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ABSTRACT Assisted and automated driving systems critically depend on high-quality sensor data to
build accurate situational awareness. A key aspect of maintaining this quality is the ability to quantify the
perception sensor degradation through detecting dissimilarities in sensor data. Amongst various perception
sensors, LIDAR technology has gained traction, due to a significant reduction of its cost and the benefits
of providing a detailed 3D understanding of the environment (point cloud). However, measuring the
dissimilarity between LiDAR point clouds, especially in the context of data degradation due to noise factors,
has been underexplored in the literature. A comprehensive point cloud dissimilarity score metric is essential
for detecting severe sensor degradation, which could lead to hazardous events due to the compromised
performance of perception tasks. Additionally, this score metric plays a central role in the use of virtual sensor
models, where a thorough validation of sensor models is required for accuracy and reliability. To address
this gap, this paper introduces a novel framework that evaluates point clouds dissimilarity based on high-
level geometries. Contrasting with traditional methods like the computationally expensive Hausdorff metric
which involves correspondence-search algorithms, our framework uses a tailored downsampling method to
ensure efficiency. This is followed by condensing point clouds into shape signatures which results in efficient
comparison. In addition to controlled simulations, our framework demonstrated repeatability, robustness, and
consistency, in highly noisy real-world scenarios, surpassing traditional methods.

INDEX TERMS 3D point cloud, noise factor, perception and sensing, sensor degradation.

I. INTRODUCTION and Automated Driving (AAD) systems [5]. LiDARs offer
Autonomous driving systems hold the promise of revolution- detailed high-resolution environmental information in the
izing transportation by providing safer and more efficient form of 3D point clouds. However, before adopting LiDAR
mobility [1], [2]. Ensuring the safety and reliability of technology extensively for perception tasks in AAD systems,

these systems is of paramount importance, and redundancy it is crucial to develop a fundamental understanding of how
of data plays a crucial role in achieving this goal [3]. varied environmental conditions can significantly impact the
Recent advances in semiconductor technology have pro- point clouds generated by LiDAR [6]. This understanding can
pelled LiDAR (Light Detection and Ranging) technology be achieved through a thorough quantification of the effects
forward through miniaturization, integration of components, that these conditions impose on the attributes and fidelity of

and providing higher processing power [4]. Thus this point clouds.
technology has emerged as a key component in Assisted
A. POINT CLOUD COMPARISON
The associate editor coordinating the review of this manuscript and A method for point cloud comparison finds applications in
approving it for publication was Jie Gao . diverse areas, including noise detection, sensor degradation
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assessment, and 3D model validation. Essential attributes for

these methods are:
« Rigid Body Transformation Invariance: The compar-

ison should not be affected by translation, rotation or
scaling of the point cloud.

« Robustness: The comparison should be affected only
by overall geometric properties of the point clouds.
Small changes in the point clouds does not necessarily
mean dissimilar point clouds. This is especially true in
automotive applications.

o Fairness: The comparison process should adhere to
fair evaluation criteria. For example, when assessing
two point clouds gathered from the same scene using
different LiDARs with varying resolutions, the method
needs to recognize their shared scene identity. This
becomes particularly critical when downsampling is
necessary. In instances where point clouds, acquired
from the same LiDAR but differing due to noise,
undergo downsampling that fails to provide a high-
quality representation, it may lead to inaccurate, high
dissimilarity scores.

« Efficiency: The comparison method should be efficient,
especially considering the large volume of point clouds.

In the field of AAD systems, LiDAR point cloud com-
parison has been predominantly used within the localization
pipeline, through registration methods [7]. The underlying
principle of registration method is to find point correspon-
dences between point clouds of sequential captures. Some of
the widely-used registration techniques are Iterative Closest
Point (ICP) and Normal Distribution Transformation (NDT)
[8], [9]. To improve the accuracy of registration (hence
localisation) many variations of these correspondence-based
methods has been proposed [10], [11], [12]. Besides point
cloud registration methods, only a few other techniques,
such as the Hausdorff or Chamfer distance methods, have
been developed and are used in commercial software [13].
These techniques employ point-by-point correspondence
search algorithms to identify the closest match in the
target point cloud for each point in the reference point
cloud [14]. Hausdorff and Chamfer distances have been
developed for a more general comparison between point
clouds, specifically, one prominent application is pattern
recognition [15]. In pattern recognition, points from various
objects surfaces are collected. If the geometrical distance
between two sets of points (the distance denotes how
dissimilar the two sets are) is within a specified range, the
two sets can be assumed to representing the same object. For
instance, these methods are used in classifying objects into
pre-determined categories [16].

Moreover, recently Neural Network (NN) methods have
been used in point cloud comparison either as part of
a method or independently. Since NN can detect many
features and objects in the scans, they are gaining popularity.
However, the uncertainties associated with deep learning
methods needs to be studied further to make them a practical
solution for AAD applications, especially safety-critical
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systems [17]. A deep learning method that is frequently used
for point cloud data analysis is PointNet [18]. PointNet takes
a point cloud as an input and then outputs a feature vector
which summarises the input point cloud and can later be
used for comparison purposes using a distance metric. For
example, PointNetLK uses sum of squared distances cost
function to align point clouds [19]. Another NN method is
called DeepPoint3D where local features of the point cloud
are learned using a Convolutional-NN [20]. Similarly, these
features can be compared for each point cloud. Measuring
similarity between two point-clouds using NN is still in
early stages and needs to be validated further. Analysing these
methods is beyond the scope of this paper.

Although the methods mentioned so far are effective in
their specific tasks, they fail to achieve a comprehensive
and universally applicable point cloud comparison metric
to quantify different degrees of sensor degradation caused
by environmental conditions [21], [22]. Additionally, point-
by-point comparison of data used in these methods is
highly sensitive to uncertainties and changes in the scene,
making it difficult to distinguish environmental impacts
from other scene changes. Another drawback of these
techniques is their limited capacity to control the degree of
change detection. Consequently, it remains unclear which
elements of the scene exerted a more significant influence
on the final comparison outcome. Moreover, due to the
substantial size of point clouds, these methods tend to be
computationally intensive. Furthermore, the output of these
methods necessitates normalization to enable meaningful
comparisons.

Several applications can benefit from a more comprehen-
sive and adaptable point cloud comparison. For instance,
comparing point clouds against reference data allows for
evaluating sensor data quality, particularly in adverse weather
conditions or other degradation events, with respect to
AAD system safety requirements. Previous studies have
highlighted the significant impact of degradation caused by
poor weather conditions on perception algorithms [5], [6],
[23]. Additionally, ensuring the safety of autonomous driving
systems requires extensive testing, which is impractical
through real-world driving alone. As a solution, a hybrid
approach combining simulation and real-world experiments
has to be adopted [24]. To validate the accuracy of simula-
tion environments, sensor models, and degradation models
against real-world conditions, a quantitative comparison
method is indispensable. Moreover, assigning a value to each
point cloud compared to a reference point cloud opens up the
possibility of establishing a relationship between this score
and various tasks in the AAD pipeline, such as the quality of
object detection and decision-making.

B. CONTRIBUTIONS

To address existing shortcomings in point cloud compar-
ison techniques, an innovative framework is introduced
that delivers distinct and stable dissimilarity scores when
comparing point cloud pairs. This framework aims to
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robustly and efficiently evaluate dissimilarity in LIDAR point
clouds across different environments. Our key contributions
include:

« Range-Based Downsampling: Tailored to LiDAR data,
this method retains critical information while assessing
the overall spatial composition of point clouds.

« Signature-Based Comparison: Using Probability Den-
sity Functions (PDFs) as an example, this feature
simplifies the task of comparison and adds resilience
to changes in the environment, such as the presence of
dynamic objects and occlusions.

o Scale-of-Interest (Sol) Selection: This feature allows
users to specify a minimum Sol, enabling analyses
tailored to application-specific requirements.

« Elimination of Point-by-Point Comparison: Unlike
traditional methods that require correspondence detec-
tion, our approach streamlines the comparison process
and significantly reduces computational time.

To validate the framework, both simulations and real-world
LiDAR scans from various settings are used. In real-world
experiments, despite our best efforts, slight changes in data
collection and the environment are inevitable. To address
this challenge, a statistical methodology that accounts for
these variations, enhancing the framework’s applicability
and ensuring consistent comparison results is suggested.
The proposed framework’s performance is evaluated against
benchmarks such as Hausdorff distance and ICP, confirming
its efficiency, consistency, and computational advantages.

C. PAPER STRUCTURE

The structure of this study is outlined as follows: In Section II,
a comprehensive review of existing methods employed
in point cloud comparison is presented. Additionally, this
section explores the details of two benchmark methods used
in this work: 1- Iterative Closest Point (ICP), and 2- Hausdorff
distance method. Moving on to Section III, various steps
of the proposed method are described. This begins with an
introduction to a novel range-based downsampling method,
followed by an explanation of point cloud signatures and
their comparison strategy. The subsequent section details
the experimental setups for both simulated and real-world
scenarios. In Section V, a thorough analysis is conducted,
with a specific focus on rain-induced degradation, occlusion,
and dynamic objects. This analysis draws from datasets
obtained in both simulated and real-world situations. The
article concludes with a succinct summary of key findings
and potential directions for future research.

Il. RELATED WORK

In this section, an overview of key methods for comparing
point clouds is provided. Among these, two correspondence-
based methods, namely ICP and Hausdorff distance, are
examined in more detail and are employed as benchmarks
for evaluating the hereby proposed point cloud comparison
framework. Additionally, shape-distribution-based methods
are reviewed as well. These methods, primarily employed for
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comparing 3D shapes, have served as partial inspiration for
the proposed framework.

A. CORRESPONDENCE-BASED METHODS

Point cloud registration is a well-known shape/scan matching
problem in computer vision and robotics. It aims to identify
the rigid transformation between two or more point clouds by
establishing correspondences between similar points within
those clouds.

1) ITERATIVE CLOSEST POINT (ICP) ALGORITHMS

One common approach to point cloud registration is to detect
a set of entities, such as points or features, in both point clouds
and then use iterative methods to find the transformation that
aligns the two point clouds based on these correspondences.
The Iterative Closest Point (ICP) algorithm is a popular
method that uses the Euclidean distance between the points
in one point cloud and their correspondences in the other
point cloud by minimizing a cost function [8], [10]. In other
words, ICP seeks to find the best possible match between
the two point clouds by adjusting their relative positions,
making them align as closely as possible. This iterative
refinement process continues until the algorithm converges
to an optimal alignment, improving the overall alignment
accuracy between the point clouds. Other methods, such as
Generalized-ICP and Trimmed ICP, have been proposed to
make the process more robust to incorrect correspondences
and outliers [11], [12]. The Normal Distributions Transform
(NDT) algorithm uses probabilistic methods to fit normal
PDFs on points falling in cubic volumes of the point cloud.
The transformation between two point clouds is estimated by
associating the PDFs of these two point clouds [9].

For comprehensiveness the ICP algorithm with Root Mean
Squared Error (RMSE) cost function is further expanded here
as it is used as a comparison for the proposed metrics.The
basic steps of ICP are briefly summarised in Fig. 1. The
method has been mainly used for localisation applications,
therefore it is usually performed to compare a moving
point cloud, Q, to a reference fixed point cloud, P. The
algorithm starts with an initial estimate of transformation
matrix consisting of rotation and translation elements and
applies it to points in Q. Then the RMSE (which uses
Euclidean distances) of corresponding points is calculated.
This process is repeated until either a minimum target RMSE
is achieved or number of iterations pass a certain user-defined
value. Both these limits are assigned by user and depend on
the specific application.

2) OTHER METHODS

While correspondence-based methods can provide good
results to compare point clouds from the same scene, they
are computationally expensive and heavily rely on the quality
and correspondence of detected entities. Therefore, there is a
need for more generic and more efficient methods to measure
the similarity or dissimilarity between two point clouds.
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FIGURE 1. Flowchart of a standard Iterative Closest Point (ICP) algorithm
to compare point cloud ‘P’ and ‘Q’ with RMSE as the cost function. RMSE
threshold or maximum number of iterations are user defined.

A different type of correspondence-based methods that
have been developed specifically for point cloud comparison
are Hausdorff and Chamfer distances, which are still used
in point cloud processing commercial software such as
CloudCompare [13]. The proposed framework in this work is
compared to the Hausdorff distance, therefore this distance is
briefly explained here. The Chamfer distance slightly differs
from Hausdorff distance.

The Hausdorff distance measures the maximum distance
(average distance in case of Chamfer distance) from each
point in one set to its nearest point in the other set. In the
context of comparing two point clouds P and Q, the Hausdorff
distance is defined as follows [25]:

dy(P, Q) = max | sup ianIIPi — qill, sup inf ||p; — gl

pi€P qi€ qicQPi€P

ey

where p; and g; are points belonging to point clouds P and
Q, respectively. The main disadvantage of Hausdorff and
ICP-RMSE is that their output measures are not bounded,
making the comparison among various scenarios under
different conditions challenging.

B. SHAPE-DISTRIBUTION METHODS
Shape distributions are statistical models that describe shapes
(with any dimensions). They have been used to quantify
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similarity between two shapes in many applications such
as pattern recognition in computer vision. An important
aspect in representing shapes as distributions (e.g. histograms
or probability distributions) is to choose a shape function
that captures distinct signatures of the shape. These shape
functions can be distances between two random points on the
surface, angles or areas that any three random points on the
surface make [15].

An advantage of using shape distributions to compare
point clouds is that the arduous tasks of registering the point
clouds, detecting and matching features or model fittings,
are no longer necessary. Furthermore, a whole point cloud
is now represented by a histogram which ensures faster and
more efficient computational effort compared to point-by-
point comparison methods. This method has been mostly
used in computer graphics and biology applications but there
have been a few works that have applied it to point clouds
[26], [27].

lIl. METHODOLOGY

In this section, the fundamentals of the proposed point
cloud comparison framework are discussed. The framework
comprises of two key steps: (1)- point cloud range-based
downsampling, (2)- describing the downsampled point cloud
using Probability Density Functions, and (3)- comparing
the PDFs to generate a dissimilarity score. Due to the
selected metric this score is bounded between O and 1.
Furthermore, various techniques have been utilized to ensure
a fair comparison between the PDFs. The overview of the
proposed framework is presented in Fig. 2. Each stage is
explained in details in the rest of this section.

A. NOVEL RANGE-BASED DOWNSAMPLING METHOD
Acknowledging the computational and time-intensive nature
of direct point cloud analysis, a range-based downsampling
method is introduced as the first step in the framework.
LiDAR points are generally more accurate and offer higher
resolution in close proximity to the sensor. Therefore, in line
with our objective of efficient and precise point cloud
comparison, our downsampling strategy prioritises points
based on their closeness to the LiDAR sensor. Specifically,
a greater number of points near the sensor and fewer as
the distance increases are collected. This approach not only
optimises computational speed but also retains essential
elements necessary for an effective comparison.

In applications involving AAD, the point clouds can be
remarkably large, often comprising millions of points to
represent a single snapshot of the vehicle’s surroundings.
To ensure manageable processing, downsampling becomes
essential. This process entails the removal of a portion
of points from the point clouds. Several downsampling
techniques exist, such as random elimination and grid
averaging filtering methods. Random elimination method
removes points by a user-defined percentage, while grid
averaging method divides the point cloud into small cubes
and selects representative points from each cube. These
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FIGURE 2. Steps of the proposed point cloud comparison framework, with relationship to equations and intermediate steps outputs.

methods do not take into account that the point cloud is denser
near the LiDAR sensor and the accuracy per point is higher.
The accuracy of the downsampled point cloud is crucial for
effective point cloud comparison.

To address the shortcomings of traditional downsampling
techniques, this paper introduces a novel range-based down-
sampling method. In order to maintain the critical features
of the original point cloud, this method retains more points
closer to the sensor and the number of retained points
decreases as the distance from the sensor increases.

The method begins by identifying the maximum radial
range in the point cloud P, denoted as Rpax in Eq. 2, between
the points in the point cloud p; and the LiDAR sensor
position oy :

Riax = max (d(Pi, (_JL)) (2)
pi€P

In this equation, d(p;, or) is the Euclidean distance
between p; and or. Subsequently, Ryax is partitioned into n
exponentially growing sections, each represented by Ar;:

Ari = Ry X (1 — e*”) 3)

Here, A is a parameter controlling the exponential growth
rate. Within each section Ar;, a uniform random distribution
function is employed to sample a portion of the points,
controlled by the user-specified parameter N:

100
P=F (Psi, ~ % IPS,»I) )
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Fig. 3 illustrates a sample implementation of the
range-based downsampling method. The maximum range
is divided into 10 sections (Fig. 3a) and 25% of points in
each section is selected. Due to this selection mechanism and
the LiDAR data collection principle, the number of points
in each section decreases as the distance from the sensor
increases (Fig. 3c). This range-based approach provides a
more selective method for capturing points from the scene
compared to conventional random sampling techniques. This
innovative range-based downsampling method facilitates the
comparison of point clouds with different maximum ranges.
Consequently, it enhances the robustness of comparisons,
a crucial aspect for assessing the quality of point clouds,
especially in ensuring the safety of AAD systems.

B. POINT CLOUD SIGNATURES AND COMPARISON

The second step of the proposed point cloud comparison
framework starts with the calculation of a shape function
on the point cloud. Next, a PDF from the shape function is
created as a point cloud signature. Then, a suitable metric
is used to compare the signatures of different point clouds
effectively. The underlying concept involves condensing the
intricate geometrical information characterizing the point
cloud shape into a compact signature represented by a PDF.
This PDF can be efficiently compared with other PDFs,
enabling streamlined point cloud comparison. While this
approach draws inspiration from pre-Neural-Networks era
shape matching problems [15], it is tailored and refined
to suit our LiDAR point cloud analysis to accommodate
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FIGURE 3. An example of the implementation of range-based
downsampling method: a) schematic of range sections and number of
points that fall in each section for a sample point cloud; b) the original
point cloud; c) downsampled point cloud using range-based method with
10 sections and 25% of points in each section.

the fundamental characteristics that were defined in the
introduction section:

« Rigid Body Transformation Invariance: The point
cloud comparison framework ensures invariant compar-
isons by handling translations and rotations without the
need for registration. It offers an efficient and robust
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solution for point cloud analysis, even in scenarios
with less than 30% overlap between point clouds which
results in unreliable results in registration methods.

« Robustness: To enable effective handling of small
perturbations, occlusions, and dynamic objects within
the scene. By comparing the point cloud signatures,
the framework remains resilient to partial variations
in the same scenes, making it advantageous for
analyzing sensor degradation and validating sensor
models.

o Fairness: Elements of the same scale are exclusively
compared with one another in the two point clouds,
providing an equitable and meaningful comparison.

« Efficiency: The proposed framework excels in effi-
ciency compared to traditional point-by-point com-
parison methods (registration or Hausdorff methods).
By summarizing the geometrical information into point
cloud signatures, the comparison process becomes
streamlined and efficient.

The foundational step in creating point cloud distribution
signatures involves meticulously selecting geometric func-
tions that generate unique distributions characterizing the
point cloud shape. The proposed work focuses on surface
attributes, including distances, angles, and areas, as they
effectively represent the point cloud geometry. This study
specifically employs D2 function. This function calculates
distances between every pair of points within the point
cloud. The result is a square matrix, sized according to the
point cloud, containing all pairwise distances. This matrix
effectively captures the spatial relationships among the points
in the point cloud.

In the next step, the PDFs are constructed based on the
D2 functions, representing essential geometric attributes of
the point cloud. The determination of the number of bins for
each PDF is directly influenced by the Scale of Interest (Sol),
which represents the minimum scale of distance of interest
in centimeters and is defined by user. The number of bins
(nbins) based on Sol and maximum range (R,ax) is defined
by:

. Ryyax x 100
nbins = [ Sol ] ®))
By adjusting the Sol, the PDFs are tailored to focus on desired
specific geometric details.

While comparing two point clouds, the challenge arises
when their PDFs have different numbers of bins and varying
data ranges. To address this, an interpolation technique is
adopted, mapping the PDFs onto a third PDF that spans the
interval [min(min(f;), min(f2)), max(max(f;), max(f>))] and
separates it into n discrete intervals. This transformation
ensures that the corresponding elements being compared in
each bin align properly, allowing for an equitable comparison
between the PDFs.

Now that the PDFs have been formed in a manner that
ensures fairness in comparison, the next step is to select
an appropriate metric for comparing them. The Hellinger
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metric is selected for this matter, due to its following
properties [14]:

o Symmetry: The Hellinger distance is symmetric, mean-
ing H(P, Q) = H(Q, P). Therefore, the order in which
the PDFs are compared does not affect the result,
ensuring fairness and consistency in the point cloud
comparison process.

o Sensitivity: The Hellinger distance is sensitive to
even small differences between PDFs, making it a
reliable metric for detecting subtle variations in point
cloud geometric signatures. This property is crucial for
identifying sensor degradation and other critical changes
in perception tasks.

o Interpretability: The Hellinger distance is inter-
pretable, allowing researchers and practitioners to gain
insights into the dissimilarity between point clouds
based on the magnitude of the computed distance.
A higher Hellinger distance indicates more signifi-
cant differences between the PDFs and, consequently,
between the corresponding point clouds.

o Efficiency: Computation of the Hellinger distance
involves basic arithmetic operations, making it com-
putationally efficient and suitable for large-scale point
cloud comparisons, especially in the context of real-time
applications in automated and autonomous driving
systems.

The Hellinger distance is a metric widely used for
comparing PDFs. Given two PDFs P and Q corresponding
to different point clouds, the Hellinger distance H (P, Q) is
defined as follows:

n

H(P, Q) = % > (VP — Vi), ©)

i=1

where p; and g; represent the probabilities at bin i for PDFs P
and Q, respectively. The Hellinger distance ranges between
0 and 1, with O indicating that the two distributions are
identical, and 1 indicating complete dissimilarity [14].

IV. GENERATION OF SIMULATION AND REAL-WORLD
DATASETS

This section presents a comprehensive evaluation of the
efficacy of the proposed point cloud comparison framework.
The assessment involves subjecting the framework to various
degradation levels using carefully controlled simulation data.

A. SIMULATION SETUP
In the simulation setup, the ego vehicle was equipped with a
LiDAR sensor similar to the Velodyne Alpha Prime LiDAR,
which closely replicates real-world LiDAR measurements.
The LiDAR parameters are reported in Table 1. Both the
simulation and the LiDAR sensor update at the same rate of
0.1 seconds (10 Hz) for simplicity.

The simulation spans a total duration of 126 seconds,
allowing ample time to observe and evaluate the framework
performance over an extended period. Throughout the
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TABLE 1. Velodyne Alpha prime LiDAR parameters.

Parameter Value
Update Rate 10 Hz
Number of Channels 128
Vertical Field of View 40°
Vertical Resolution 0.2°
Horizontal Field of View 360°
Horizontal Resolution 0.1°
Maximum Range 180 meters

simulation runs, the LiDAR sensor on the ego vehicle
captures point cloud data at each time step, providing
snapshots of the surrounding urban environment. Fig. 4
presents an example scene from the simulation, along with
its corresponding LiDAR point cloud. To comprehensively
study our proposed framework, variations of the simulation
scenario are designed, namely: under rainfall conditions with
various rain rates, occlusions, and dynamic object presence
in the scene. These scenarios are detailed in following
subsections.

(a) A scene from the simulation

(b) LiDAR point cloud scan of the scene

FIGURE 4. An example of a simulated scene and its LiDAR point cloud
scan generated by the virtual sensor.

1) RAINFALL CONDITION

In the context of sensor readings, adverse weather conditions
such as rainfall can significantly impact data quality.
To assess the robustness of the dissimilarity framework
under rainfall-induced degradation, a well known rain model
proposed is used [28], [29].
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The model starts by considering range data, where it has
been found that regardless of the rain rate (rr), the error on
range measurements (d;) remains below 2% [28]. To model
rain noise on range, a sample is drawn from a normal
distribution, A/, with a mean of zero and a standard deviation
determined by d; and R:

d = d; + N(0,0.02d;(1 — e 7)) ©)

Moreover, considering the impact of rain on point inten-
sities (/;), a fractional reduction parameter §; is introduced,
representing the extent of intensity reduction for each point.
This parameter is determined by the new range d’i and the
rain rate rr:

8 = Ii —Iip _ efZarrbdi’ -1 ®)
Ip

In this equation, /;o represents the new intensity value for

point i, and a and b are fitting parameters set to 0.01 and 0.6,

respectively [29].

To account for significant signal attenuation that may
lead to miss-detection of points, the new intensities ; are
further compared to the minimum detection threshold set
by the LiDAR manufacturer, denoted as 1,,,. This threshold
serves as a critical parameter to identify points with intensity
values below the detectable range. The comprehensive
process of this rain model, encompassing both range-based
modifications and intensity reduction, is depicted in Fig. 5.

Point cloud with
no rain
New ranges
Eq. 4.1

New intensity
Eq. 4.2

New > Detection
Intensity threshold

Remove the point,

FIGURE 5. Flowchart depicting the implementation of the rain model on
LiDAR point cloud data. The model simulates the effects of rain, including
range data modification and intensity reduction.

- Keep the point

2) OCCLUSION SCENARIO

The proposed Point Cloud Comparison Framework’s strength
lies in its utilization of PDFs as signatures, which suggests
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that the dissimilarity score will exhibit tolerance to occlusions
and dynamic objects. To thoroughly investigate the impact
of occlusions, a comprehensive study is conducted using
scenarios involving multiple vehicles within the LiDAR’s
field of view (FoV), as illustrated in Figure 6.

l:l LiDAR coverage

. LiDAR position

x(m) Longitudinal
direction
Lateral direction

(a)

(b)

(c)

FIGURE 6. Occlusion scenarios: (a) 6 cars in the field of view without
interfering with each other’s points, (b) 8 cars with 2 of them out of the
line of sight of LiDAR, and (c) 12 cars with 6 of them out of the line of
sight.

In the scenarios, vehicles were strategically positioned to
ensure that LIDAR beams hitting them do not interfere with
each other, allowing for an isolated analysis of occlusion
effects. To further evaluate the influence of occlusion, addi-
tional vehicles were placed behind the initial setup, resulting
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in scenarios with eight and twelve vehicles (Figures 6b and
6¢, respectively).

3) DYNAMIC OBJECTS

In addition to examining occlusions, our investigation also
explores the influence of dynamic objects on the framework’s
performance. To conduct this assessment, four vehicles
and two bicycles are introduced, strategically positioned
with predefined initial locations and moving at constant
velocities, as depicted in Figure 7. By incorporating dynamic
objects into the scene, the aim is to thoroughly evaluate
how the framework handles complex scenarios with moving
elements. The presence of dynamic objects, such as other
vehicles, pedestrians, and cyclists, in the operational envi-
ronment of Autonomous and Automated Driving systems
is inevitable. Therefore, it is crucial to analyse the perfor-
mance of the proposed framework in the presence of such
objects.

LiDAR coverage

Cyclist

<

Longitudinal
direction
Lateral direction

. LiDAR position
(m

(m)

-

X
4
- Trajectory

FIGURE 7. The scenario with dynamic objects. The scene includes four
vehicles and two cyclists, all moving at constant velocities with various
directions.

B. REAL-WORLD EXPERIMENT

Real world data was collected at the Carissma Outdoor Test
Facility at the Technical University Ingolstadt of Applied
Sciences in Germany, as part of the EU ROADVIEW project.
The facility is an outdoor enclosed test track; therefore,
provides a controlled environment to perform precise tests.
The LiDAR used was an Ouster OS1 128 channel 360°
LiDAR. Water sprinklers were set up along the test facility
which when turned on were designed to create rainy
conditions. There were 16 sprinklers in total, 8 on each
side with 16m separation between them in the longitudinal
direction and 8m between them laterally, as shown in Fig. 8.
Data was collected both with the sprinklers turned off,
creating the clear weather condition, and with them turned
on, creating the rainy condition. Rain rate was designed to be
the equivalent of 10mm/h but was measured to have a mean of
8.68mm/h. A Euro NCAP Car target was placed 28m from the
LiDAR sensor to enable comparison of the LIDAR’s ability to
detect a target. The clear weather and rainy data is compared
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and the results are discussed in Section V and shown
in Fig. 8.

FIGURE 8. Carissma outdoor test facility.

V. SIMULATION AND EXPERIMENTAL EVALUATION

In this section, the results of the comparative analysis
of the proposed point cloud comparison framework are
presented. The simulation studies were designed to test the
framework’s robustness and accuracy under various scenarios
with controlled conditions. On the other hand, the real-world
study was conducted to evaluate the framework in a practical
setting. A comparative analysis is also performed between
the proposed framework and the Hausdorff distance and ICP-
RMSE methods, widely used for point cloud processing. The
results of these studies are presented and discussed in detail
below.

A. SIMULATION STUDY
In a preliminary assessment, a comparative analysis is
performed using simulated data from both clear and rainfall
weather conditions. The results of the proposed framework
are compared with two other widely used techniques:
1) Hausdorff distance, and 2) the Root Mean Square
Error (RMSE) obtained from the Iterative Closest Point
(ICP) registration between two point clouds. By Comparing
our proposed framework with two current methods in the
literature, it is possible to discuss the shortcomings of
these prevalent methods and how are proposed framework
addresses them. Furthermore, this will shed light on the
possible future directions of the current research. Fig. 9
showcases three heatmaps, each corresponding to one of
these methods, to compare five consecutive scans from clear
weather (names starting with clear) to themselves and to their
associated rain condition scans (names starting with rain).
The calculations are conducted using a rain rate of 30 mm/hr.
An immediate advantage of our proposed framework is
observed in Fig. 9a, where the dissimilarity scores are
presented. Our method’s output dissimilarity score is always
bounded between 0 and 1, without any post processing
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FIGURE 9. Comparing results of 50 consecutive clear weather scan from
simulation and their associated rainy scans for: a) Our proposed
framework. b)Hausdorff distance method, and c) ICP-registration’s RMSE.

required. The scores calculated by the Hausdorff distance
(Fig. 9b) and ICP-RMSE (Fig. 9¢) are both unbounded;
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in other words, their output can take on any value up to
infinity [14].

Another observation from Fig. 9a is that the score of
comparing a scan with itself is not exactly zero due to
randomness in the range-based downsampling unlike the
Hausdorff distance and RMSE-ICP methods which both
result in zero or very small values, respectively. However,
the same-scan score from our framework represents the
minimum value in the row. To minimize the impact of
randomness, the percentage of points selected from each
section was adjusted. Ultimately, 25% of points from
30 sections were selected, resulting in the minimum score
value for the same-scan comparison.

Moreover, as scans are consecutive, an increase in the
dissimilarity score is expected as they become further apart.
Our proposed framework in Fig. 9a reflects this expected
behaviour, in contrast to the Hausdorff distance (Fig. 9b) and
ICP-RMSE (Fig. 9¢) where the consistency seems somewhat
random. For instance, in the last row of both Figs. 9b
and 9c, the unbounded nature of the Hausdorff distance
and ICP-RMSE methods makes interpreting the results
challenging, especially in cases where different sensors with
varying specifications are used.

Another essential advantage of our method is the ability
to select a desired Sol. This flexibility allows us to either
compare only the general large structures of two point clouds
or focus on specific small effects, such as rain-induced
degradation. In contrast, both the Hausdorff and ICP-RMSE
are point-by-point comparison methods, and considering the
uncertainties present in real-world data, the possibility of
producing inconsistent result is high. This is clearly observed
in Fig. 9b and Fig. 9c.

Furthermore, the ICP-RMSE is designed to register over-
lapping point clouds and slight changes in the environment,
which are common in AAD applications, and may result in
highly different scores. This sensitivity to minor variations
poses challenges in real-world scenarios, where data can
be subjected to clutter and dynamic objects in the scene.
Moreover, the ICP-RMSE does not produce symmetric
results (i.e. the results comparing point clouds P and Q is
different from comparing Q and P) which is not desirable
for point cloud comparison III-B. On the other hand, our
proposed framework produces symmetric scores observed
in Fig. 9a. In fact, symmetry is one of the motivations for
selecting the Hellinger metric. While efforts have been made
to select downsampling parameters that ensure repeatability
of results, a certain degree of randomness persists. In our
future work, we aim to refine the downsampling method to
mitigate and eventually eliminate this remaining randomness.
It is noteworthy that these small variations in the dissimilarity
scores observed in Fig.9a is due to arithmetic rounding and
this randomness.

Overall, according to results presented in Fig. 9, our
proposed framework addresses limitations associated with
conventional LiDAR point cloud comparison. The bounded
dissimilarity score, the ability to set a desired Sol, and
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the tolerance to environmental changes contribute to the
versatility and effectiveness of our method for various
applications in AAD systems. After highlighting the potential
of our proposed framework to address drawbacks in conven-
tional point cloud comparison methods through its ability
to generate reliable and consistent results, the rest of this
section will investigate other characteristics of our proposed
framework.

B. SENSITIVITY ANALYSIS OF DENSITY CHANGE
DETECTION

An evident consequence of degradation in LiDAR point
clouds is the alteration in their density. For instance,
when laser beams interact with raindrops, diffraction often
occurs, resulting in a reduction of received signals below
the detection threshold. As a consequence, the density
of collected point clouds experiences a notable decrease
compared to clear weather conditions [5].

This subsection focuses on investigating the sensitivity of
our proposed point cloud comparison framework to density
changes within the point clouds. To conduct a comprehensive
examination of the effect of density change on dissimilarity,
the analysis is confined solely to study changes in point cloud
density.

To perform the analysis, 100 scans are selected from the
simulation data, and a uniform random sampling method is
employed to generate point clouds with densities ranging
from 0.1 to 0.9 times that of the original. Each downsampled
scan is then compared to its original scan. By systematically
varying the densities while keeping other factors constant, the
impact of density changes on the framework performance can
be effectively observed and evaluated.

The objective of this investigation is to gain insights into
how our framework responds to varying point cloud densities,
providing valuable information for assessing its robustness
and applicability across different density scenarios.

Figure 10 showcases the calculated scores resulting from
the density analysis, which includes nine generated point
clouds for each of the 100 total scans, leading to a total of
900 scans.

The analysis utilizes parameters determined in the preced-
ing section, with the number of repetitions, radial sections,
and percentage of points in each section set to 10, 30,
and 25%, respectively. To avoid exceeding the number of
points in the scan with a relative density of 0.1, a relatively
larger Scale-of-Interest (SOI) of 30 centimeters is chosen.
Furthermore, this ensures that the representative PDFs will
not be sparsed which will result in inflated dissimilarity
scores.

The results reveal a clear trend: as more points are selected,
the average score decreases. This outcome aligns precisely
with our expectations for this analysis: that when a larger
number of points from both the original and generated point
clouds overlap, a lower dissimilarity score is anticipated.
However, due to the inherent randomness in the selection
process, the dissimilarity score does not reach zero.
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These findings provide valuable insights into how our
proposed point cloud comparison framework responds to
variations in point cloud density.

0.07

1 -& Mean

Score

0.00 L 1 1 1
01 02 03 04 05 06 07 08 09

Relative density

FIGURE 10. Analysis of point cloud density’s impact on calculated scores.
The generated point clouds have relative density of 0.1 to 0.9 times the
original point cloud. The score is calculated by comparing each generated
point cloud with its original one. The framework’s parameters are from
the previous section, with a Scale-of-Interest of 30 cms. The mean score
decreases as the number of points in both point clouds become closer.

1) DEGRADATION LEVEL DETECTION

LiDAR point clouds are susceptible to noise, leading to dis-
turbances and inaccuracies in the collected data. Factors such
as atmospheric conditions, surface reflectance properties,
and other interferences can contribute to noise, resulting in
uncertainties within the point cloud data [5]. Motion artifacts,
sensor imperfections, and hardware limitations can further
exacerbate noise levels, affecting the accuracy of subsequent
analyses.

In the study, varying rain intensities corresponding to
different rain rates were simulated. Scans were collected
from clear weather conditions, and various rainfall scenarios
were applied. A comparative analysis was then performed by
comparing each rain scan with its respective clear weather
scan counterpart. The goal was to quantitatively assess the
quality degradation caused by adverse weather conditions and
evaluate the effectiveness of our Point Cloud Comparison
Framework in identifying such scenarios.

Fig. 11 illustrates the dissimilarity scores averaged for
the comparison of 20 scans in each rain rate condition.
The examination of these scores demonstrates that our
framework effectively quantifies the impact of rain-induced
degradation on LiDAR point clouds. As the rain rate
increases, the dissimilarity score also increases, indicating a
higher level of dissimilarity between the point clouds. This
finding aligns with expectations, as rain-induced noise and
degradation pose challenges in accurately representing the
scene.

These results have important implications for our frame-
work applications. By quantifying the impact of rain on
point cloud data, our framework can validate LiDAR rain
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FIGURE 11. Effect of rainfall on dissimilarity scores: Higher rain rates
results in increased dissimilarity between point clouds, showcasing the
framework's ability to quantify rain-induced degradation.

models and assess their accuracy in replicating real-world
scenarios. The ability to set a dissimilarity score threshold
allows for the detection of significant deviations between
clear weather and rain-induced scans, which is critical
in safety-critical applications. The framework empowers
researchers and engineers to make informed decisions
regarding data quality and safety assessment in diverse
weather conditions. For instance, in the heavy rain conditions
the dissimilarity score demonstrates difference in the point
clouds provided from the same scene. This information can
be used to start a mitigation protocol to ensure the accuracy
and safety of decisions that are made using these point
clouds.

2) OBSTRUCTION AND DYNAMIC OBJECTS EFFECT

This subsection addresses the challenges faced by AAD
systems, operating in diverse environments, including urban
cities and small towns. The operational environment intro-
duces complexities such as occlusions and the presence of
dynamic objects within the scene. Our point cloud com-
parison framework exhibits a crucial advantage in handling
such scenarios by leveraging the general geometric properties
of point clouds, enabling it to tolerate obstructed views
and moving elements effectively. This section focuses on
comprehensively examining how these occurrences impact
the outcomes of our framework.

The dissimilarity scores resulting from the occlusion
effect are presented, using the range-based downsampling
method with standardized and optimized parameters. Various
scenarios were evaluated, comparing LiDAR point clouds
under different conditions with different numbers of vehicles
in the scene: No car, 6 cars, 8 cars, and 12 cars, as depicted
in Fig. 6. The dissimilarity scores are illustrated in a heatmap
(Fig. 12), with each row and column representing a scenario
as depicted by the corresponding sketch.
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FIGURE 12. Heatmap of the dissimilarity score for various scenarios
containing different number of vehicles in the scene. The occlusion from
12 cars scene, causes the similarity score to decrease.
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Upon analyzing the dissimilarity score matrix, it is
observed that the main diagonal elements (where the
scenarios are compared to themselves) contain relatively low
scores, as expected. This result validates the effectiveness
of the range-based downsampling method in preserving the
point cloud’s structure when compared to itself.

The off-diagonal elements of the matrix reveal the dis-
similarity scores between different scenarios. As anticipated,
the dissimilarity scores increase as the number of occluding
vehicles (e.g., “6Cars,” “8Cars,” and “12Cars”) in the
LiDAR point cloud’s field of view increases. An interesting
observation is the decrease of the dissimilarity score between
12Cars and 6Cars scenarios. This can be explained by
considering the detection of the vehicles occluded by the ones
closer to LiDAR. Therefore, as overall geometric properties
of the point cloud in the form of a PDF are being analysed,
these occlusions are ignored, resulting in a lower dissimilarity
score.

For the evaluation of the proposed point cloud comparison
framework under the presence of dynamic objects (as
described in Section IV-A), the dissimilarity scores obtained
from 10 scans were analysed. The mean dissimilarity score
was found to be 0.23655, with a very low standard deviation
of 0.000373 (Table 2). These closely clustered values indicate
that our framework exhibits a high level of tolerance towards
dynamic objects within the scene. The consistency of the
dissimilarity scores suggests that the framework can effec-
tively handle the presence of dynamic objects and maintain
stable performance across multiple scans. The ability to
obtain consistent and closely clustered dissimilarity scores
showcases the robustness of our framework in assessing
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point cloud comparison, even in scenarios where dynamic
objects introduce temporal variations in the point cloud
data.

TABLE 2. Scores for 10 scans in a scenario involving various dynamic
objects with mean and standard deviation, o.

# Score
Scan 1 0.237365
Scan 2 0.236107
Scan 3 0.236385
Scan 4 0.236854
Scan 5 0.236457
Scan 6 0.236251
Scan 7 0.236745
Scan 8 0.236704
Scan 9 0.236355
Scan 10 0.236277
Mean 0.236550
o 0.000373

C. REAL-WORLD EXPERIMENT

In this section, an illustrative example demonstrating the
practical application of our point cloud comparison frame-
work for quantifying and distinguishing between point
clouds captured under diverse weather conditions is pre-
sented. Specifically, the framework effectiveness in assessing
changes within the point cloud caused by rainy weather
conditions, as described in Section IV-B, is showcased. Our
dataset comprises of 326 dissimilarity scores obtained from
repeated pairwise comparisons of 11 scans acquired in clear
weather settings (clear-clear score), along with an additional
121 dissimilarity scores resulting from comparisons of
11 scans taken during rainy weather conditions relative to the
reference scans in clear weather from the same scene (rain-
clear scores). The rain intensity is at 10 mm/hr for the rainfall
condition.

Furthermore, it is important to acknowledge that
real-world LiDAR readings are subject to the influences of
multiple factors, including ambient light, signal scattering,
and absorption, leading to dissimilarity scores that differ
even among scans captured in the same weather condition.
Despite these intricate variables, our framework effectively
demonstrates its ability to precisely quantify the degradation
within point clouds. The probability distribution for the
clear-clear and rain-clear scores are illustrated in Fig. 13a and
Fig. 13b, respectively.

Since no clear recognizable or mutual distribution is seen
in this data, and for inclusiveness, the permutation test was
used. This non-parametric and robust method is employed
in hypothesis testing for data with unknown distributions.
The goal is to assess whether the dissimilarity scores derived
from rain-clear comparison exhibit statistically significant
differences from those of the clear-clear. Furthermore,
by calculating a statistical threshold (critical value) with suf-
ficient confidence, boundaries for clear weather and rainfall
conditions (in this article only 10mm/hr rain condition) can
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FIGURE 13. Probability distribution for a) 326 clear-clear scores and
b) 121 rain-clear score.

be established. Formally, let X represent the dissimilarity
scores for the rain-clear group, and Y denote the dissimilarity
scores for the clear-clear group. The null hypothesis (Hp) and
alternative hypothesis (H1) are defined as:

Hp : No significant difference between two groups  (9)

H; : Significant difference between two groups (10)

In the context of hypothesis testing, the metric that
describes the differences between two samples’ parameters,
used to reject or not reject Hy, is called test statistic. Here,
the test statistic should adequately measure the difference in
dissimilarity between the two sets of point clouds. In this
study, the observed difference (ops = mean(groupl) —
mean(group?)) is calculated as the test statistic.

The core principle of permutation testing is shuffling
the group labels (clear-clear and rain-clear groups) and
recalculating the test statistic multiple times to create a
distribution of test statistic values under the null hypothesis.
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The permutation test procedure entails the following
steps:

1) Compute the observed test statistic Ax = xy — Xy,
where xy and xy are the means of the rain-clear and
clear-clear groups, respectively.

2) Shuffle the group labels, randomly assigning the
dissimilarity scores to new groups. Calculate the test
statistic for each permutation, creating a distribution of
test statistic values under random assignment.

3) Compare the observed test statistic Ax to the distri-
bution of test statistic values generated from permu-
tations. The p-value is calculated as the proportion
of permutation test statistics that are more extreme
than the observed test statistic. In other words,
p-value represents the probability of observing a test
statistic as extreme as the one computed from the
actual data, assuming that the null hypothesis is

true.
You can find the step-by-step process for hypothesis testing

in Algorithm 1.

Algorithm 1 Permutation Test Algorithm

Require: 7 observations in group A, m observations in group
B

Compute the observed test statistic Tops

Initialize the number of permutations Nperm

Initialize an empty list to store permutation test statistics:
Tperm < (1
: for i from 1 to Nperm do
Shuffle the observations in groups A and B randomly
Compute the permutation test statistic Téerm
Append T, t0 Tperm
: end for

Compute the p-value as the proportion of Tperm values
that are more extreme than 7Tops:

O I S R

crm

D A A

count{7Tperm > Tobs}

p <
N, perm

return p, Typs

The observed difference in means Ax was 0.1182,
resulting in a p-value of 0.0001 for 10000 permutations. The
p-value is below the conventional significance level (¢ =
0.05), allowing us to reject the null hypothesis. This out-
come provides strong evidence that the dissimilarity scores
effectively differentiate between rainy and clear weather
conditions. The result of permutation test is illustrated in
Fig. 14a.

Furthermore, an investigation was conducted to determine
whether a subset of the rainy weather dissimilarity scores
can be identified as belonging to the specific rain condition.
A sample of 50 rainy weather scores was selected, and the
permutation test was conducted for 10000 permutations. The
observed difference in means was —.0013, resulting in a
p-value of 0.5357. The p-value exceeded o« = 0.05, indicating
that the subset of scores did not significantly differ from the
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FIGURE 14. Permutation test results for a) clear-clear and rain-clear
groups, and b) 50 new rain-clear and previous rain-clear group.

complete rainy weather group. This finding showcases the
framework’s ability to recognize samples consistent with the
specific rain condition with 10mm/hr intensity.

To sum up, our real-world experiment demonstrates the
effectiveness and reliability of our proposed LiDAR point
cloud comparison framework in identifying the impact
of rain-induced degradation on point clouds. It has been
attempted to apply ICP and Hausdorff in the real-word
dataset, however due to their huge sizes, the current compu-
tational resource was insufficient. This also demonstrate the
need for our proposed framework to ensure the efficiency of
the point cloud comparison. Our future plan for this aspect
involves conducting additional experiments with varying rain
intensities and calculating dissimilarity score thresholds for
each condition. This step can serve as a training phase.
Then, these thresholds can be validated through testing using
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more scans. Subsequently, these scores can be correlated with
the results of other AAD systems (such as perception or
decision-making modules) to assess the influence of sensor
data quality on these tasks.

VI. CONCLUSION

In summary, the proposed Point Cloud Comparison Frame-
work has proven to be a powerful and versatile tool for
assessing the dissimilarity between LiDAR point clouds
under various environmental conditions. The framework
showed robust and interpretable performance, adequate for
AAD applications, compared to the state-of-the-art point
cloud comparison methods. Through extensive evaluation
with simulation data and real-world scans, the framework
exhibited robustness in handling occlusions, dynamic objects,
and rain-induced noise. It’s ability to generate bounded
dissimilarity scores between 0 and 1 facilitates meaningful
comparisons of point clouds from different scenarios, making
it invaluable for safety-critical applications in autonomous
driving systems.

As future work, the aim is to enhance the range-based
downsampling method to minimize randomness and improve
the consistency of dissimilarity scores. Achieving more
reliable assessments will further strengthen the framework
reliability. Additionally, our next step involves establishing
the relationship between the calculated dissimilarity scores
and their impact on perception tasks, such as object detection.
Gaining insights into how degradations affect perception
algorithms can contribute to enhancing the framework
practical applications and furthering the advancement of
autonomous driving technology. In conclusion, our Point
Cloud Comparison Framework holds promise as a crucial
tool in advancing LiDAR data analysis and perception
tasks, with its robustness, interpretability, and applicabil-
ity to real-world scenarios, making it a valuable asset
in the pursuit of safe and reliable autonomous driving
solutions.
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