodes u and v.
The adjacency matrix A ∈ Rn×n represents the graph. Let
h(l)v ∈ Rd denote the hidden features of node v in the l-th layer
of a neural network. We initialize the input layer as h(0)v = xv,
meaning the initial hidden features in the network equal the
node features for the input layer.

In the proposed CG-JKNN, we use GraphSAGE to learn
the nodes’ hidden representation. Each GraphSAGE layer
processes the predefined aggregation function (in this case,
‘mean’ aggregation) to gather information from neighboring
nodes. The mean aggregation computes the average of
neighboring node representations. After processing through
each layer with mean aggregation, the model combines
the multi-level node representations by concatenating them.
The neighborhood aggregation step is written as eq. 2 and
combining step is demonstrated in eq. 3.

h(l)
N(v) = MEAN

({
h(l−1)
u , ∀u ∈ N (v)

})
(2)

where h(l)N (v) represents the aggregated representation of the

neighborhood N (v) for node v at layer l. h(l−1)
u represents

the representation of neighboring node u at the previous layer
(l − 1).

h(l)v = σ
(
W ·

[
h(l−1)
v , h(l)N(v)

])
(3)

where h(1)v represents the updated representation of node
v at layer l. h(l)N (v) represents the aggregated neighborhood
representation for node v at layer l, which was computed
in the neighborhood aggregation step. W represents a
learnable weight matrix that is applied to the concatenated
representations of h(l−1)

v and h(l)N (v).
The ‘‘jumping knowledge representation learning’’ was

introduced in [20]. This approach allows a model to
aggregate information from all hidden layers, not just the
final layer. This can lead to a more comprehensive node
representation that captures local and global graph structures.
The authors in [20] experimented with three aggregation
mechanisms: concatenation, max-pooling, and an LSTM-
attention mechanism.

We incorporate a concatenation-based jumping knowledge
mechanism into our network. Figure 8 depicts the overall
architecture, and Figure 9 illustrates the concept of the
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FIGURE 7. Typical cell graphs from (A) Uninfected Sample (B) Infected Sample.

jumping knowledge. Like typical neighborhood aggregation
networks, each layer expands the range of influence by
gathering information from neighborhoods in the previous
layer [20]. At the last layer, for each node, we select
all the intermediate representations from layers 1 to layer
l-1 (total ‘l’ layers) representations which ‘‘jump’’ to the
last layer. The total number of layers varies based on
the feature set. The final hidden representation of a node
is obtained by concatenating its hidden representations
from each GraphSAGE layer. Specifically, after each layer,
we store the intermediate node representations. At the end of
the network’s forward pass, these stored representations for a
specific node from all layers are concatenated to produce the
node’s comprehensive and final hidden representation. Eq 4
represents the concatenation. This aggregation mechanism
optimizes the weights to combine subgraph features in a
manner that is most suitable for the dataset as a whole rather
than being node-adaptive. We do not incorporate the max
readout operation [40], [41] used for graph-level classifica-
tion tasks, as our focus is on node-level classification. After
obtaining the hidden representation through concatenation,
these concatenated features are then fed into the GATv2
layer [69]. This layer further refines the node representations
by leveraging attention mechanisms.

h(Concatenated)v = Concatenate
[
h(1)
v , . . . ,h(l)v

]
(4)

As shown in eq. 5, for a node v and its neighboring node
u, the attention mechanism can be expressed to capture the
importance of node u to node v.

αvu = softmaxu
(
LeakyReLU

(
aT

[
Wh(Concatenated)v

∥Wh(Concatenated)u

]) )
(5)

Here, a is the attention mechanism’s weight vector, and
W is a weight matrix transforming the concatenated node
representations. The updated node representation is obtained

using eq.6.

h(GAT)
v = σ

 ∑
u⊂N (v)

αvuWh(Concatenated )
u

 (6)

where N (v) denotes the neighbors of node v, and σ is the
activation function. We use a rectified linear unit (ReLU) as
the activation function. We finally apply the softmax function
to the output to obtain the node-level predictions.
Over-Smoothing Problem: Over-smoothing has been con-

sistently identified as a significant challenge in the GNNs,
as reported in numerous works in the existing literature [40],
[70], [71], [72], [73], [74]. Over-smoothing occurs when
deep graph convolutional networks utilize too many layers,
causing nodes to lose their original input characteristics and
making training difficult.
Several techniques exist aimed at mitigating over-

smoothing issues in GNNs. Energetic Graph Neural
Networks introduce energy-based modeling [75], while
Graph DropConnect adds graph-specific dropout [76].
Graph-coupled oscillator Networks use non-linear oscil-

lators coupled through the graph to change GNN dynam-
ics [77]. Additionally, adding residual connections in
deep GNNs aids information flow and mitigates over-
smoothing [78]. The DropEdge approach employed in this
study addresses both issues by selectively removing edges
during training, enhancing model performance, and avoiding
over-smoothing. It also consistently leads to performance
improvements in various GCNs, whether they are shallow
or deep [79]. During each training epoch, the DropEdge
technique simulates edge dropout in the input graph by
randomly removing a proportion ‘p’ of edges from the
adjacency matrix [79]. ‘A_drop’ signifies the resulting
matrix, ‘A’ is the original matrix, and ‘A0’ is a primarily
empty matrix with some extra connections randomly chosen
from the initial set of connections represented by ‘E’.
‘Vp’ denotes the number of additional connections selected
randomly from ‘E’ to expand the sparse matrix ‘A0’. The
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FIGURE 8. Overview of the CG-JKNN.

FIGURE 9. Jumping knowledge architecture.

approach is as follows:

Adrop = A− A0 (7)

V is the total number of edges, and p is the dropping
rate. We conducted experiments using a range of probability
values, spanning from 0.1 to 0.9, and finally chose p = 0.1 for
our overall experiment. In the proposed work, we utilize the
edge index representation to represent the connections in the
graph.

E. FEATURE EXTRACTION
GNN is a deep learning model designed explicitly for
graph-structured data. It can effectively capture the complex
relationships between nodes in a graph and learn valuable
representations that can be used for various graph-related
tasks. Many research papers [18], [40], [43], [45], [50], [64]
in this domain have focused on using morphological features
or graph features or simple spatial information. In contrast,
our paper takes a unique approach by not only extracting a
wide range of graph-based features (including both local and
global neighborhood overlap metrics) but also incorporating
various morphological features. The neighborhood overlap
features prove valuable as they address the gap created

by the limitations of node and graph level features in
capturing relationships between neighboring nodes [80].
Table 4 and 5 list the features and descriptions. The features
are scaled using the standard scaler (due to the wide
variation between feature values) before training the graph-
based models. It helps to ensure that all features are on
a similar scale and can help reduce outliers’ impact [81].
There is an argument that handcrafted features are less
effective than learned features, such as CNN features,
and CNN-based methods can obtain more comprehensive
morphological information [41]. Given the limited size of
our dataset, we decided to utilize handcrafted morphology
features.

IV. EVALUATION CRITERIA
To evaluate the performance of the model, accuracy, AUPRC,
and F1-score are calculated for each set (training set,
validation set, and test set), respectively. F1-score represents
the harmonic mean of precision and recall. It is a valuable
metric for evaluating the performance of a model on
an imbalanced dataset. Accuracy measures how well a
model can predict the correct output. It is defined as the
number of accurate predictions the model makes divided
by the total number of predictions made. In this particular
scenario, it measures the model’s correctness in class label
identification as either the nucleus of activated macrophage
or AFB.

The F1-score is computed using the equation 8. The
accuracy is obtained using equation 9. AUPRC is particularly
well suited for datasets with class imbalances because it
thoroughly evaluates the trade-off between accuracy and
recall [82], [83]. In our study, the minority class (nucleus of
activated macrophage) is also of more interest as its detection
will help identify if the sample is infected/uninfected. The
computation is described in the equation 10. In this paper,
we have chosen to show the AUPRC achieved on the test
set, as it serves as an apt metric to evaluate our model’s
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TABLE 4. Graph features.

performance on an unseen imbalanced dataset.

F1score =
2

1
Recall +

1
Precision

(8)

Accuracy = (TP+ TN )/(TP+ TN + FP+ FN ) (9)

where TP denotes True positives and TN denotes True
Negatives.

AUPRC =

∫ 1

0
p(r)dr (10)

where p(r) is the precision at recall r.

A. EXPERIMENTAL SETUP
We implemented the models using the PyTorch frame-
work [84] and ran them on one NVIDIA A100 GPU.
Ensuring a systematic and fair comparison requires the
optimization of hyperparameters for every model and test
problem individually [85]. In contrast to prior literature [40],
[41], which utilized the same hyperparameters across all
models and feature sets, we performed hyperparameter
tuning individually for each of the morphology and graph
features across all models. However, we employed the Adam

optimizer for training all our models and trained them for
50 epochs. We set the batch size to 10. The Adam optimizer
is chosen because of its adjustable learning rates and
effectiveness in obtaining quicker convergence and stability
in several deep learning tasks. The Adam optimizer has also
been used in [37], [40], and [56], further demonstrating its
efficacy. Additionally, we employed the cross-entropy loss as
our objective function.

The hyperparameters for the GNN models are chosen
with the assistance of Optuna [86], a Python library for
hyperparameter optimization. We ran 100 trials to optimize
the model hyperparameters to achieve the highest F1 score
on the validation set.

In the architecture of our CG-JKNN model, the number
of GraphSAGE layers was carefully determined through
extensive hyperparameter tuning using Optuna. We explored
layer counts ranging from 1 to 10. While using morphology
and combined features, we employed 3 GraphSAGE layers.
This decision was based on maximizing the validation
F1 score. Specifically, when utilizing graph features, the
CG-JKNN comprised 4 GraphSAGE layers. Importantly,
we emphasize that the test set was not involved in this
decision-making process. All decisions regarding the number
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TABLE 5. Shape and texture features.

of GraphSAGE layers were based solely on the model’s
performance on the validation set, ensuring the integrity and
generalizability of our results.

The performance on the test set was then evaluated using
the best hyperparameters from these trials. Similarly, the
Hyperopt [87] was employed for hyperparameter tuning of
ML models.

V. RESULTS
A. DECISION ON NOT PRUNING CELL GRAPHS
The pruning of cell graphs in computational pathology
involves selectively removing certain elements, such as edges
or nodes, from the graph to simplify the structure and reduce
computational complexity. Typically, there are two primary
approaches to pruning:

• Edge threshold selection: In this approach, as proposed
in [18] and [43], the edge threshold is varied to
determine the optimal connectivity that balances graph
density and performance. It involves experimenting with
different threshold values and assessing their impact on
classification accuracy.

• Cell sampling techniques: Strategies such as random or
farthest point sampling are implemented to reduce the

number of cells/nodes in the graph as proposed in [40].
It assumes that certain cells carry redundant information
and that a representative subset can maintain overall
interpretability and accuracy.

In our study, we chose a specific edge threshold guided by
domain expertise and supported by relevant literature [67],
[68], mainly focusing on the cord of mycobacterium and
the macrophage nucleus radius. This decision was made
based on the recommendations of Dr. Gillian Beamer,
a veterinary pathologist and a research scientist specializing
in tuberculosis. Dr. Beamer emphasized that each AFB
and macrophage nucleus carries unique information, and
their connectivity is crucial to our analysis, making it
imperative to include all of them in our cell graphs. Given
the domain expert guidance and the unique nature of our
study’s focus on mycobacterium, we decided not to prune the
cell graphs through either of the approaches above. Pruning
the cell graphs for our study would lead to the loss of
valuable information that each cell contributes to, potentially
impacting the performance of our models.

B. COMPARISON WITH OTHER MODELS
To demonstrate the effectiveness of our proposed graph
model for node classification, we conducted a comparative
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analysis against the latest state-of-the-art techniques.
We trained various state-of-the-art graph models on this
dataset, including GraphSAGE with mean aggregator and
max aggregator, GATv2, and GATConv. In this work,
we employed the GraphSAGE-based model incorporating
the SAGEConv layer. This SageConv variant improves
upon the standard GraphSAGE by enhancing its expressive
power and information capture capabilities. It offers degree-
normalized aggregation skip connections for improved
training stability and computational efficiency. Subsequently,
we systematically compared the performance of these
benchmark models against our proposed model.

We also carried out experiments with ML models,
including Random Forest, XGBoost, LightGBM, and Extra
Trees. The ML models were used in two ways:

• Evaluation and Assessing Feature Set Efficacy: We used
Random Forest, XGBoost, LightGBM, and Extra Trees
to evaluate the feature sets derived from cell morphology
and graphs. These ML models were trained exclusively
on these feature sets without incorporating cell graph
structure, unlike our GNN models, which integrated the
cell graph structure with the features. The performance
of these ML models with our derived feature sets
was compared against that of our GNN models. This
approach helped us evaluate the effectiveness of these
features across different modeling techniques.

• Feature Agreement Analysis: We analyzed the agree-
ment in feature selection (as mentioned under the
section VI) between the traditional ML models and our
CG-JKNN model. This comparison was performed to
validate the relevance of the features identified by our
graph-based approach against the insights of domain
experts.

We could not evaluate the efficacy of our model using
the CRC/extended CRC dataset (for colorectal cancer) used
in [40] and [41] as our model is specifically designed
for node-level classification, rather than the graph-level
classification required by this dataset.

C. CLASSIFICATION RESULTS
The performance of theMLmodels with different feature sets
is tabulated in the table 6 and 7. These tables showcase the
evaluation metrics associated with the best split. ‘Best split’
refers to the specific combination of train-test-validation sets
that yielded the optimal results.

Figure 10 illustrates the AUPRC achieved by ML models
on the test set. The XGBoost model, when utilizing graph-
based features, achieved an F1 score of 0.9734 on the test
set. Random Forest achieved a test F1 score of 0.9586.
LightGBM, with a test F1 score of 0.937, also demonstrated
considerable effectiveness. Extra Trees showed a test F1 score
of 0.9025.

However, when only morphology features were used, the
F1 score attained by XGBoost was 0.829. Random Forest
achieved a test F1 score of 0.7901. LightGBM showed a

competitive performance with a test F1 score of 0.822. Extra
Trees obtained a test F1 score of 0.773. While this is the
lowest among the models chosen, it still represents a decent
level of performance. Feature scaling was omitted in our
approach for ML models, as these models are tree-based and
inherently robust to scaling [88]. In developing our GNN
models, we employed the Standard Scaler technique [81] for
feature scaling, as GNN models require scaled features to
ensure that each input feature contributes proportionately to
the model’s learning process [40].
Table 8 and 9 show the results of the graph-based models

averaged over three trials. Figure 11 illustrates the AUPRC
achieved by graph models on the test set. The results show
that the proposed CG-JKNN outperforms the other graph
models by achieving a test F1 score of 0.8713 by utilizing
morphology features and an F1 score of 0.9157 by using
the graph-based features. However, we also observe that the
graph-basedmodels, including CG-JKNN, do not outperform
the ML models, and we attribute this primarily to the limited
dataset size. Despite fine-tuning each model for various
feature sets, we notice that graph models typically require
larger datasets to learn effectively.

The introduction of the CG-JKNN model in our study
presents new avenues for potential research. The performance
of GNN models can be significantly enhanced through
knowledge distillation [88], [89]. This process could enable
the GNN models to require even fewer parameters than
XGBoost while delivering comparable performance. The
preliminary experiments we conducted that were aimed at
exploring the potential of knowledge distillation with CG-
JKNN as a teacher model to enhance the performance of
GNN models are showing promising results. This is part of
our ongoing research, and the results of these experiments are
not included in this paper. In particular, models like GATv2
show performance levels comparable to XGBoost, requiring
significantly fewer parameters. Additionally, GNNs have
inherent advantages in explainability, making them valuable
interpretive analysis tools. This aspect is further supported
by the feature attribution results of our proposed graph
model, which show a high degree of agreement with both the
outcomes of the XGBoost model and the insights provided
by domain experts, as detailed in section VI. Additionally,
including GNN models such as CG-JKNN in our study,
alongside traditional models such as XGBoost, allowed us
to compare how each model identifies essential features.
This comparison enhances our knowledge of the distinct
strengths of each model. It also highlighted the capability of
GNNs to provide insights consistent with expert evaluations,
demonstrating their practical value in analytical tasks.

VI. MODEL INTERPRETATION AND DOMAIN EXPERT
ANALYSIS
The construction of the graph is task-specific and signifi-
cantly depends on domain knowledge. Therefore, a thorough
evaluation is necessary to identify how much the geometric
data affects the prediction tasks [37]. A comprehensive anal-
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TABLE 6. Graph features: performance and hyperparameters of ML models.

FIGURE 10. Area under the precision-recall curve of ML models with different feature sets obtained with best split. (A). With local graph features. (B).
With morphological features.

FIGURE 11. Area under the precision-recall curve of graph models that resulted in best results across the three trials with different feature sets. (A). With
graph features. (B). With morphological features.

TABLE 7. Morphology features: performance and hyperparameters of ML models.

ysis was conducted using established model interpretation
techniques to understand the influence of geometric (spatial)

data and other features on the predictions. The SHAPmethod
was employed for the machine learning models, whereas the

17178 VOLUME 12, 2024



V. Acharya et al.: Prediction of TB From Lung Tissue Images of Diversity Outbred Mice

TABLE 8. Morphology features: performance and hyperparameters of graph models.

TABLE 9. Graph features: performance and hyperparameters of graph models.

integrated gradient technique was utilized for the graph-based
models. These interpretative tools facilitate the identification
of features that drive the predictive outcomes of the models.
Additionally, the outcomes of these analyses were subjected
to discussion and validation by domain experts to ensure
the results’ robustness and validity. The results of the SHAP
summary plots to interpret the extent of each feature’s
influence over the predictions are shown in the figure 13
and 14. These plots allowed us to identify which specific
features substantially impact our model’s predictions. This
section will focus on the models that demonstrated the best
performance, namely XGBoost and CG-JKNN. As shown
in figure 13, AFBs have a higher hub-promoted index than
nuclei in the network; it indicates that the node representing
AFB is connected to other nodes with a higher degree or
number of connections.

The domain expert concurred with this observation as the
bacteria’s ability to move around is contingent upon the host
cell’s interaction with them. AFBs also have higher values for
the closeness of nodes. This means that a node representing
AFB plays a significant role in connecting different network
parts and acts as a hub. This higher hub-promoted index
suggests that the node denoting AFB strongly influences the
overall network structure and information flow. According to
the domain expert, it resonates with the biological context
as the host’s inflammatory responses and immune system
are triggered by the presence of the bacteria. We also see
a higher node clustering coefficient for the node denoting
AFB. It implies that the neighboring nodes of the node
representing AFB are more likely to be connected, forming
local clusters or communities. This can indicate a higher level
of interconnectivity and cohesive structure around this node.
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They also have lower eccentricity values, suggesting that
AFBs are more localized or closely connected within their
immediate neighborhood or cluster of cells. This might align
well with reality as the clusters of bacteria tend to replicate
themselves. Their interactions with the host cell or granuloma
environment are also local.

As shown in the figure 14, higher values of the contrast
and lower values of circularity and area correspond to AFB.
According to the expert, AFB exhibits distinct transitions or
boundaries between different texture regions. This might be
related to the unique cell wall properties of AFBs, which
create sharp intensity transitions within the cells and give
themwell-defined edges or structures. The staining procedure
involves using a red dye for AFB and a blue color for the
other tissue. This might be the cause for higher GLCM
contrast for the AFB. They are also smaller than the nucleus
of activated macrophages and possess a rod shape compared
to the disk-shaped nucleus. Pathologists also recognize AFB
and macrophage nucleus with the help of circularity and size.
AFBs tend to have higher values of variance. Bacterial cells
have outer walls that surround them. These walls are made up
of various molecules and structures. When we use a staining
process to color the bacteria in an image, these walls can
react differently to the staining. Some bacteria might have
walls that absorb colors more efficiently, while others might
absorb less colors. Bacteria with varying levels of absorbed
red color will show higher variations in pixel intensities. This
is because some parts of the bacteria will be intensely colored
due tomore absorbed color, while others will have lower pixel
values due to less absorbed color.

Pathologists also rely on the chromatic pattern of the
nucleus as a diagnostic indicator. GLCM features can
potentially assess alterations in the pattern of nuclear
chromatin [89], [90], [91]. The nucleus of the activated
macrophage exhibited a lower energy value in its GLCM
analysis. This lower energy value indicates that the texture
patterns within this nucleus are characterized by non-
uniformity, suggesting variations and irregularities in its
structure. As per the insights from domain experts, the
nucleus showcases a range of chromatin patterns with dense
and sparse configurations. Figure 12 shows an example of
both the patterns. Lower energy values can be attributed to the
nature of the chromatin pattern. However, it is worth noting
that domain experts consider the nuclear chromatin pattern as
a final step for distinguishing between macrophage nucleus
and AFB. Their initial approach involves assessing circular-
ity, size, and color as primary factors for differentiation.

Figure 15 illustrates the integrated gradient feature
attribution results of morphology features using different
graph models. The results of our proposed graph model
exhibit a high degree of agreement with both the XGBoost
model and the domain expert’s insights. Specifically, for
class AFB, the feature attribution analysis reveals that the
model assigns negative scores to perimeter and homogeneity
while assigning a positive score to variance. These findings

FIGURE 12. Nucleus of activated macrophage. (A). Sparse chromatin
pattern. (B). Dense chromatin pattern.

closely align with the domain expert’s qualitative analysis,
confirming the model’s interpretability. Additionally, there
is a strong inverse correlation between homogeneity and
contrast [92]. This implies that instances belonging to class
AFB tend to exhibit higher contrast. This observation aligns
with the practices of domain experts who frequently rely
on assessing contrast as a critical feature during their
analytical processes. Similarly, for the instances within the
class macrophage nucleus, our feature attribution analysis
shows that a negative score is allocated to eccentricity,
indicating that nuclei tend to have lower eccentricity values,
implying a more circular or less elongated shape. The nucleus
also has a higher homogeneity score than AFB, suggesting
lower contrast. Furthermore, the negative score assigned
to the variance indicates that the nucleus consistently and
uniformly absorbs the stain. Figure 16 illustrates graph
features’ integrated gradient feature attribution results using
different graph models. CG-JKNN agrees with XGBoost for
the AFB class, demonstrating a higher score for features
such as the mean of all neighbors and node closeness and
a lower score for the hub-depressed index. In contrast, for
detecting nucleus, CG-JKNN assigns a lower score for the
hub-promoted index, node closeness, and node clustering
but a higher score for the hub-depressed index. The model
interpretation results highlight how closely the models align
with the insights of domain experts.

VII. RESULTS OF XGBOOST MODEL (TOP PERFORMING
MODEL) WITH TOP K GRAPH AND MORPHOLOGY
FEATURES
We trained the XGBoost model by gradually adding features
based on their importance from a SHAP plot (Features are
sorted in descending order by Shapley values). We started
with the most important feature, then added the next one,
and so on, until we included the top 11 features. When we
added a new feature for each step, we trained the model again.
At every step, we checked how well the model did by looking
at the accuracy, F1 score, and AUPRC on the test set. This
experiment was conducted withmorphology and graph-based
features.

The table 10 presents the performance of the XGBoost
model as it sequentially incorporates the top K morphology
features identified from a SHAP analysis. As more features
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FIGURE 13. SHAP summary plot utilizing graph features: (A). XGBoost model. (B) and (C). Random forest model. (D) and (E). Extra trees model. (F) and (G).
LightGBM model.

FIGURE 14. SHAP summary plot utilizing morphology features: (A). XGBoost model. (B) and (C). Random forest model. (D) and (E). Extra trees model.
(F) and (G). LightGBM model.

are added (increasing K value), there is a general trend of
improvement across all three metrics. This suggests that each
additional feature provides new information that helps the

model make better predictions. The F1 score also shows
an upward trend. It starts at 0.65 for K=1 and goes up
to 0.82 for K=11. The AUPRC value starts at 0.71 and
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FIGURE 15. Integrated gradient feature attribution utilizing morphology features: (A). Proposed model. (B). GraphSAGE with max aggregator (C).
GraphSAGE with mean aggregator (D). GATConv. (E). GATV2.

TABLE 10. Performance metrics achieved with morphology features for
every K value.

increases to 0.8565. Figure 17 shows the performance plot
with morphology features.

The table 11 presents the performance of the XGBoost
model as it sequentially incorporates the top K graph features
identified from a SHAP analysis. As more features are added
(increasing K value), there is an improvement across all three
metrics (similar to morphology features). Figure 18 shows the
performance plot with graph features.

While the XGBoost model trained with the top 11 SHAP-
selected features shows promising results, it is essential to
note that there is a slight decrease in performance when

TABLE 11. Performance metrics achieved with graph features for every K
value.

compared to the model trained with all features. Specifically,
the model with all features (as seen from the table 7) achieves
a test accuracy of 86.8%, a test F1 score of 0.829, and a
test AUPRC of 0.8654. In contrast, the model with the top
11 features achieves a test accuracy of 86.5%, an F1 score of
0.82, and an AUPRC of 0.856. However, the reduced model
with 11 features still performs quite close to the full model,
which speaks to the effectiveness of SHAP-based feature
selection.

Next, when we utilized the full suite of graph features,
it resulted in a test accuracy of 97.77%, an F1 score of 0.9734,
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FIGURE 16. Integrated gradient feature attribution utilizing graph features: (A). Proposed model. (B). GraphSAGE with max aggregator (C). GraphSAGE
with mean aggregator (D). GATConv. (E). GATV2.

FIGURE 17. Morphology features (A). Plot of accuracy versus K. (B). Plot of F1 Score versus K. (C). Plot of AUPRC versus K.

and an AUPRC of 0.9797, as seen in Table 6. Upon applying
feature selection to our XGBoost model and choosing the
top 11 features indicated by the SHAP plot, there was a
slight decrease in performance compared to using all features.
The test accuracy decreased from 97.77% to 94.95%, the F1
score from 0.9734 to 0.9390, and the AUPRC from 0.9797 to
0.9525.

The table detailing the mean and standard deviation of
the top K morphology features, as identified by the SHAP

analysis, for both AFB and macrophage nucleus samples
are shown in table 14. For the ‘Contrast’ feature, our data
table indicates that the AFB has a higher mean value (on
average, samples classified as AFB tend to have a greater
‘Contrast’ value) than the macrophage nucleus. Looking
at the SHAP plot, we find that higher ‘Contrast’ values
(indicated by the red color) are more associated with the
AFB. Feature ‘Dissimilarity’ has a higher mean value for
the macrophage nucleus, which is consistent with the SHAP
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FIGURE 18. Graph features (A). Plot of accuracy versus K. (B). Plot of F1 Score versus K. (C). Plot of AUPRC versus K.

TABLE 12. Mean and standard deviation of top K graph features.

TABLE 13. Performance achieved with top 11 features.

plot’s indication that higher values of ‘Dissimilarity’ are
influential in predicting the macrophage nucleus. Upon
analyzing the ‘Homogeneity’ feature, we observe a relatively
small difference in mean values between the AFB and
macrophage nucleus. This is also reflected in the SHAP anal-
ysis, where ‘Homogeneity’ demonstrates lower importance
than other features. Themoreminor mean difference suggests
that ‘Homogeneity’ is not critical in distinguishing between
the two classes.

The table detailing the mean and standard deviation of the
top K graph features identified by the SHAP analysis for both
AFB and macrophage nucleus samples is shown in Table 12.
For the ‘Hub Promoted’ feature, our data table indicates
that the AFB has a higher mean value than the macrophage
nucleus. When we look at the SHAP plot, we find that
higher ‘Hub Promoted’ values (indicated in red) are more
associated with the class AFB. For the AFB, the ‘Sorenson’
feature has a mean of approximately 59.55 and a standard
deviation of about 61.24. For the macrophage nucleus,
the mean is significantly higher at 95.15, with a standard

deviation of approximately 71.56, which is consistent with
the SHAP plot’s indication that higher values of ‘Sorenson’
are influential in predicting the macrophage nucleus. The
‘Global_Overlap’ feature, as observed in our dataset, exhibits
minimal differences in its mean values between the AFB
and macrophage nucleus. The feature ‘Global_Overlap’,
as seen from our statistics table, does not vary significantly
between the two classes. Corroborating this, the SHAP
feature importance plot places ‘Global_Overlap’ at the lower
end of the spectrum, indicating its relatively minor role
in influencing the model’s predictions compared to other
features.

Also, it is essential to differentiate between the variability
of a feature’s influence on model predictions, as illustrated by
the spread of SHAP values, and the dispersion of the feature’s
actual values within the dataset, quantified by the standard
deviation. The spread in SHAP values depicted in the SHAP
feature importance plot reflects the range of influence that
the feature exerts across different instances in the model’s
predictions. This influence variability is separate from the
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standard deviation of the feature’s values. The standard
deviation is a separate statistical measure that indicates the
extent to which the feature values are spread around their
mean in the dataset.

VIII. ABLATION STUDIES
Four pivotal ablation studies were undertaken to assess the
robustness of our models. The first study focused on estab-
lishing consensus across models trained on distinct subsets
of train-validation and test data. This investigation aimed
to reveal the models’ generalization capabilities and ability
to deliver consistent results regardless of dataset variations.
The second study investigated the impact of morphology and
graph-based features on model performance. By integrating
these distinct feature sets, we aimed to determine their
effects on improving the predictive capabilities. The third
study dealt with measuring the performance with different
node aggregation mechanisms. The fourth and final ablation
study evaluated the effectiveness of the jumping knowledge
technique implemented in our model. This study involved
conducting experiments bothwith andwithout the application
of jumping knowledge.

A. MODEL CONSENSUS: EFFECT OF RANDOM WEIGHTS
INITIALIZATION AND DIFFERENT SUBSETS OF DATA
We conducted experiments to explore whether the consensus
(in terms of feature stability) [93] among models varies
across different subsets of training, validation, and test data.
We generated SHAP summary plots for eachMLmodel using
these distinct subsets and extracted the top 6 features from
each plot. Similarly, we followed a similar procedure for
the graph models but selected the top 6 features from the
integrated gradient plots. This process allowed us to derive
the final consensus among the models. Figure 19 shows the
consensus among the ML models concerning both graph and
morphology features.

During our experiments, we noticed that SHAP summary
plots (not shown here) consistently highlighted the same
features, with minor variations in their ranking order. Several
factors contribute to the consistent feature importance rank-
ings observed in our analysis. Firstly, the selected features
may exhibit a high degree of robustness and informativeness
across various subsets of the data. These features consistently
capture essential patterns and relationships, even when
trained on different data samples. Additionally, the inherent
regularization mechanisms employed by the machine learn-
ing models used in our analysis play a pivotal role. The
regularization techniques, such as feature sampling and depth
limitations, contribute to the stability of feature importance
rankings [94]. We also conducted experiments using graph-
based models with randomweight initialization to investigate
the variability in feature attribution. Specifically, we were
interested in observing whether the selection of influential
features changed across different trials of the model. In our

study, we conducted three separate trials for the proposed
model.

Figure 20 and 21 illustrate the feature attribution results
for class AFB and class macrophage nucleus averaged across
the test instances for the three trials. The term ‘nuclei’
refers to the macrophage nucleus. We observed variations
in the morphology features identified as influential in each
trial, although some similarities were also observed. This is
due to random weight initialization that leads to different
starting points for the model’s parameters in each run. These
initial differences can set the model on distinct learning
trajectories, causing it to assign varying importance to
features during training. We observed a relatively slight
variation in the choice of graph features, as the model
consistently selected almost the same set of features (with
differences in importance scores) in each trial, as seen
in Figure 21. The consistent selection of these specific
graph features across multiple trials with random weight
initialization shows their robustness and impact on the
model’s predictions. Figure 22 shows the consensus among
the graph models that yielded the best results across the three
trials, considering each of the feature sets.

By comparing Figure 19 and Figure 22, it is evident that
both the ML models and graph models consistently highlight
the importance of hub-promoted index, hub-depressed index,
and node clustering as top features for the classification.
Regarding morphological features, models consistently opt
for contrast and variance as the top features. Notably,
while global graph features may not be extremely useful
in node-level classification, their relevance will be seen for
graph-level classification, mainly when categorizing M.tb
infected DO mice samples into Supersusceptible Progressor,
Asymptomatic Controller and Susceptible Controller cate-
gories [95].

B. EFFECT OF NODE FEATURES
We constructed the cell graph using morphological and graph
features to test their effectiveness. We also trained the ML
models with these feature sets. We will refer to this specific
combination of features throughout the rest of the article
as the ‘‘combined feature set’’. The results can be seen
in Table 15 and 16. The test F1 score of XGBoost using
morphological features is 15.23% lower than the model
with combined features, highlighting the importance of cell
structure for node classification. The test f1 score with
graph features is 0.79% below the score with combined
features, demonstrating the significance of the structural
relationships and interactions between cells within the tissue
sample. The combination of morphological and graph-based
features provides the best predictive power for our model.
The AUPRC results for both ML and graph-based models
using combined features on the test set are presented in
Figure 23. While morphological features are informative,
they do not perform well independently. Likewise, graph-
based features are helpful but benefit from integrating
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TABLE 14. Mean and standard deviation of top K morphology features.

FIGURE 19. ML model consensus for class AFB and class macrophage nucleus; Upper Row: Graph Features (A). Consensus among the models while using
the best-performing split. (B). Consensus among the models while using a different subset of the train-val-test set. (C). Consensus among the models
while using another subset of the train-val-test set. Lower Row: Morphology Features (D). Consensus among the models while using the best-performing
split. (E). Consensus among the models while using a different subset of the train-val-test set. (F). Consensus among the models while using another
subset of the train-val-test set.

morphological features to achieve the highest F1 score on
the test data. We see similar results in graph-based models.
When utilizing combined features, the CG-JKNN model
achieved a test F1 score, surpassing its performance with only
graph features by 4.35% and exceeding its results with just
morphological features by 9.39%.

However, despite these improvements, the XGBoost model
still outperforms the CG-JKNN. The upper bound of trainable
parameters in the XGBoost model is estimated based on
the maximum potential size of each decision tree. For a
tree of maximum depth ‘d’, the total number of nodes
(and hence parameters) is approximately 2∧(d + 1) − 1.
When multiplied by the number of trees (‘n_estimators’),
this gives us an overall upper bound. According to our
calculations, assuming each tree grows to its maximum

depth, which might not always be the case due to pruning,
the total number of parameters is approximately 171 ·(
2∧11

)
− 1, equaling 350,037. Table 15 indicates that

the gamma value is too small to result in significant
pruning.

Despite the current performance gap, we believe that
the efficiency of GNN models like CG-JKNN can be
substantially improved through the concept of knowledge
distillation [96]. This technique could enable these models
to achieve performance comparable to XGBoost while
requiring significantly fewer parameters. This approach
allows us to simultaneously make GNN models bet-
ter and more efficient, meeting the need for models
that work well without requiring significant computing
power.
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FIGURE 20. Integrated gradient feature attribution by employing proposed model utilizing the morphology features (A).
Attribution scores of features for class AFB and class macrophage nucleus during the run 1. (B). Attribution scores of
features for class AFB and class macrophage nucleus during the run 2. (C). Attribution scores of features for class AFB and
class macrophage nucleus during the run 3.

TABLE 15. Combined features: performance and hyperparameters of ML models.

C. IMPACT OF DIFFERENT NODE AGGREGATION
TECHNIQUE
One of the pivotal operations within graph neural networks
is the aggregation process. Its primary objective is to
systematically exploit the information from neighboring
nodes, leading to the gradual updation of the target node’s
latent representation [97]. We investigate the impact of
two aggregation techniques: Mean aggregator and Max
aggregator [25], [98]. The experimental results can be seen
in Table 17. The plot of the AUPRC on the test set is shown
in the figure 24. We achieved an F1-score of 0.8707 with
mean aggregator and morphology features. Furthermore,
we attained an even higher F1-score of 0.9157 using the mean

aggregator with graph features. We chose the mean aggre-
gator as our aggregation technique based on these results
because it performs better than the max aggregator. Previous
literature has consistently demonstrated the superiority of the
mean aggregator over other aggregation techniques in node
classification tasks [97], [98]. This is seen in the studies
involving rich node features and where the distribution of the
features in the neighborhood provides a strong and valuable
signal, significantly enhancing the performance [98].

D. IMPACT OF JUMPING KNOWLEDGE ON CG-JKNN
In this section, we learn the specific impact of the jumping
knowledge technique on CG-JKNN’s performance. Previous
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FIGURE 21. Integrated gradient feature attribution by employing proposed model utilizing the graph features (A).
Attribution scores of features for class AFB and class macrophage nucleus during the run 1. (B). Attribution scores of
features for class AFB and class macrophage nucleus during the run 2. (C). Attribution scores of features for class AFB
and class macrophage nucleus during the run 3.

TABLE 16. Combined features: performance and hyperparameters of graph models.

TABLE 17. Ablation study on various aggregation techniques.

works employing cell graph methodologies have demon-
strated the efficacy of Jumping Knowledge, particularly in

graph-level classification tasks [40], [41], [50]. To com-
prehensively assess this aspect, we conducted a series
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FIGURE 22. Graph model consensus for class AFB and class macrophage nucleus; Upper row: Graph features (A). Consensus among the
models for class AFB. (B). Consensus among the models for class macrophage nucleus. Lower Row: Morphology Features (C). Consensus
among the models for class AFB. (D).Consensus among the models for class macrophage nucleus.

FIGURE 23. Area under the precision-recall curve of ML models and graph based models with
combined feature set (A). Performance of ML models (B). Performance of graph based models.

TABLE 18. Graph features: comparison of proposed model with and without jump knowledge.

of experiments both with and without the implementa-
tion of jumping knowledge. Concatenation was selected
among three jumping knowledge techniques: concatena-
tion, max-pooling, and an LSTM-attention mechanism.
The concatenation-based jumping knowledge technique

aggregated node features across different layers rather
than just the last layer. Our experiments were con-
ducted with different feature sets, including graph fea-
tures, morphology features, and a combination of both.
To ensure the validity and reliability of our findings,
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FIGURE 24. Performance of different aggregation techniques: (A). Proposed model with Mean and Max Aggregator and Graph Features. (B). Proposed
model with Mean and Max Aggregator and Morphology Features. (C). Proposed model with mean and max aggregator and combined features.

TABLE 19. Morphology features: comparison of proposed model with and without jump knowledge.

TABLE 20. Combined features: comparison of proposed model with and without jump knowledge.

FIGURE 25. Comparison of AUPRC with and without jump knowledge with different
feature sets.

we maintained consistency in the data points used across
all experiments. This approach ensured that any observed
changes in the model’s performance could be attributed
directly to the presence or absence of jumping knowledge,

thereby eliminating the potential influence of varying data
points.

The results of the models are averaged over three trials.
The table 18 presents a detailed comparison of the CG-JKNN
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model’s performance using graph-based features, both with
and without the incorporation of jump knowledge. Table 19
presents a detailed comparison of the CG-JKNN model’s
performance usingmorphology-based features, both with and
without the incorporation of jump knowledge, and table 20
presents a detailed comparison of the CG-JKNN model’s
performance using combined features, both with and without
the incorporation of jump knowledge.

When analyzing the performance of our models using
graph features, as seen from the table 18, the F1 scores show
improvement with jump knowledge across training, valida-
tion, and test datasets. The Train F1 score sees an increase
from 0.883±0.005 to 0.9681±0.0040, the val F1 score
improves from 0.8981±0.0171 to 0.9603±0.005, and the
test F1 improves from 0.892±0.0018 to 0.9057±0.01. The
utilization of jumping knowledge alongside morphological
features exhibits a consistent trend of performance improve-
ment, mirroring the improvements seen with graph features.
Train F1 score rises from 0.765±0.016 to 0.813±0.005, and
test F1 score increases from 0.82±0.006 to 0.861±0.012.
When analyzing the performance of our models using
combined features, the addition of jumping knowledge led
to substantial improvements in the F1 scores across all
evaluation phases. For the training phase, the F1 score
increased from 0.9306 ±0.033 to 0.9642±0.001. During
validation, we observed an improvement in the F1 score from
0.927±0.027 to 0.9601± 0.007. The test F1 score, indicative
of the model’s performance on new data, also improved from
0.9057±0.0109 to 0.9509±0.004. AUPRC results (obtained
after 50 epochs), as shown in Figure 25 across various
feature sets, clearly demonstrate that incorporating jumping
knowledge consistently improves performance.

IX. CONCLUSION AND FUTURE DIRECTIONS
In our study, we introduce the CG-JKNN model, a cell graph
convolutional network integrating the ‘jumping knowledge’
mechanism, offering a new perspective in analyzing GNNs
with cell graphs. Our unique approach in constructing cell
graphs focuses on mycobacterium bacteria’s cords and the
radius of the activated macrophage nucleus in activated
macrophages, reflecting actual cellular interactions within
the granuloma. The CG-JKNN model effectively combines
morphological features with spatial information of cells,
showing promising results compared to classical GNN archi-
tectures. Notably, XGBoost outperforms other ML models,
indicating the effectiveness of cell graph-derived features.
We have also integrated model interpretation techniques,
revealing key features such as contrast, circularity, and
area that align with domain expert insights. The model’s
attention to attributes like node clustering mirrors cellular
interconnections in the tissue microenvironment. However,
our approach faces limitations due to the small dataset size
and the need to consider temporal dynamics in disease
progression. For future work, we aim to categorize M.tb-
affectedDOmice samples into three groups at the graph level:
Supersusceptible Progressor, Asymptomatic Controller, and

Susceptible Controller. We also plan to expand the dataset
and develop a more complex teacher model for knowledge
distillation, assessing the performance of our proposed
model in comparison with Scalable Inception Graph Neural
Networks.
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