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ABSTRACT There is a great demand for automatic detection and classification of blood cells (BCs) in
clinical medical diagnoses. Traditional methods, such as hematology analyzer and manual counting were
laborious, time intensive, and limited by analysts’ professional experience and knowledge. In this paper,
the one-stage network based upon improved YOLOv5s is provided to detect BCs. First, the Transformer
and bidirectional feature pyramid network (BiFPN) are introduced into the backbone network and neck
network for refining the adaptive features, respectively. Second, Convolutional Block Attention Module
(CBAM) is added to neck network outputs to strengthen the key features in space and channel. In addition,
an Efficient Intersection overUnion (EIoU)was introduced to improvemodel accuracy regarding localization
and performance. The improvements are embedded into the YOLOv5s model and termed YOLOv5s-TRBC.
The experiments on the blood cell dataset (BCCD) show that in the three types of BCs detections, the mean
average precision (mAP) of the method proposed reached 93.5%. Furthermore, comparative experiments
demonstrate that the model could perform favorably against the counterparts with respect to mAP rate, and
the model’s Giga Floating-point Operations Per Second (GFLOPs) is reduced to 1/6 of YOLOv5, which
provides a potential solution for future computer-aid diagnostic systems.

INDEX TERMS Blood cell detection, YOLOv5s, BiFPN, convolutional block attentionmodule, transformer.

I. INTRODUCTION
Complete blood count (CBC) is known as full blood exami-
nation (FBE) or full blood count (FBC), which is a common
medical diagnostic examination that provides the percent-
age of cells in the blood. The human blood is composed
of plasma and cellular components that contain thrombo-
cytes (platelets), erythrocytes (or red blood cells (RBCs)),
and leukocytes (or white blood cells (WBCs)). The primary
function of RBCs is delivering oxygen to and taking back
CO2 away from the tissues via blood flow. WBCs are an
important component of the immune system that defends
against infection and diseases. The coagulation mechanism
of platelets helps blood to clot and recover wounds. CBC
reports the numbers and types of RBCs, WBCs, platelets, and
hemoglobin. In general, an abnormal change in the count of
BCs type may be related to a type of illness [1]. So, doctors
can infer and judge a person’s health by analyzing various
features of BCs as well as their counts.
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BCs detection and identification technology could help
doctors effectively in disease diagnosis, including that of
malaria, dengue, anemia, infections, leukemia, and so forth.
[2]. For example, A low RBCs count means anemia [3].
Thrombocytopenia characterized by abnormally low levels
of platelets, is a feature of acute leukemia and aplastic
anemia. For WBCs, an abnormally high WBC count often
occurs in infections and inflammation. For patients under-
going chemotherapy or radiation therapy, monitoring of BCs
counts is essential for them, because these treatments lead to
a decrease of the BCs production in bone marrow.

Counting of BCs was widely used for blood tests in clinical
settings. The procedure included the BCs classification and
detection. The traditional method regarding BCs detection
is hemocytometer, hematology analyzer, and manual count-
ing [4]. Although the CBC can be completed automatically by
laboratory equipment or hematology analyzer, manual count-
ing is essential to confirm abnormal results. However, manual
counting requires high skill and experience for clinical labo-
ratory analysts and is time-intensive, imprecise, tedious, and
fallible. So, an automated, convenient, and effective system is
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required. The CBC by blood smear images functions impor-
tantly to diagnose diseases and check human health status.
With advancements regarding deep learning (DL) techniques,
the accuracy and robustness of object detection in computer
vision are more and more indispensable. Many investigators
have begun exploring DL techniques to assist the automatic
detection based on blood smear images.

This study aimed to develop a one-stage detector based on
improved YOLOv5s to resolve the issues of BCs detection
and classification for CBC whose cell density represents a
challenge for computer vision. Present study aims to detect
and classify WBCs, RBCs, and Platelets in a given blood
smear image through DL. Transformer, BiFPN, and CBAM
were integrated into YOLOv5s, so as to improve the model
accuracy with a small amount of additional computation.

The main contents of this presentation contain:
1) Transformer encoder was put into the YOLOv5s back-

bone to ameliorate the network to get the global
information.

2) The BiFPN was added to the neck and enhanced
the path aggregation network (PANet). The BiFPN
could improve the network to integrate richer semantic
features and spatial information.

3) The CBAM attention was integrated into the original
YOLOv5s network, which helps the network to focus
on the key information.

The paper is organized as follows. Section II introduces
the research background and relevant works. Section III
describes the principle and structure of the proposed net-
work for BCs detection. Section IV depicts the dataset and
experimental setup. Section V evaluated and analyzed the
experiments. Section VI discusses the outputs. Section VII
presents the conclusions and provides an outlook for future
research directions.

II. RELATED WORKS
In recent years, there have been various ways of CBC
through blood smear images. Some researchers applied tradi-
tional machine learning (ML) algorithms and computer visual
techniques for RBCs or WBCs detections.

In [6], Khodashenas et al. utilized the Otsu thresholding
method to binarize images in HSV color space and anno-
tate the white components as WBC. However, the method
didn’t consider the structural characters of different BCs.
In [7], Acharya et al. uses a modified watershed transform
to separate RBC. Then A color-based image segmentation
applying the K-medoids algorithm is performed. Finally,
the proposed model extracted features utilizing the region
props function and fed them into the decision tree classifier.
The classification rules were generated by the decision tree.
Biswas and Ghoshal [8] use the Sobel filter to perform BCs
edge detection. Their method can detect cells well but can’t
recognize the type of BCs.

Artificial neural network (ANN) belongs to ML, which
is the pioneer of DL technology. Simge Çelebi and col-
leagues [9] implemented an ANN-based algorithm to

characterize six types of BCs. They use the color feature to
seek the BCs center positions, convert RGB into Grayscale,
and find the edge of cells by using Otsu thresholding. Then,
possible rectangle regions of cells are predicted by these fea-
tures. At last, the Artificial neural network with convolutional
layers is performed to classify the type of cell in each region.

After G.E. Hinton introduced the concept of DL,
researchers investigated and proposed different DL-based
object detection for BCs detection and classification. Usually,
the Object detectors employ convolutional neural network
(CNN) to extract features. For example, [10] proposes
CNN-based framework to classify BCs automatically. The
framework includes convolution, max pooling, and fully
connected layers.

Present detection networks could be grouped into three
categories: two-stage detector based upon region proposals,
one-stage detector based upon regressions, and object detec-
tor based on anchor-free [11], [12]. YOLO [13], SSD [14],
and RetinaNet [15] are typical one-stage detector mod-
els. The representative two-stage detector contains Fast
R-CNN [16], Faster R-CNN [17], and R-FCN [18]. Represen-
tative anchor-free object detector includes CornerNet [19],
CenterNet [20], MatrixNet [21], FCOS [22], and RepPoints
[23]. Two-stage detector consists of two parts: region of inter-
est generation and candidate box regression. Furthermore,
the one-stage directly detects and predicts the target without
the region proposal step. Therefore, the two-stage detector
achieves higher accuracy than the one-stage detector, whereas
one-stage detectors have the advantage in inference speed.

Based on object detectors described above, Shakarami et al.
[24] proposed an improved YOLOv3 [25], which uses Effi-
cientNet, Dilated Convolution, and Depthwise Separable
Convolution for BCs detection. They got a mean average
precision (mAP) of 89.86%. Alam and Islam [4] proposed
an approach utilizing various CNN architectures embedding
YOLO algorithm to capture 3 classes of BCs. They achieved a
mAP of 74.37%with ResNet50. Chen et al. [26] used a single
shot detector (SSD) to automatically identify and calculate
various BCs. They applied Resnet50 as backbone network
and reached a mAP of 77.47%. These models do not fully
utilize and fuse multi-layer feature maps, which limits the
performance of the model. Inspired by Region-CNN [27],
[28], Ruberto et al. combined the edge boxes region proposal
method and knowledge-based strategy to detect RBCs and
WBCs [29]. Their model improved the accuracy, while the
detection speed was low.

Lee and colleagues [30] adopted VGG16 to extract features
from blood smear images and introduced Region Proposal
Network (RPN) to hypothesize BCs locations. CBAM [31]
was put to improve the model accuracy. Experiment results
show that their model has limited when BCs overlap with
each other. Liu et al. [32] proposed an improved YOLOv3
with multiscale fusion and applied it to Platelet Detection.
Xia et al. [33] adopted transfer learning to extract features of
blood microscopic images, and then utilized Faster-RCNN
network for the detection of WBCs. Data validated that the
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FIGURE 1. Model structure of YOLOv5. Conv, CSP, SPP, and concat are the convolution layer, cross stage partial
structures, spatial pyramid pooling, and concatenation respectively.

method that proposed achieved over 90% precision. However,
compared to other one-stage networks, the Faster-RCNN
has huge parameters and will lower the speed of detection.
Habibzadeh et al. [34] designed a CNN with architectures
of LeNet5, to solve the problem of classification of normal
WBC. Their experimental results indicate that convolutional
neural network improved recognition accuracy even for
low-quality images.

Attention mechanism [35] which simulates the human
brain to focus on the importance of information, has
been known to be an effective approach to advance
model performance. Huang et al. [36] added CBAM to
YOLOv5 framework’s backbone network and bidirectional
feature pyramid network (BIFPN) to the neck network and
improved the BCs detection accuracy by 89.9%. Mean-
while, Gu and Sun [37] introduced Transformer [35] encoder
block and CBAM attention into YOLOv5 frameworks. The
proposed method improves the network’s performance of
distinguishing BCs in cell-dense areas and achieves a high
accuracy.

Small object detection is often a challenge for many
object detection models. In terms of improving the detection
effect of small targets, TPH-YOLO [57] combines Trans-
former, CBAM, and YOLOv5, and achieves good results in
remote sensing image target detection. Liang et al. [58] intro-
duced transformer and BiFPN into the YOLOv5 to enhance
the multi-scale feature fusion and improve the recognition
accuracy of small objects.

III. METHODS
This section provides an accurate description regarding
implementations of the proposed networks. The network
was developed based on the framework of YOLOv5s and
improved the mAP of the BCs detection task.

A. YOLO ARCHITECTURE
YOLO [13] is a one-stage detector algorithm, which achieved
a good balance between accuracy and execution time and was
used widely in many industrial scenarios and research. It has
been developed into many versions, such as YOLOv2 [38],
YOLOv3 [25], and YOLOv4 [39] et al. The latest version is
YOLOv7.

The YOLOv3 achieved an outstanding performance
improvement owing to adopting Darknet-53 structure as the
backbone network to obtain features, and Feature Pyramid
Networks for multi-scale feature fusion. YOLOv4 proposes
PANet [5], spatial pyramid pooling (SPP) [40], Mish activa-
tion function, and self-adversarial training, along with other
technologies to improve detection precisions. The backbone
network employs CSPDarknet53, which incorporates the
Cross Stage Partial Network (CSPNet) [41], and reduces the
calculation amounts maintaining high precisions.

YOLOv5 was released by Ultralytics in June 2020.
YOLOv5s, YOLOv5m, and other versions were developed
based upon YOLOv5. The YOLOv5 structure is illustrated
in Fig. 1. The whole network is divided into 3 parts: Back-
bone network, Head network, and Neck network. Input
images are transferred to the backbone network (Backbone)
to extract features. Through feature pyramid network (FPN)
[42] and PANet network (Neck) to accomplish the feature
map fusions from multi-layers with different scales. Finally,
three branches of the output of the neck network were sent
into the prediction network (Head) to predict the bounding
box, category, as well as confidence.

YOLOv5 adopted spatial pyramid pooling (SPP) [40] to
promote feature extractions of backbone networks. Addi-
tionally, In the neck network, YOLOv5 used a combination
of FPN and PANet network structures. The FPN conveys
top-down semantic information, and the PANet conveys
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FIGURE 2. Flowchart diagram of the proposed method for BCs detection. a) Backbone with three transformer encoder blocks (block 8) at the end. b) The
neck uses the structure of a bidirectional feature pyramid network (BiFPN). c) Three convolutional block attention modules (CBAM) were integrated into
the neck at the end.

top-down localization information. Then, the two are con-
catenated to improve the effectiveness of feature fusion.
Finally, the three output feature maps of Neck were fed into
the Head network for the classes prediction and bounding
boxes prediction separately.

The selection and optimization of the loss function is
essential for models based on Neural Networks. The loss
function predicts different degrees between the actual value
and model predictions. The YOLOv5 loss function con-
tains bounding box loss, classification loss, and confidence
loss. CIoU loss [43] is utilized to calculate bounding box
loss. Binary Cross Entropy (BCE) loss is used to obtain
confidence and classification loss. Additionally, weighted
non-maximum suppression (NMS) operation is performed to

filter the object detection anchor boxes and locate the target
position precisely [44].

B. YOLOv5s NETWORK IMPROVEMENT
Compared to other versions of YOLOv5, the YOLOv5s
was lightweight and achieved a good balance between pre-
cision and speed. So, this study proposed an improved
YOLOv5s-based network for BCs detection and classifi-
cation task, termed as YOLOv5s-TRBC (Transformer +

BiFPN + CBAM). Current work focuses on three works,
which are the backbone network and the neck network
optimizations, attention mechanism embeddings, and loss
function optimization. Fig. 2 depicts the YOLOv5s-TRBC
network structure.
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1) INTRODUCTION OF TRANSFORMER ENCODER IN
BACKBONE
As shown in Fig. 2, the overall structure is built based on
YOLOv5s. The original Conv located before SPP is replaced
by the Transformer encoder blocks. The transformer [35]
was first introduced in natural language processing (NLP)
and achieved significant progress in many NLP tasks. Vision
Transformer (ViT) [45] proposed by Google, is redesigned
and transferred to computer vision. It splits an image into
patches, linearly tokenizes each of the patches, and processes
them through transformer encoders. In addition, ViT uses
self-attention to integrate features across the image and learn
the correlations between patches. The transformer encoder
structure is shown in Fig. 3. Combining Transformer to the
model, helps the backbone network to learn the relationship
between objects and improves the capability of the backbone
network to detect global information as well as upper-level
features.

FIGURE 3. Architecture of transformer encoder [35].

2) IMPROVEMENT OF THE NECK NETWORK
The mechanism of the neck of the YOLOv5 is PANet. The
PANet has a top-down pathway and an extra bottom-up path
aggregation network to fuse multi-scale features. Although
the PANet structure is efficient, it results in higher computa-
tional costs. Based on the PANet, structure, the BiFPN [46]
adds additional interactions between output and input nodes
at the same level directly and removes the nodes of single
input edges to reduce computation. Therefore Bi-FPN has
fewer parameters and computation than PANet, and makes
the prediction network more sensitive to objects with differ-
ent resolutions. Fig. 4 shows the difference between PANet
and BiFPN. Accordingly, the PANet at the Neck network of
YOLOv5 was replaced with BiFPN to improve the network
performance as well as reduce parameters.

3) ATTENTION MECHANISM EMBEDDING
In most computer vision jobs, it is significant to obtain
key features from the complex backgrounds of an image.

FIGURE 4. Schematic of the different feature fusion structures. PANet [5]
(left) adopts a top-down pathway to fuse multi-scale feature maps (P3 –
P6); BiFPN [46] (right) adds a residual connection between the original
input and output node, which is shown in the figure by the red arrow.

FIGURE 5. Overview of CBAM. The module includes channel attention
module (CAM) and a spatial attention module (SAM) [31].

Convolutional block attention module (CBAM) [31] is a
lightweight and efficient attention module, which can be eas-
ily integrated into many DL models. As shown in Fig. 5, the
CBAM combines spatial attention (SA) and channel attention
(CA) modules. SA is helpful for the model to capture the
structure of the object. CA can help the model to focus
on essential and significant colors. The CBAM attention
operation is formulated as Equation (1).

F′
= MCAM (F) ⊗ F,

F′′
= MSAM

(
F ′

)
⊗ F ′ (1)

In (1), F denotes the input feature map, ⊗ is an element-
wise multiplication, MCAM and MSAM denote CA extraction
operation and the spatial dimension extraction operation,
respectively. Fig. 5 illustrates the CAM and SAM processes.
As given in Fig. 5, the input feature map is subject to

max pooling and average pooling. Afterward, a multi-layer
perception (MLP) network, element-wise summation, and
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the Sigmoid activation were executed sequentially to achieve
CA. The CAM operation for the attention weight Mc can be
represented in Equation (2).

As provided in Fig. 5, the input feature map is subject
to max pooling and average pooling. Multi-layer perception
(MLP) network, element-wise summation, and the Sig-
moid activation were executed sequentially to achieve CA.
The CAM operation for the attention weight Mc can be
represented in Equation (2).

Mc (F) = σ (MLP (AvgPool (F)) +MLP(MaxPool (F))

= σ (W1

(
W0

(
Fcavg

))
+ σ (W1

(
W0

(
Fcmax

))
(2)

In (2), F denotes the input feature map, σ is the sigmoid
function,W0 and W1 are MLP weights.
SAM takes the channel-refined feature as input. The SAM

performs channel-wise compression via average pooling
and max pooling operations to obtain 2 feature matri-
ces: F savg,F

s
max . Then, the F

s
avg and F

s
max were concatenated

and fed into the convolution layer with sigmoid activation
function. The computation is mathematically expressed in
Equation (3):

Ms (F) = σ (f 7×7 ([AvgPool (F)) ;MaxPool (F)]))

= σ
(
f 7×7

([
F savg;F

s
max

]))
(3)

where σ is sigmoid activation function, f 7×7 denotes a
7 × 7 convolution operation.

Concerning that various types of BCs have different shapes
and colors. To effectively improve the BCs detection accuracy
by CA and SA on multi-scale feature maps, three CBAM
modules were integrated at the output of the neck network
as given in Fig. 2.

4) DETECTION HEAD AND LOSS FUNCTION
The detection network is responsible for object detection.
It uses 3 scale feature detection headers to convolve feature
maps generated by the neck network and outputs 3 scales of
featuremapswith 20× 20, 40× 40, and 80× 80 grids respec-
tively. The detection head with 20 × 20 grid feature maps
has the largest receptive field and is used to predict large-size
targets. The detection Head with 40× 40 grid feature maps is
used to detect medium-size targets. The detection head with
80 × 80 grid feature maps is used to detect small-size targets.

The bounding box loss of YOLOv5’s detection net-
work consists of three parts: Intersection over Union (IoU)
loss [47], center distance loss, and aspect ratio loss. IoU is
defined as the ratio of the intersection to union with predicted
and ground truth boxes, and can be expressed as Equation (4):

IoU

=
Ground Truth Bounding Box ∩ Predicted Bounding Box
Ground Truth Bounding Box ∪ Predicted Bounding Box

(4)

On the basis of IoU [47], GIoU loss [48], DIoU loss [43],
CIoU loss [43] and EIoU loss [49] were extended. And,
YOLOv5 adopted CIoU to obtain the IoU loss.

Although the effectiveness of CIoU and other loss func-
tions were demonstrated in many studies. After many
comparative experiments were conducted, it was found that
EIoU (Efficient Intersection over Union) is the most effective
among the aforementioned methods. The formula of EIoU is
shown in Equation (5).

LEIOU
= Liou + Ldis + Lasp

= 1 − IoU +
ρ2(b, bgt )

(wc)2 + (hc)2
+

ρ2(w,wgt )

(wc)2
+

ρ2(h, hgt )

(hc)2

(5)

where, ρ represents the Euclidean distance between the pre-
diction box and ground truth box, wc and hc are the width and
height of the smallest rectangle covering the prediction box
and the ground truth box, b and bgt are the center coordinates
of predicted and ground truth boxes, respectively. w and wgt

are width of predicted and ground truth boxes. h and hgt are
heights of predicted and ground truth boxes.

EIoU loss considers the overlap area, the central point, and
the aspect ratio of the geometric factors, which are essentially
consistent with the morphological characteristics of the BCs.
Therefore, EIoU loss function was selected to detect the
network in this article.

IV. EXPERIMENTS
A. DATASETS
In this study, the proposed network was trained with the
BCCD dataset [50]. The dataset contains 364 BCs images
validating three various classes of cells. All images are blood
smear images with a resolution of 640 × 480. Fig. 6 shows
two samples of blood smear images in BCCD dataset.

FIGURE 6. Sample blood smear Images in the BCCD dataset.

The BCCD dataset was grouped into training and testing
sets with a ratio 8:2. Furthermore, K-fold cross-validation
(CV) was adopted to evaluate the model reliably. Details of
3 types of BCs in two subsets are provided in Table. 1.

To improve themodel’s generalization capacity and robust-
ness, data augmentation was performed by mosaic [39].
Mosaic splice four images by randomly cropping, flipping,
and color gamut changes for each image, and form a new
image. In addition, Mosaic enriches the background of
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TABLE 1. Data profile for two subsets.

the images and alleviates the problem of data imbalance
of BCCD. So, the mosaic data augmentation strategy was
applied in image preprocessing and enriched the input dataset
for model training.

B. EXPERIMENTAL PLATFORM AND PARAMETER
SETTINGS
Experiments in current research are based on Pytorch
1.12 framework and CUDA 11.6 as the parallel computing
platform. The programming language is Python of version
3.9.12. The operating system of the experimental platform
is Windows 10 64bit operating system, and the CPU is Intel
Xeon silver 4216, and the runningmemory is 64GB. NVIDIA
GeForce RTX3080 graphic card is used for training and
testing.

The deep networks are running on a virtual environment
built by Anaconda3. The training parameters related to the
BCs detection model were as follows: the input image pixels
were 640× 640, the batch size was 16, the number of training
epochs was 300, and the initial learning rate was 0.0001.
In the training phase, Adam [51] combined with a momentum
optimization algorithm was adopted to train the network.

V. RESULTS
A. EVALUATION METRICS
The precision (P), recall rate (R), mAP, and GFLOPs are
4 most frequently utilized metrics to verify object detection
task. So, they were adopted to measure the detection perfor-
mance in this paper. The calculation formulas are expressed
in Equations (6)-(9):

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

AP =

∫ 1

0
P(R)dR (8)

mAP =
1
n

∑n

i=1
APi (9)

Here TP denotes true positive, FP denotes false positive, FN
is the false negative, AP denotes average precision, n is the
number of target categories to be detected, mAP represents
the average AP value for all classified objects.
The Precision shows how many of the proposed

model’s predictions are correct predictions out of all
the predictions made. The Recall represents the ratio of

correctly predicted positive objects to the total number
of positive objects. mAP mainly assesses the recogni-
tion effect and is widely used to evaluate the detec-
tion system. mAP@0.5 means experiments on the mAP
at the intersection of union (IoU) of 0.5. Additionally,
the confusion matrix is employed to validate the model
performance.

TABLE 2. BC detection performance of proposed network.

FIGURE 7. PR curves for 3 types of BCs.

B. PERFORMANCE EVALUATION
To fully utilize the training dataset, K-fold CV strategy
(typically K = 5) was employed to validate the model
reliably. The original training set was split into 5 subsets
randomly. Each of sets took turns as testing set, and the
remaining sets were applied as training sets. Finally, the
model is evaluated via test set. The YOLOv5s-TRBC per-
formance is presented in Table 2. The model that proposed
obtained a mAP of 0.935 for the detection and identifica-
tion of the three types of BCs. The precision and recall
were 0.874 and 0.888, respectively. The precision-recall
(PR) curve of each class is shown in Fig. 7. Horizon-
tal and vertical coordinates are the recall and precision,
respectively.

As Table 2 and Fig. 7 show, the mAP@0.5 of theWBC and
platelets was higher than 0.90, influencing the model’s ability
to identify two types of cells effectively.
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FIGURE 8. Confusion matrix on test set for YOLOv5s-TRBC.

Fig. 8 provides the Confusion matrix of the model for
3 types of BCs. It is clear that YOLOv5s-TRBC better
distinguishes the BCs types in the testing sets. The prediction
correct rates of RBCs, WBCs, and platelets are 91%, 97%,
and 97%, respectively.

Fig. 9 displays the detection situations of the improved
model. The images arranged in the first row are the detec-
tion results by YOLOv5 model. Images arranged in the next
row are the detection results by YOLOv5s-TRBC. Images
listed in the first column are the detection results of all three
types of BCs. The images listed in the next column are
WBCs detection results. The last columns list the platelets
detection result images. The detection effect in Fig. 9 clearly
shows that the YOLOv5s-TRBC detects almost all of the
RBCs, WBCs, and Platelets. However, as shown in Fig.10,
due to the larger count of RBCs in the blood, and the phe-
nomenon of cellular overlap between RBCs, the problem of
missed detection occurs in both models occasionally. Com-
pared to YOLOv5 model, the improved YOLOv5s-TRBC
model performs well in the detection of the Platelets and
WBCs. For small target detection, YOLOv5 misses a lot
of small targets, while YOLOv5-TRBC detects more small
targets.

In order to further verify the effectiveness of the proposed
model, the heatmaps of the model detection were drawn by
gradient-weighted class activationmapping (Grad-CAM) in a
visual way. The heatmap can clearly show the regions of inter-
est of the network by highlighting them in red. In Figure 10,
three heatmaps were generated by layer 18th, layer 22th,
and layer 26th at the neck network of the proposed model,
respectively. As depicted in Figure 10, the brighter regions in
the heatmaps exhibit themodels ability to capture and localize
the relevant features associated with three types of blood
cells.

Fig. 11 displays the model’s train/validation precision,
train/validation recall performance, train/validation loss, and
mAP. As you can see intuitively from Fig. 11, after
200 epochs, the loss reaches the lowest value and tends to
balance.

C. DETECTION PERFORMANCE COMPARISON
To evaluate the proposed model performance, a variety of
recent related works and state-of-the-art object detection
models were selected to conduct experiments, including
Faster R-CNN [17], CenterNet [20], YOLOv3 [25], YOLOv4
[39], YOLOV5, YOLOv7, and YOLOv8. Faster R-CNN and
CenterNet are classical models for object detection and clas-
sification. Also, the proposedmodel was comparedwith some
latest methods listed in the literature [24], [36], [37], [52],
[53], [54].

All experiments were conducted under similar conditions,
and we compared the classification performance upon the
testing set. Table 3 displays the YOLOv5s-TRBC improved
model’s detection performance. As shown in Table 3, the
YOLOv5s-TRBC model has a high performance in terms of
Recall and mAP@0.5, compared to other detection models.
Moreover, the GFLOPs of the proposed model is 17.0 less
than YOLOv3, YOLOv4, YOLOv5, et al.

From the mAP@0.5, the comprehensive effect of the pro-
posed model is much better than other comparative models.
Compared to YOLOv5, Although the Precision of YOLOv5s-
TRBC is reduced with a slight probability, the computation
amount is only 1/6 of the YOLOv5. Compared to the latest
SOTA object detectionmethods, themAP@0.5 of YOLOv5s-
TRBC (93.50%) is higher than that of YOLOv7 (91.20%)
and YOLOv8 (92.20%). YOLOv5s-TRBC (87.40%) is 3.1%
higher than YOLOv7 (84.30%) and YOLOv8 (84.3%) in
terms of precision, but YOLOv5s-TRBC (88.8.%) is less than
YOLOv7 (89.30%) and YOLOv8 (91.00%) in terms of recall.

Collectively, the YOLOv5s-TRBC model improved the
rate of correct detection and showed great potential for
application in the field of biomedicine.

D. ABLATION STUDIES
To explore the relative contributions of variousmodules in the
proposed network, ablation experiments were made on the
proposed model to verify the contribution of each improve-
ment. Table 4 shows performance comparisons between
ablation studies, including standard YOLOv5s, YOLOv5s
with transformer, YOLOv5s with Transformer and BiFPN,
YOLOv5s with BiFPN, YOLOv5s with Transformer and
CBAM, YOLOv5s with Transformer and BiFPN and CBAM.
As shown in Table 4, it can be observed that all designs of
the proposed model could increase the mAP. The inclusion of
Transformer, BiFPN, and CBAM has played a positive role in
the model accuracy improvement.

(a) The replacing CSP Bottleneck blocks in the orig-
inal version of YOLOv5s backbone network with trans-
former module increased precisions by 4.4% and mAP by
0.1% while reducing the number of GFLOPs. Compared
to the original YOLOv5s, the improved model has reduced
GFLOPs from 15.8 to 15.6 due to the transformer’s excellent
parameter compression scheme. The global contextual fea-
ture learning ability of the Transformer module can help to
improve model performance.;
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FIGURE 9. The detection results. The first lines are the detection result of YOLOv5; The second lines are the detection result of YOLOv5s-TRBC.

FIGURE 10. Visualization of the feature maps obtained by YOLOv5s-TRBC. (a) The heatmap of layer 18; (b) The heatmap of layer 22; (c) The heatmap
of layer 26.

FIGURE 11. The loss, precision, recall performance of YOLOv5s-TRBC model.
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TABLE 3. Comparison of different models on the BCCD dataset.

TABLE 4. Detection performance of multimodal fusion.

(b) As demonstrated in Table 4, experiments 3 and 4 indi-
cate that using the BiFPN can effectively enhance the feature
fusion at the neck network. The Precision and mAP@0.5 is
increased by 2.5% and 0.3%, respectively. Through the anal-
ysis of the detection samples, the adoption of BiFPN has
played a positive role in the model accuracy improvement.

(c) As demonstrated in Table 4, embedding CBAM to the
three outputs of the neck network alone will reduce the recall
and mAP@0.5 of the model. However, when the CBAM
module is embedded with the transformer and BiFPN, the
precision is increased by 3.7% and mAP is increased by
1.2%. The results illustrate that CBAMmodules can improve
the accuracy of the model by highlighting information from
feature maps enhanced by transformer and BiFPN while
suppressing useless information.

VI. DISCUSSION
In recent years, artificial intelligence andDL technology have
been used for diagnosis in medical imaging increasingly.
Automated detection and computing of BCs system based on
computer vision will solve the challenge of detection speed
and accuracy in medical diagnostics. However, there are two
significant problems that exist for detecting BCs. The first is
the diversity in the physical form of different types of BCs.
The second is the presence of cellular crossover, overlap of
RBCs in blood smear images makes it difficult to detect and
identify. To address these issues, in this study, Transformer
module, BiFPN, and CBAM were added to YOLOv5s to
enhance the accuracy of BCs detection and attained a 93.5%
mAP in all classes.

As shown in Fig. 9, for the proposed model, the higher the
contrast in size and color, the better detection and recognition.
The diameter ratio of platelets and WBCs is approximately
1:10. Therefore, the mAP@0.5 for the WBCs and platelets
reached 99.1% and 94.0%, respectively. However, the pro-
posed model has difficulties in detecting edge and dense
objects. An important challenge of blood cell detection is
the denseness of RBCs. The detection mAP@0.5 of RBCs
only reached 87.4% due to the density and overlap of RBCs.
Finally, the insufficient dataset and low-quality images also
affect the improvement of model performance.

VII. CONCLUSION
Automatically detecting and identifying BCs types by com-
puter aids can improve the doctors’ work efficiency as well
as accuracy and is becoming increasingly important for
medical diagnosis. This work presented a BCs detection
and classification network called YOLOv5s-TRBC based on
YOLOv5s. The proposed network uses a combination of
DL techniques in computer vision, including Transformer,
BiFPN, CBAM, and EIoU. Experimental outputs showcase
that the method proposed gains better detection. Meanwhile,
comparative experiment data verify the efficiency of the
fusion method. However, the BC detection models proposed
in this work still have some shortcomings. Therefore, fur-
ther optimization of this model is considered. In the future,
we will strive to improve the model by seeking more effective
methods or advanced model, such as using the Dynamic
Head [55] to obtain the optimization of the Detection Head
network, applying light-weighted GhostNet [56] to improve
the detection accuracy, among other methods [59], [60], [61].
The codes implementing the described model are available

at https://gitee.com/professor98911/YOLOv5s-TRBC.
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