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ABSTRACT Summarization tasks aim to summarize multiple pieces of information into a short description
or representative information. A text summarization task summarizes textual information into a short
description, whereas an image collection summarization task summarizes an image collection into images
or textual representation in which the challenge is to understand the relationship between images. In recent
years, scene-graph generation has shown the advantage of describing the visual contexts of a single-
image, and incorporating external knowledge into the scene-graph generation model has also given effective
directions for unseen single-image scene-graph generation.While external knowledge has been implemented
in related work, it is still challenging to use this information efficiently for relationship estimation during the
summarization. Following this trend, in this paper, we propose a novel scene-graph-based image-collection
summarization model that aims to generate a summarized scene-graph of an image collection. The key idea
of the proposed method is to enhance the relation predictor toward relationships between images in an image
collection incorporating knowledge graphs as external knowledge for training a model. With this approach,
we build an end-to-end framework that can generate a summarized scene graph of an image collection.
To evaluate the proposed method, we also build an extended annotated MS-COCO dataset for this task and
introduce an evaluation process that focuses on estimating the similarity between a summarized scene graph
and ground-truth scene graphs. Traditional evaluation focuses on calculating precision and recall scores,
which involve true positive predictions without balancing precision and recall. Meanwhile, the proposed
evaluation process focuses on calculating the F-score of the similarity between a summarized scene graph
and ground-truth scene graphs, which aims to balance both false positives and false negatives. Experimental
results show that using external knowledge to enhance the relation predictor achieves better results than
existing methods.

INDEX TERMS Image collection summarization, multiple-image summarization, semantic images
summarization, scene-graph generation, scene-graph summarization.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabu M. Thampi .

I. INTRODUCTION
With the increase of digital content, especially images in the
real world, image understanding tasks such as classification
and retrieval have become more important than ever to
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FIGURE 1. Example of generating a scene-graph representation of an
image collection. The dotted lines represent the semantic relationships,
and the solid lines show the inferred relations of the summarized scene
graph.

make the contents easy to access. However, most existing
research focuses on single-image understanding whereas
understanding an image collection is still challenging.
In recent years, the task of understanding an image collection
is focused in various applications [1], such as semantic image
retrieval [2], [3], Web-image concept understanding [4], [5],
and multiple-image summarization [6], [7], [8], [9]. Gener-
ating a summarized scene graph also shows an advantage in
visual storytelling [10], [11] and video summarization [12]
applications. The typical first stage in understanding an image
collection is to understand the overall context and find a
representation of it, e.g., in the form of words, sentences,
or scene graphs. Compared to other methods, a scene graph
has the advantage of its ability to represent the contexts of
images by describing objects and their relationships. The task
of generating a scene graph is used in various tasks such
as single-image captioning [13], [14], image retrieval [3],
[15], [16], and multiple-image context summarization [7].
However, scene-graph generation is commonly introduced
to generate a scene graph of a single image. Whereas,
summarizing an image collection into a summarized scene
graph shows advantages in understanding the overall contexts
and using it in image querying applications [6]. However, the
common challenge in scene-graph summarization is estimat-
ing the relationships between different object category pairs
detected in different images. In order to improve summarizing
information of an image collection, we aim to understand
the relationships between objects detected in different images
by employing external knowledge graphs. Figure 1 shows an
example of summarizing an image collection into a combined
scene-graph representation, which can describe the overall

FIGURE 2. Comparison between (A) other summarization methods [2],
[8], [9], [17]; Scene-graph generation with summarization process and
(B) proposed method; End-to-end scene-graph summarization.

context by estimating the similar concepts of their visual
objects. For example, we humans can find the common
occurring objects of an image collection which are cow,
sheep, hill, and street, and their relationships such as cow-on-
hill and sheep-on-street. Based on the external knowledge,
where both street and hill are places whereas sheep and cow
are animals. Then, based on the knowledge graph, we can
understand that hill is a commonplace for animals. Therefore,
we can assume the contexts as cow-on-hill, sheep-on-hill,
and sheep-near-street. This example shows the advantage of
using external knowledge in finding the relationships across
multiple images.

To generate a summarized scene graph of an image
collection, a naïve approach [18], [19] summarizes images by
incorporating external knowledge. However, the challenges
of incorporating external knowledge are defining reasonable
knowledge and estimating appropriate relationships between
object categories. Based on these motivations, we have
previously proposed a scene-graph summarization method
using graph theory for generating a caption of an image
collection [8], [9]. Thus, we needed to provide a concept
generalization process that aims to find the common concept
words from an image collection to refine the final caption,
which was performed by generalizing words. However,
it would reduce details in the final caption, such as replacing
cow or sheep with animal instead of describing both as
summarized information such as cow and sheep. Therefore,
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the common challenge is to find relationships between
different objects without reduction of details. For example,
in the case of sheep on street and cow on hill, if we
can utilize the external knowledge where both street and
hill are places for animals, we can conclude both are in
similar contexts such as places for living. Thus, we can infer
indirect relationships such as sheep-on-hill. Based on this
idea, the proposed method enhances the relation predictor of
the scene-graph generation process so that it can generate
generalized relationships of objects which can grasp the
relationships of different objects in the same category across
images. Inspired by the use of external knowledge to generate
a scene graph for an unseen image [20], [21], we have decided
to follow this idea.

In order to realize a scene-graph summarization method of
an image collection using external knowledge, there are three
hurdles. First, we need to model external knowledge for the
training process, for which we incorporate ConceptNet [22],
a knowledge graph of commonsense semantic information.
Second, we need to integrate the knowledge graph into
the relation predictor of the scene-graph generation model.
Lastly, we need to construct a summarized scene graph
by combining all image information and then generate a
final scene graph. Figure 2 shows a comparison between
the generation of a summarized scene-graph with the
summarization process in the inference phase of conventional
methods and the proposed method. It demonstrates the case
of finding a relationship between two sub-graphs by joining
their location, hill.

Furthermore, it is also challenging to estimate the confi-
dence score of each relationship to obtain a final scene graph,
whereas a typical scene-graph generation method obtains the
final scene graph based on confidence scores. To improve the
estimation process, we employ PageRank [23] to re-calculate
the node scores for selecting relationships in the process.
However, a remaining challenge is the limitation of a dataset
specific to the scene-graph summarization task. We hence
construct a dataset for evaluating the proposed method
based on the MS-COCO dataset [24] which is a popular
image captioning dataset and widely used across various
tasks including image retrieval and image summarization.
In order to evaluate our work on a summarized scene
graph, we introduce an evaluation process that evaluates the
similarity score of a summarized scene graph based on the
F-score whereas previous works focus only on precision.
By this, the proposed evaluation process can account for false
negatives.

Our contributions can be summarized as follows:
• We propose a scene-graph summarization method to
generate a summarized scene graph of an image
collection that has indirect relationships by inference
using the external knowledge graphs into the relation
prediction process.

• We introduce a sub-graph confidence score for esti-
mating a summarized scene graph of an image
collection.

• We introduce an evaluation process for evaluating a
summarized scene graph by calculating the F-score
which evaluates both false positives and false negatives
of a generated scene graph.

II. RELATED WORK
In this section, we review related work on three topics; Image
Collection Summarization which discusses work that aims
to generate summarized information of an image collection,
Scene-Graph Generation which discusses methods to gener-
ate image information in graph form, and Knowledge Graph
which introduces the external knowledge that is used in the
proposed method.

A. IMAGE COLLECTION SUMMARIZATION
Image collection summarization is the task of generating a
representative summary of an image collection. Traditionally,
it aims to find a representative information in the form of
image, textual, or scene-graph representation.

a: IMAGE REPRESENTATION
Summarizing an image collection is typically introduced in
the photo album summarization task, which aims to find an
image that represents an image album.Yu et al. [10] proposed
a model composed of three hierarchically attentive Recurrent
Neural Networks (RNNs) to encode album photos, select
representative photos, and generate a story. Wang et al. [25]
proposed a model with a hierarchical photo-scene encoder
and reconstructor for generating an album story. More-
over, many works also find a representative image of
an image collection using a clustering algorithm, such as
Self-Organization Map (SOM) [26], [27] or k-Medoids [17]
to cluster images and then represent some of them as an image
representation of an image collection.

b: TEXTUAL REPRESENTATION
Textual information is a popular summarization form for an
image collection summarization task, which is represented
as keywords, tags, phrases, or sentences. In summariz-
ing an image collection into keywords or tags, Samani
and Moghaddam [28] proposed a semantic summarization
method for an image collection that utilizes the domain
ontology as an input of the system by providing knowledge
about the concept domain, e.g., Colosseum and Trevi
Fountain. Zhang et al. [29] proposed a model to analyze an
image collection and generate appropriate visual summaries
and textual topics, e.g., sunset, sky, and sun. For summarizing
an image collection into phrases, Trieu et al. [7] proposed a
new task named multi-image summarization, that aims to
generate a descriptive summary of an image collection such
as styles of bags. They also introduced a new dataset for this
task by collecting 2.1 million images from Web pages and
then building collections of images, each consisting of at least
five images. Li et al. [6] introduced a new task called context-
aware captioning, which aims to describe an image collection
in another context from different image collections. We [8],
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[9] introduced a method to generate a caption of an image
collection based on a summarized scene graph based on graph
theory [30].

c: SCENE-GRAPH REPRESENTATION
As scene graphs are widely used for describing visual objects
and their relationships for a single image [31], they are
also used for describing multiple images. Pasini et al. [2]
proposed an image-collection summarization method based
on frequent subgraph mining and represents an image
collection in a sub-graph form on theMS-COCO dataset [24].
Yang et al. [32] introduced a challenging task, named Panop-
tic Video Scene Graph Generation (PVSG), which aims to
generate a summarized scene graph of real-world data and
contribute a new panoptic video dataset for this task.

In the proposed method, we aim to describe an image
collection by a scene graph, focusing on integrating external
knowledge into the learning process.

B. SCENE-GRAPH GENERATION
Scene-graph generation [31] is a popular technique in
describing relationships between objects in an image. The
relationships of objects are generally represented in triplets
which consist of subject, predicate, and object. A common
scene-graph generation architecture is divided into two main
processes comprising object detection to detect the objects
inside the image and relationship prediction to find the edges
between the objects. In recent years, it has been widely intro-
duced and implemented on the Visual Genome dataset [33]
and the MS-COCO dataset [24]. In addition, scene-graph
generation is also adapted to various applications, such as
image captioning [34] and image retrieval [3], and has
been shown to improve their results. Various techniques are
introduced in scene-graph generation; Neural Motif [35] is
built with Faster R-CNN [36] with plenty of backbones, such
as ResNet-50 [37] and ResNext-101 [38], then computes and
propagates through Bidirectional Long Short-Term Memory
(BiLSTM) [39] for predicting relations. VCTree [40] is
a scene-graph generation technique composed of dynamic
tree structures which show the advantage of the use of a
binary tree in finding co-occurrence and usual relationships
between objects by allowing a dynamic structure. Iterative
Message Passing (IMP) [41] is an end-to-end scene-graph
model using standard RNNs and improves the prediction
via message passing. From the long-tail problem of the
scene-graph dataset, the most recent work [42] aims to
introduce a technique to solve the bias of the dataset. Relation
Transformer for Scene Graph Generation (RelTR) [43] is
a one-stage end-to-end scene-graph generation technique
that uses an attention mechanism and gives a fixed number
of subjects, objects, and relationships to generate a scene
graph.

In the proposed method, we use scene graphs as a means
to model the relationships between images in an image
collection.

C. KNOWLEDGE-GRAPH
Aknowledge-base is widely used to enrichmodels, especially
text-generation models [44]. ConceptNet [22] and Wikipedia
dataset1 are popular knowledge-bases that are used in the
generation process. ConceptNet is a knowledge-graph that
represents general knowledge and commonsense informa-
tion, while theWikipedia dataset is structured knowledge data
with detailed information on each topic. In recent years, the
knowledge-graph has become a popular knowledge-base on
various generation processes, mainly focusing on capturing
commonsense reasoning during the generation. To tackle the
long-tail issues of scene-graph generation mentioned above,
integrating knowledge-graphs to improve the generation is a
widely introduced strategy, and results show its advantage.
Moreover, a knowledge-graph is additionally implemented in
an image retrieval task which aims to reason on the semantic
context and generalize the concepts inside an image [29].

In the proposed method, we use ConceptNet which is
a knowledge-graph to enhance the relation predicator for
finding unseen relationships across images.

III. PROPOSED METHOD:
SCENE-GRAPH SUMMARIZATION MODEL
From the idea of enhancing the relation predictor with
external knowledge for predicting unseen relationships,
we build the proposed method by adapting an existing
scene-graph generation method, Neural Motif [35]. The
proposed method starts with extracting visual features from
each image and then finds contextualized representations
of each image following the Neural Motif approach. Next,
we incorporate external knowledge into all contextualized
representations. Lastly, we predict the relationship of each
object in the contextualized representations and reconstruct
them as a summarized scene graph as illustrated in Fig. 3.

The proposed method has five main components. The
Object Detection component detects the visual features of
images and modifies them for detecting objects in an image
collection. TheObject Context Construction component finds
the contextualized representations of images. To generate a
summarized scene graph from contextualized representations
of an image collection, we introduce the External Knowledge
Integration component to find the indirect relationships
between detected objects and an encoder to encode them into
the Relation Prediction component to generate a relation-
ship between objects. Lastly, we introduce the Sub-Graph
Confidence Score Calculation component that calculates the
confidence scores of objects.

A. OBJECT DETECTION
The first component is the Object Detection component
that detects a set of region proposals; Faster R-CNN [45]
with ResNet-101 [37] is used as a detector backbone which
shows good performance in scene-graph generation [42]

1https://www.tensorflow.org/datasets/catalog/wikipedia/ (Accessed Jan
26, 2024)
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FIGURE 3. Overview of the proposed method consisting of five components: (A) Object Detection detects features from each image in an image
collection, (B) Object Context Construction constructs the contextualized representation of the estimated context of each image, (C) External Knowledge
Integration finds the knowledge graphs based on the object contexts and integrates the knowledge graphs and contextualized representations,
(D) Relation Prediction predicts relationships between each combination of object contexts and contextualized representations, and (E) Sub-Graph
Confidence Score Calculation calculates scores of all objects from the relation prediction and then generates a summarized scene graph as an Output.

compared with other backbones [31]. Following the scene-
graph generation, from each image, a set of region proposals
B = {b1, . . . , bn} is predicted. Each region proposal bi
consists of a feature vector fi and an object label probability
li for the training phase.
In the inference phase, we modify an object detector to

parsemultiple images into the Relation Prediction component
that generates a summarized scene graph of an image
collection. Based on a single-image scene-graph generation
model, we build an object detector backbone to detect image
features fn and proposals bn. Then, we combine all image
features and all proposals as:

F =
{
[fn,1, . . . fN ,M ]

}
n=1,..,N , (1)

B =
{
[bn,1, . . . , bN ,M ]

}
n=1,..,N , (2)

where F is a set of feature vectors of all images, N is the
number of images, M is the number of region proposals of
each image, and B is a set of proposals of all images. All
predicted sets of region proposals and each region proposal
consists of a feature vector f and an object label probability l,
which is used in the Object Context Construction component.

B. OBJECT CONTEXT CONSTRUCTION
The second component is the Object Context Construction
component that constructs a contextualized representation
of a set of region proposals by concatenating them into
a linear sequence which is sorted by detected loca-
tions, [(b1, f1, l1), . . . , (bN , fN , lN )]. Then, a bidirectional
LSTM [39] is used as:

C = biLSTM([fn;W1ln]n=1,...,N ), (3)

where C is a set of object contexts, in which each object
context contains the hidden state of each element in the
linearization of B, W1 is a parameter that maps to the
distribution prediction represented in the matrix, and ln is a
probability vector of object labels. Each object context is used
to decode a class label with an LSTM as:

hn = LSTMn([cn; ôn−1]), (4)

ôn = onehot(argmax(Wohn)) ∈ R|C| , (5)

where cn is an object context vector in a set of object contexts,
C , hn is a hidden state that is used in the relation predictor,
and onehot(·) embeds a scalar value into a one-hot vector.Wo
is a parameter that maps to the hidden state.

C. EXTERNAL KNOWLEDGE INTEGRATION
Based on the idea of integrating external knowledge to
enhance the relation predictor, there are two stages. First,
we build a knowledge-graph based on the external knowledge
from ConceptNet [22]. Then, we build the encoding layer to
encode the external knowledge for incorporating it into the
relation predictor, whose knowledge-graphs are built based
on the class labels of a set of object contexts, C .

1) KNOWLEDGE-GRAPH CONSTRUCTION
The objective here is to build a word-embedding knowledge-
graph from ConceptNet. Since ConceptNet provides various
aspects of relation information, we build a knowledge-graph
focusing on semantic relations consisting of ‘‘relatedTo’’,
‘‘similarTo’’, and ‘‘synonym’’ to improve the relation pre-
diction of similar objects. In the building process, we first
initialize the word collection to retrieve the semantic relations
from VG200 [46] which consists of 150 labels by giving a
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class pair, (x, y), and then employ the connection between
(x, y) as (Vx ,Vy). Next, we gather all possible semantic paths
from Vx to Vy as P(x,y). Lastly, we employ GloVe word
embedding [47] to encode all words.

2) KNOWLEDGE-GRAPH INTEGRATION
For the External Knowledge Graph Integration component,
we first build a Graph Convolutional Network (GCN)
using the GlobalSortPool operator [48], which enables
learning from nodes on graph topology instead of summing
them up, as an encoder for a knowledge-graph. Then, all
knowledge-graphs of class pair (x, y) in vector form are
encoded into knowledge feature vectors as:

e(x,y)kb = GlobalSortPool(N(x,y)), (6)

where N(x,y) represents all embedding nodes from P(x,y).
In the training and evaluating processes, we first retrieve all

predicted class pairs from the object context as (x, y). Next,
we retrieve all possible connection paths from the knowledge-
graph, P(x,y). Lastly, all of them are encoded into e(x,y)kb and
then concatenated into each contextualized representation
to estimate relationships as discussed in the Relationship
Prediction component.

D. RELATION PREDICTION
The obtained object contexts by the previous process are
used in the Relation Prediction component, in which a set
of regions, B, and objects are encoded by a bidirectional
LSTM as:

E = biLSTM([cn;W2̂on]n=1,...,N ), (7)

where E is a set of edge contexts, in which each edge context
contains the states of the bounding-box regions and W2 is
a mapping parameter of ôn. Each edge context is combined
with the knowledge embedding and predicts the relation of
each pair as:

gi,j = (Whei)(Wtej)fi,j, (8)

ri,j = argmax([gi,j; e
(i,j)
kb ]Wr ), (9)

where ei and ej are edge context vectors of head and tail, Wh
andWt are parameters of heads and tails, fi,j is a feature vector
for the union of two bounding boxes, Wr is a parameter that
maps to the relation predictor, ekb is a knowledge embedding
vector, and ri,j is a relation vector which is transformed into
the relation and probability score by using softmax as an
activation function.

E. SUB-GRAPH CONFIDENCE SCORE CALCULATION
From the implementation of multiple images to generate a
summarized scene graph which aims to generate all possible
relationships across images, we also need to re-estimate the
relationship scores in a generated scene graph instead of
using only confidence scores. The estimation aims to estimate
triplet scores which are calculated from subject, predicate,
and object confidence by analogy of PageRank [23].

Algorithm 1 Sub-Graph Score
Input: objslabel, objsscore, objbox, pairssubj,obj, relslabel,

relsscore
Output: A summarized scene graph
Result: pagerankscore
objects = {};
relations = {};
foreach obj, score, box ∈ (objslabel, objsscore, objsbox) do

if obj ∈ objs then
objects[obj] =

(objects[obj][0] + score, objects[obj][1]);
else

objects[obj] = (score, objects[obj][1]);
end

end
meanobj = mean(objsscore)
foreach obj ∈ objects do

if obj.score < meanobj then
objects.remove(obj)

end
triplets = []
scores = []
foreach
subj, obj, pred, score ∈ (pairssubj,obj, relslabel, relsscore)
do

if sub, obj ∈ objects then
triplets.add(⟨subj, obj, pred⟩)
scores.add(score)

else
triplets.add(⟨subj, obj, pred⟩)
scores.add(score)

end
end
pagerankscore = PageRank(triplets, scores)

To calculate a score, we first find summarized scores of
each object using its confidence score as object scores as:

obj_scorei =

N∑
j=0

obj_confidencei,j, (10)

where N is the count of the object. From each object
score, we find the mean object score from all object scores,
meanobj as:

meanobj =
1
M

M∑
i=0

obj_scorei, (11)

whereM is the number of the unique object. The mean object
score is used for filtering out the object scores that are lower
than the mean score.

Lastly, we collect the object pairs whose relation scores
are greater than the mean score and employ PageRank to
calculate the confidence score of each object whose process
is detailed in Algorithm 1.

IV. EVALUATION PROCESS
Due to the lack of ground truth for this task, we use common
metrics that are used in image collection scene-graph
summarization tasks [2], [19]; similarity [16], [49], [50],
coverage [28], [51], and diversity [52], [53] of a generated
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FIGURE 4. Overview of the evaluation process consisting of three components: From Candidate Triples and Reference Triplets, Word Embedding encodes
both of them into a vector form, (A) Triplet Score Calculation calculates all triplet similarities between candidates and references, (B) Maximum Value
Selection finds the maximum value of the similarity scores of each triplet pair, and (C) Graph Similarity Score Calculation calculates the final score.

scene graph to the ground-truth scene graph of each image.
However, most evaluation techniques focus on estimating
the generating precision, in which the evaluation score tends
to increase based on the quantity of the generated results.
As such, we introduce an evaluation process which focuses
on evaluating the quality of a summarized scene graph using
F-score based on estimating the similarity between scene
graphs. Since the estimation of the similarity between scene
graphs has been attempted with various approaches, the
technique of using word embedding shows a better qualitative
estimation in scene-graph generation [50].

Given a ground-truth scene graph G = {t1, . . . , tn}
consisting of ground-truth triplets, a generated scene graph
Ĝ =

{̂
t1, . . . ,̂ tm

}
consisting of generated triplets, and each

triplet in a scene graph denoted as t = ⟨s, p, o⟩, where s
is subject, p is predicate, and o is object, we first employ
GloVe [47] word embedding to transform all words in each
triplet into token representation in a vector form. Then,
we compute the similarity score of each triplet of a generated
scene graph and each triplet of a ground-truth scene graph.
Figure 4 illustrates the evaluation process.

The calculation process is adapted from BERTScore [54]
to the evaluation process. In the BERTScore calculation,
first, they implement Bidirectional Encoder Representations
from Transformers (BERT) [55] embedding to tokenize all
words of candidate and reference sentences into a vector
form. Next, it calculates the similarity score between all
words and then selects the maximum score of each word
based on greedy matching. Lastly, it calculates the precision
score, recall score, and F-score as evaluation metrics of a
candidate sentence. From this process, we can also evaluate
the false negative of a candidate scene graph, whereas other
evaluation techniques mainly focus only on precision. Thus,
in the proposed evaluation process, from all candidate triplets
and reference triplets, we first encode all triplets into vector
forms. Next, we calculate the similarity score between each
triplet of all reference triplets and all candidate triplets. Then,

we select the maximum similarity score of each candidate
triplet calculation. Lastly, we calculate the precision score,
recall score, and consecutively, F-score as a scene graph
similarity score. Details of each process are described below.

A. TRIPLET SCORE CALCULATION
Given a generated triplet in a vector representation t̂ and a
ground-truth triplet in a vector representation t , each triplet
comprises tokens of a subject, a predicate, and an object.
To calculate the similarity between token representations,
we estimate the similarity between each ground-truth subject
and object and the generated subject and object by calculating
the similarity S as follows:

S(a,b) =
a · b

∥a∥ · ∥b∥
, (12)

where a and b are the corresponding embeddings of each pair
of subject or object, a · b is the dot product between vectors
a and b, and ∥a∥ and ∥b∥ are the L2 norms of vectors a and
b, respectively.

As the similarity between subjects or objects is calculated
based on word similarity, the similarity between predicates
is specifically estimated in the definition of entity-based
similarity. The calculation of the scene-graph similarity
focuses on the relationship between objects, which can reduce
redundant information [49]. We employ the calculation of the
similarity between predicate Spred(pi, p̂j) as:

Spred(p, p̂) =

{
1 p = p̂;

0 p ̸= p̂.
(13)

In the following, given all similarity scores of triplet t ,
consisting of subject similarity score Ssub, predicate similarity
score Spred, and object similarity score Sobj, we compute them
into a single value by calculating the mean scoreMsim as:

Msim(ti, t̂j) = mean(
{
Ssub(si, ŝj), Spred(pi, p̂j), Sobj(oi, ôj)

}
).

(14)
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Algorithm 2 Graph Similarity

Input: G, Ĝ
Output: F-score of reference and candidate graphs
Result: FSGSim
FSGSim = 0
scoresmax = []
foreach ⟨s, p, o⟩ ∈ G do

scores = []
foreach ⟨̂s, p̂, ô⟩ ∈ Ĝ do

Ssub(s, ŝ) =
s·̂s

∥s∥·∥̂s∥ ;

Spred(p, p̂) =

{
1 if p = p̂;
0 otherwise p ̸= p̂;

Sobj(o, ô) =
o·̂o

∥o∥·∥̂o∥ ;
score = mean({Ssub(s, ŝ), Spred(o, ô), Sobj(p, p̂)});
scores.insert(score);

end
scoresmax.insert(max(scores))

end
RSGSim =

1
|G|

sum(scoresmax)

PSGSim =
1∣∣Ĝ∣∣ sum(scoresmax)

FSGSim = 2 PSGSimRSGSim
PSGSim+RSGSim

B. MAXIMUM VALUE SELECTION
From similarity scores between triplets, we use the maximize
function to find the maximum matching score and then
summarize all maximum matching scores MaxSGSim, where
each candidate triplet t is matched to a ground-truth triplet
t̂ as:

MaxSGSim =

∑
ti∈G

max
t̂j∈T̂

(Msim(ti, t̂j)). (15)

C. GRAPH SIMILARITY SCORE SELECTION
To estimate the final similarity score between scene graphs,
we first calculate the recall score with the ratio of the sum of
the maximum similarity score to the norm of a ground-truth
graph as:

RSGSim =
1

|G|
MaxSGSim. (16)

Then, we calculate the ratio of the sum of the maximum
similarity scores to the norm of a generated graph as:

PSGSim =
1

|Ĝ|
MaxSGSim. (17)

Lastly, the mean of RSGSim and PSGSim is calculated as:

FSGSim = 2
PSGSimRSGSim

PSGSim + RSGSim
. (18)

We demonstrate in Algorithm 2 the calculation process for
all triplets of a summarized scene graph and a ground-truth
scene graph.

V. EXPERIMENTALS
A. DATASET
Due to the lack of image summarization datasets, we adapt
two datasets, including an image captioning dataset,

MS-COCO [24], and a visual scene-graph dataset, Visual
Genome [33], for the experiments. For the training
process and the preliminary evaluation, we use the VG200
dataset [46], which is based on the Visual Genome dataset
consisting of 50 relationships and is balanced in category
frequency. It contains 101,174 images from the MS-COCO
dataset. To experiment on a scene-graph image-collection
summarization task, we build a testing set of an image
collection with annotation by grouping images in the
MS-COCO testing dataset using VSE++ [56], which is
an image retrieval task by estimating the similarity of
image contexts and image captions. Following the Karpathy
split [57] on the MS-COCO dataset, the initial testing set
was selected from 5,000 images of the MS-COCO testing
set. Then, we retrieved 5 images, with each image annotated
with 5 captions, to build a collection, making our testing set
contain 5,000 collections with 6 images each. Lastly, we build
the ground truth of each image collection for the evaluation
process in a scene-graph form.

As image summarization aims to generate summarized
information that can describe the overall contexts of an
image collection and the limitation of the ground truth in the
proposed method, we use Neural Motif [35] pre-trained on
the VG200 dataset and evaluated on Scene-Graph Detection
Recall (SGDet R@100), to generate a scene graph of each
image in a collection for evaluation. Then, we consider them
as the ground truth of each collection for evaluating the
proposed method which makes each collection consisting of
6 ground-truth scene graphs.

B. TRAINING STRATEGY
With the lack of ground truth in scene-graph summarization
datasets, we first train and evaluate the scene-graph gen-
eration on a single-image from the VG200 dataset. In the
training phase, we train the model following the VG200
dataset where the number of labels and predicates are
150 and 50, respectively. The learning rate is initiated to
0.12. We use Adam [58] for optimization and cross-entropy
loss as the loss function. To pre-evaluate the model for
multiple-image scene-graph summarization, we observed a
SGDet recall to select the best checkpoint for the proposed
method.

C. EVALUATION
As the proposed method is modified from a single-image
scene-graph generation approach, we consider evaluating
the proposed method in two aspects. First, Multiple-Images
Scene-Graph Summarization evaluates the proposed method
for an image-collection scene-graph summarization. Second,
Single-Image Scene-Graph Generation evaluates the pro-
posed method to confirm that it is still sustainable for a
single-image scene-graph generation. Lastly, we benchmark
the evaluation process in Benchmark for the Evalua-
tion Process to show the accountability for scene-graph
generation.
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1) MULTIPLE-IMAGES SCENE-GRAPH SUMMARIZATION
For multiple-images scene-graph summarization, we evalu-
ate the proposed method for image-collection scene-graph
summarization on the MS-COCO dataset. Due to the lack
of ground truth, we follow the common practice in the
evaluation of scene graph generation in three perspectives;
‘‘Coverage’’ [28], [51], ‘‘Diversity’’ [52], [53], and ‘‘Simi-
larity’’ [49], [50]. For the Coverage evaluation, we follow
the graph theory to estimate the coverage of a generated
scene graph to ground-truth scene graphs. For the Diversity
evaluation, we implement two evaluation processes compris-
ing graph diversity and Graph Edit Distance (GED) [59].
For the Similarity evaluation, we adopt a simple contrastive
learning framework for connecting scene-graphs and images
(GICON) [60] which is the evaluation technique by learning
the similarity between an image and a scene graph with
bounding boxes or without bounding boxes. Since the pro-
posed method focuses on image collection summarization,
we evaluate the proposed method only without bounding
boxes. Lastly, we employ an evaluation process that evaluates
the similarity of a summarized scene graph to the ground truth
by SGSim proposed in Section IV.

2) SINGLE-IMAGE SCENE-GRAPH GENERATION
For single-image scene-graph generation, we evaluate the
performance on VG200 compared with the baseline to
ensure that the proposed method still sustains good results.
We evaluate three scene graph evaluation metrics; Scene
Graph Classification Recall (SGCls Recall), which measures
subjects, objects, and predicates using ground-truth bounding
boxes, Predicate Classification Recall (PredCls Recall),
which is the relationships prediction using ground-truth
bounding boxes, subjects, and objects, and Scene Graph
Detection Recall (SGDet Recall), which is the prediction of
subjects, objects, and predicates without using the ground
truth.

3) BENCHMARK FOR THE EVALUATION PROCESS
Here, we discuss the evaluationmetric to ablate the evaluation
process. As it is proposed for evaluating scene-graph
generation, we benchmark it on single-image scene-graph
generation with the VG200 dataset by comparing it with
other scene-graph generation baselines. Aswe aim to evaluate
based on the false negative generation, we assess it with
two evaluation metrics. First, Scene Graph Detection Recall
(SGDet Recall) is a popular scene graph evaluation metric.
Next, GICON is an evaluation metric from learning the
similarity between a generated scene graph and an imagewith
bounding boxes or without bounding boxes.

D. BASELINES
As discussed in the previous section, the evaluation is divided
into three tasks; multiple-images scene-graph summarization,
single-image scene-graph generation, and the ablation study
on the evaluation process. In this section, we introduce
baseline methods corresponding to each of them.

1) BASELINE FOR MULTIPLE-IMAGES SCENE-GRAPH
SUMMARIZATION
To evaluate the proposed method in the multiple-images
scene-graph summarization setting, we choose three baseline
methods; Semantic Image Summarization (SImS) [2], Image
Collection Captioning (ICC) [8], [9], and k-Medoids [17].
SImS is a scene graph summarization method on the
MS-COCO dataset by finding frequent sub-graphs. ICC is a
scene graph summarization method preciously proposed by
us for generating a caption based on graph theory. k-Mediods
is a clustering method in which the implementation of the
summarization is the same as the SimS [2]. All of these
baselines are evaluated on the testing set of the MS-COCO
dataset which consists of 6 images per image collection.

2) BASELINE FOR SINGLE-IMAGE SCENE-GRAPH
GENERATION
To evaluate the proposed method for single-image scene
graph generation, we choose four baseline methods; Iterative
Message Passing (IMP) [41] which uses the standard
Recurrent Neural Network (RNN) via message-passing
process, Neural Motif [35] which is implemented based
on Stacked Motifs architecture, Transformer [42] which
is based on causal inference, and Visual Context Tree
(VCTree) [40] which takes advantage of the structured object
representations. All of the baseline models are trained on
the VG200 dataset. Then, we observe the best checkpoint
on SGCls Recall, PredCls Recall, and SGDet Recall for
evaluating the proposed method on the VG200 dataset.

3) BASELINE FOR ABLATION STUDY ON THE EVALUATION
PROCESS
For the ablation study on the evaluation method, we aim
to benchmark the evaluation process compared to other
evaluation metrics. We choose four state-of-the-art scene-
graph generation methods on the Visual Genome dataset;
Neural Motif, Transformer, Relationship Detection Network
(RelDN) [61], and Relation TRansformer (RelTR) [43].

E. RESULTS
We report the results of the proposed method in the three
evaluation tasks; multiple-images scene-graph summariza-
tion, single-image scene-graph generation, and the ablation
study on the evaluation process.

1) MULTIPLE-IMAGES SCENE-GRAPH SUMMARIZATION
In this section, we discuss the results of the proposed method
for an image collection summarization task. For comparison,
we select top-10 scores in three aspects; Coverage, Diversity,
and Similarity. The results are shown in Table 1.

a: COVERAGE
For Coverage evaluation, the coverage of objects and subjects
(nodes), and predicates (edges) are evaluated based on graph
theory [30]. The results in Table 1 show that k-Medoids
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TABLE 1. Evaluation of an image collection summarization compared with SImS [2], k-Medoids [17], ICC [9], and the proposed method by estimating
Coverage [30], Diversity [30], GED [59], GICON [60], and the proposed evaluation process (SGSim). Results in bold indicate the highest scores whereas
those underlined indicate the second highest scores.

achieves the best score in generating a summarized scene
graph, whereas the proposed method achieves the second
place.

b: DIVERSITY
For Diversity evaluation, we use two evaluation metrics
which consist of Diversity and GED. Diversity evaluation
refers to the similarity distance between a summarized scene
graph and a ground-truth scene graph. The results in Table 1
show that the proposed method achieves the best scores in
both Diversity and GED, whereas SImS achieves the second
place for Diversity and k-Medoids achieves the second in
GED.

c: SIMILARITY
For Similarity evaluation, Table 1 shows that the proposed
method achieves the best score compared to the other
methods on GICON which estimates the Similarity between
scene graph and images, and the proposed evaluation process,
SGSim which is evaluated based on scene-graph contents.
Meanwhile, k-Mediods achieves the second place in both
GICON and SGSim.

d: QUALITATIVE RESULTS
Qualitative results are shown in Fig. 5. It demonstrates that the
proposed method performs good in finding the relationship
and estimating the commonly occurring information. For
example, the first example shows how the proposed method
can find all common object information, such as sheep and
cow, and further estimate the commonsense relationship
between them based on the location, hill. In contrast, SImS
and k-Medoids generate a summarized scene graph based on
the most frequent object, cow, neglecting the other common
object, sheep. ICC can generate information of sheep but
cannot infer common relationships between sheep and cow.
The second example shows how the proposed method can
handle the overall context location of an image collection,
while SImS, k-Medoids, and ICC lose some of the overall
location information in their results. The third example
shows the performance in finding summarized information
of bus, and their common environmental characteristics
street, building, and people are connected. In contrast, SImS,
k-Medoids, and ICC fail to include the object people.

From the overall evaluation scores, the proposed method
achieves better scores in Diversity and Similarity per-
spectives, whereas k-Mediods achieves the best score in
Coverage. Most k-Medoids scores achieved the second place
except for Diversity where SImS [2] achieved the second
place. Meanwhile, the qualitative results showed the perfor-
mance of finding common context being beneficial for, e.g.,
summarization tasks such as photo album summarization.

e: LIMITATIONS
There are two main limitations of the proposed method.
First, the relationships are not grounded in visual information
but rather built from the commonsense knowledge graph.
As such, it might result in generated summaries not fully
related to the actual image collection. Second, the method
might not adjust well to large image collections, as it aims
to estimate all possible relationships of all images. This can
result in high memory requirements for summarizing large
image collections.

2) SINGLE-IMAGE SCENE-GRAPH GENERATION
The single-image scene-graph generation results are shown
in Table 2. Since the objective of the proposed method
mainly observes Scene Graph Detection (SGDet), we focus
on its result when assessing a single-image scene-graph
generation task. The result of SGDet R@100 shows that
Nerual Motifs [35] and Transformer [42] achieve better
results compared with the proposed method while the
proposed method achieves better results compared with
IMP [41] and VCTree [40]. In contrast, the results of R@20
and R@50 show that the proposed method achieves better
results only compared with IMP [41]. As the proposed
method aims to enhance the relation prediction toward unseen
relationships, it is not restricted to the ground truth in a single-
image scene-graph generation as shown in the result. As the
proposed method shows better scores compared to IMP in
SGDet evaluation, RelDN in SGCls, and IMP and RelDN in
PredCls, it is still sustainable for a single-image scene-graph
generation even if it cannot overcome other scene-graph
generation baselines.

However, since the proposed method targets multiple-
images summarization, this out-of-task evaluation was purely
performed to understand the limitations of this approach.
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FIGURE 5. Comparison of the proposed method with baseline methods in three examples. (A) Proposed shows a summarized scene graph generated by
the proposed method. (B) SImS demonstrates that by Semantic Image Collection Summarization [2]. (C) k-Medoids demonstrates the clustering
technique [17]. (D) ICC demonstrates that generated by our previous work [8], [9] using graph theory.

3) ABLATION STUDY ON THE EVALUATION PROCESS
We benchmark our evaluation process with existing methods
that evaluate graph-oriented (graph structure) and graph

similarity-oriented (similarity vertices and edges) compared
to other evaluation methods. In the benchmark process,
we construct a benchmark for single-image scene-graph
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TABLE 2. Evaluation of single-image scene-graph generation on an image from the VG200 dataset compared with baseline methods; IMP [41], Neural
Motif [35], Transformer [42], VCTree [40], RelDN [61] and the proposed method by observing recall scores of SGDet, SGCls, and PredCls. Results in bold
indicate the highest scores whereas those underlined indicate the second highest scores.

TABLE 3. Benchmark of the evaluation methodology compared with SGDet with R@20, R@50, and R@100 and GICON [60] for both location free and with
bounding box. SGSim with k is the number of triplets that is used in calculating the similarity score. Results in bold indicate the highest scores whereas
those underlined indicate the second highest scores.

generation for the VG200 dataset and perform analysis
on four models; Neural Motif, Transformer, VCTree, and
RelTR. For graph-oriented evaluation, we use Scene Graph
Detection Recall (R@20, R@50, R@100) as a metric. For the
graph similarity-oriented evaluation, we use GICON which
is a learnable graph similarity metric for evaluating with
bounding boxes (W/ Bounding Box) and without bounding
boxes (Location Free). For each evaluation, we find the top-k
triplets that are used in the process in which k are 10, 30, and
50 triplets. In the triplet selection, we observe the relationship
scores to find the top-k triplets for the benchmark.
The benchmark results in Table 3 report the results based

on the number of retrieved triplets with confidence scores
which shows the relevance to the rise of the scores. However,
the high number of triplets does not always increase the
similarity in the evaluation process, as shown in Transformer
and RelTR. As RelTR is provided for inferring a fixed-size
set of triplets, even if we increased the number from 30 to
50 triplets, the accuracy is still not significantly improved.
Meanwhile, Transformer shows little improvement when
increasing the retrieving number of triplets, and the other
methods show significant improvement when increasing
the retrieving number of triplets. Consequently, the other
evaluation metrics, GICON and SGDets, focus on evaluating
precision and recall, so the high retrieving number of triplets
tends to result in high scores.

VI. CONCLUSION
We introduced a scene-graph summarization method follow-
ing the idea that aims to enhance the relation predictor in

the training process for an image collection incorporating
external knowledge. The results show that the proposed
method can generate a summarized scene graph that is
good in diversity and similarity perspectives compared with
other baseline methods while it still lacks accuracy in terms
of the coverage information. Additionally, the experimental
results showed the advantage of using external knowledge
in grasping the overall context of an image collection for
finding the common relationships across images which is
beneficial for a summarization task, especially, photo album
summarization. However, the limitation is the lack of actual
ground truth in the evaluation process. In the future, we plan
to build a more suitable dataset for an image-collection
scene-graph summarization task.
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