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ABSTRACT The high resolution range profile (HRRP) of radar targets is commonly used for target
recognition, and the recognition of non-cooperative targets is one of the urgent problems to be solved in radar
target recognition. In order to address the noise impact and small sample issues in non-cooperative target
recognition, this paper proposes a radar target HRRP recognition method based on SDAE-WACGAN. This
method combines Stacked Denoising Auto-encoders (SDAE) and Weighted Auxiliary Classifier Generative
Adversarial Networks (WACGAN). In this networks, the decoder of SDAE is used as the generator of
WACGAN and the weight coefficients is introduced on the basis of ACGAN, so that the network can
generate high-quality data that is more consistent with the real sample distribution, and can be more robust
to noise. Experimental results show that compared with other commonly used models, the proposed method
achieves higher recognition accuracy in scenarios with small samples and high noise, and demonstrates
certain advantages in different SNRs and different number of sample sets.

INDEX TERMS High resolution range profile (HRRP), non-cooperative target recognition, stacked denois-
ing auto-encoders (SDAE), weighted auxiliary classifier generative adversarial networks (WACGAN).

I. INTRODUCTION
Radar Target Recognition (RTR) refers to the use of electro-
magnetic waves emitted by radar to illuminate targets, obtain
echoes for analysis, to determine the number and type of tar-
gets. It is an important direction in radar research, especially
in the military field, has received significant attention.

Fig.1 shows the HRRP of the target detected by the radar.
HRRP is a one-dimensional projection vector sum of the
target in the line-of-sight direction obtained by broadband
radar, which contains rich target information, such as the
target size, structure, shape, and scattering distribution, etc.,
and is relatively easy to obtain and process. Therefore, it has
become an important basis for radar targets recognition [1],
[2], [3], [4], [5].

In recent years, radar target recognition based on HRRP
has been sufficient research at home and abroad. The research
mainly focuses on the recognition of cooperative targets and
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non-cooperative targets. It is easier to obtain data for coop-
erative targets, which of-ten have a huge amount of data;
However, the acquisition of non-cooperative target data is
often difficult, affected by the detection distance, detection
environment, and target attributes, the number of samples of
robust and sound non-cooperative target HRRP is relatively
small. So, the corresponding study can be regarded as a
small-sample recognition problem, which is also one of the
problems to be solved urgently in the current radar target
recognition based on HRRP.

The recognition of radar non-cooperative targets mainly
faces the following problems: first, there is a signal-to-noise
ratio mismatch between the training samples and the test
samples [6]; second, the number of samples in the aspect
angle are incomplete [7]; third, the HRRP has sensitivity to
azimuth, translation, and amplitude, how to overcome the
effects of these sensitivities on the recognition is a major
difficulty.

Typical methods used for cooperative target recognition are
often prone to overfitting or poor generalization performance
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FIGURE 1. Schematic of HRRP of radar target.

when used for non-cooperative target recognition. Therefore,
when recognizing non-cooperative targets, it is important to
focus on extracting features with clear meanings that deeply
reflect the nature of the target, and study methods that are
specifically designed for small-sample target recognition to
improve the recognition performance of the radar system.

The original data can be expanded by data augmentation
methods to increase the number of samples and improve the
data diversity. In recent years, it has been widely used in
small sample recognition of radar targets [8], [9]. Traditional
data generation methods mainly utilize various transforma-
tions of existing data (such as rotation, flipping, scaling and
translation, etc.) to augment the data. However, thesemethods
cannot expand the inherent information of the sample at the
feature level [10]. Generative Adversarial Network (GAN)
[11], as a deep generative model, has been widely used in
data augmentation to generate new samples consistent with
the given data distribution by fitting its distribution to a given
small sample dataset via deep neural networks, which can
expand the inherent information of the sample data.

In the field of radar target HRRP recognition, GAN
can solve the problem of insufficient data samples and
improve the recognition rate of small samples by using
CNN as a classifier [12]. Combining GAN with the atten-
tion mechanism allows the model to pay more attention to
the orientation change of HRRP and generate multi-view
HRRP data [13]. Auto-encoder (AE) can reconstruct the data
as much as possible by extracting the important features
of that data. Improving it by adding some constraints can
make the features extracted by AE more generalized and
robust. It is shown that the reconstructed HRRP signals using
the improved AE have a smoother and more concise signal
forms, and can extract more abstract and higher-level hier-
archical features [14], [15], [16], [17], [18]. Combining the
auto-encoder or improved auto-encoder with GAN for small
sample recognition can also improve the recognition accu-
racy [19], [20]. However, the objective value function of the
original GANmay cause mode collapse and training instabil-
ity, that makes the original GAN perform poorly when used to
data augmentation. Therefore, many scholars have proposed
some methods to solve this problem [21], [22], [23]. Original

GAN can be extended into a conditional model such as deep
convolutional GAN (DCGAN), Auxiliary Classifier GAN
(ACGAN), Least Squares Conditional GAN (LSCGAN) and
Wasserstein Conditional GAN (WCGAN) [24]. The compre-
hensive experimental results show that the ACGAN is more
suitable for HRRP data augmentation than other models.
By using data augmentation andWeighted Auxiliary Classifi-
cation Generate Adversarial Networks(WACGAN) for radar
target recognition, the original data is first expanded using
timemirroringmethod, and then high-quality generative sam-
ples are generated and automatically selected by WACGAN,
which can effectively improve the recognition performance
of the model under small sample conditions [25]. However,
WACGAN does not take into account the interpretability of
the generator’s input latent variables of the generated data
and is sensitive to noise. If the input data contains a large
amount of noise, the quality of the generated data often tends
to be very low. Stacked Denoising Auto-Encoders (SDAE)
[26], [27], [28] can effectively filter out noise and extract
deep hidden features that are less susceptible to noise, and
the decoder of SDAE can be used as a generator for GANs.

Therefore, this paper combines WACGAN and SDAE to
propose a radar HRRP target recognition method based on
SDAE-WACGAN. SDAE can compress and extract the fea-
tures of high-dimensional scattering data such as HRRP at
a deeper level, while also performing noise reduction on the
data, providing stronger noise robustness and generalization
capabilities than traditional auto-encoders. Firstly, the model
introduces Gaussian noise that conforms to the standard nor-
mal distribution into the original input data, making the data
contain more hidden feature information. SDAE is added to
the WACGAN framework as a feature extractor of HRRP,
which can map the original data into the potential representa-
tion space and obtain low-dimensional hidden features that
can better reflect the nature of the data. Then, the hidden
features and the category in-formation are input into the
generator to strengthen the ability to associate the hidden
features with the category, so that the data category features
can be effectively maintained during the model training stage
and recognition stage, improving the performance of the
discriminator. In summary, SDAE-WACGAN can capture the
intrinsic distribution of HRRP data, optimize the model’s
ability to learn features, improve the quality of the generated
data, enhance the robustness to noise, and ultimately enable
the model to achieve efficient recognition performance under
small sample conditions.

The contributions of this article are shown as follows:
1) Focusing on the practical problems of non-cooperative

target recognition with small samples and higher noise,
a small-sample HRRP recognition method based on
SDAE-WACGAN is proposed, which is robust to noise and
has superior recognition performance when the number of
target samples is small and the noise is high, and has certain
application value.

2) The model proposed in this article combines SDAE and
WACGAN, which introduces label constraints, transforms
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unsupervised learning into supervised learning, and improves
the problems of pattern crashing and unstable training,
compared to SDAE or GAN model.

3) The model proposed in this article introduces label con-
straints in the data generation stage, enhancing the correlation
between data categories and hidden features; In the discrimi-
nation stage, weight coefficients are introduced to enable the
model to automatically select high-quality generated samples
based on the weights size. Therefore, the model can effec-
tively improve the quality of generated data and improve the
model’s ability to generate data.

This paper is organized as follows. In Section II, the
basic theoretical knowledge of SDAE-WACGAN is intro-
duced in detail. The framework and detailed information of
the model are proposed in Section III. Section IV conducts
experimental analysis and gives the results of comparative
experiments. Finally, the conclusion and summarizes are
outlined in Section V.

II. BASIC THEORETICAL
A. STACKED DENOISING AUTO-ENCODERS
Auto-encoder (AE) is an unsupervised neural network model
that learns the hidden features of input data, and then recon-
structs the original data with the learned features to achieve
data compression. A general AE network contains a three-
layer structure: the input layer, the hidden layer, and the
output layer, which is shown in Figure 2. The algorithm
consists of two processes: encoding and decoding.

FIGURE 2. The basic architecture of AE.

For a given n-dimensional training set: D =

(x1, x2, . . . , xn−1, xn), where xn is the nth vector of D, In the
training stage, xn is first encoded to obtain the feature yn, and
then the decoder reconstructs the original input xn from the
features yn to the output vector x ′

n as much as possible. The
processes of encoder and decoder are expressed as:{

yn = f (Wxn + b)
x ′
n = h(W ′yn + b′)

(1)

where f, h represents the neuronal activation function dur-
ing encoding and decoding respectively; W, b represents the

weight and bias during encoding, and W’, b’ represents the
weight and bias during decoding.

Commonly used loss functions in AE include minimizing
the negative log-likelihood function, sigmoid, Relu function,
and so on. AE obtains the reconstructed vector x ′

n through
the encoding and decoding processes, with the core aim of
ensuring that the error between the output vector x ′

n and the
input vector xn is sufficiently small. Its reconstruction error
can be expressed as:

σ =

∑
||x ′

n − xn||22 (2)

When the reconstruction error is small enough, the recon-
structed output vector x ′

n is an implicit characteristic
representation of xn.

Denoising auto-encoder(DAE) is based on auto-encoder
which adds random noise to the input signal to train the
whole network. Introducing a degradation process in AE to
reconstruct the original data without noise from the noisy data
can make the hidden layer extracted features less susceptible
to noise and make the encoder have better robustness and
stability.

Stacking multiple DAEs can form a stack denoising auto-
encoder. The deepening of the layers can extract higher-level
and deeper feature representations. In SDAE, the hid-den
features output by the upper DAE hidden layer are used as
the input to the next DAE layer, as shown in Figure 3.

FIGURE 3. Architecture of SDAE.

The blue dashed boxed portion of Figure 3 shows the archi-
tecture of the k-th layer denoising auto-encoder. A sample
xk−1 is stochastically corrupted via qD (the process of noise
addition) to get the corrupted version x̃k−1:

x̃k−1 ∼ qD (̃xk−1|xk−1) (3)

Then the reconstructed sample zk is obtained after encoding
(denoising process) and decoding according to equation (1).
The purpose of DAE training is to adjust parameters by

minimizing reconstruction errors:

σDAE =

∑
||xk−1 − zk ||22 (4)

The working process of SDAE is as follows: first, train one
layer of denoising auto-encoder, and use the learned encoding
function fθ for the clean input samples (left of Figure 3); then
use the resulting representation for the second layer of denois-
ing auto-encoder (middle of Figure 3) to learn the secondary
encoding function f (2)θ ; finally, repeat the above work (right
of Figure 3) until the auto-encoder network converges.
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B. AUXILIARY CLASSIFIER GAN, ACGAN
The GAN generally consists of a generator and a discrim-
inator, as shown in Figure 4(a). A random variable z in
hidden space is input into generator G, which generates the
samples G(z) that obey the real data distribution as much as
possible through forward propagation, in order to ‘‘trick’’ the
discriminator D. Then the generated sample G(z) and the real
sample data x are input into D to determine the category of
input sample, and the discriminative result is output through
forward propagation. During the training process, based on
the idea of ‘‘Nash equilibrium’’ in game theory, G and D
play a game against each other, training the discriminator D
by maximizing the difference in data distribution between
real samples x and generated samples G(z), and training
the generator G by minimizing the difference in data dis-
tribution between the two, so that G and D can optimize
their performance in constant confrontation to achieve ‘‘Nash
equilibrium’’.

In the final training results, the generated sample G(z) can
be fake, making D unable to correctly distinguish between
x and G(z), and realizing the approximate estimation of the
generator G to the real data distribution. The training process
is shown as:

min
G

max
D

V (D,G) = Ex∼Pdata [logD(x)]

+ Ez∼Pz(z)[log(1 − D(G(z)))] (5)

where E[·] is the expected value of the corresponding
distribution.

However, the original GANwas trained based on a gradient
descent algorithm, which is unstable and sometimes difficult
to achieve Nash equilibrium between G and D. Meanwhile,
the Loss function also has the problems of gradient disap-
pearance and mode collapse, which makes GAN show poor
performance when used to data augmentation.

Adding certain auxiliary information, such as class labels
or tags, to the original GAN to get an improved GAN model
can effectively solve the above problems. Among the many
improved GANs. the Auxiliary Classifier GAN is more suit-
able for HRRP data augmentation than other models, and its
architecture is shown in Figure 4(b).
ACGAN improves GAN in two aspects. First, by adding

class labels c, the generator G takes both the latent variable
z and the labels c as input, to guide G to generate category
conditioned samples G(c, z). Second, by adding an auxiliary
classifier, usually a softmax classifier, to the discriminator D,
which captures the probability distribution over the labels and
distinguishes whether the samples come from real samples or
generated samples.

The loss function of ACGAN consists of classification loss
LC and discrimination loss LS , as shown in:

LC = Ex∼Pdata [LD(cx |x)]
+Ez∼Pz(z)[LD(c|G(c, z))]

LS = Ex∼Pdata[log2(Ds(x))]
+Ez∼Pz(z)[log2(1 − Ds(G(c, z)))]

(6)

FIGURE 4. Architecture of GAN and ACGAN. (a) The architecture of GAN;
(b) The architecture of ACGAN.

where E[·] is the expected value of the corresponding distri-
bution; LD(cx |x) is the classification loss of x by D, and cx is
the true class of x; LD(c|G(c, z)) is the classification loss of D
toG(c, z), and c is the label ofG(c, z);Ds(x) is the probability
that D judges x to be the real sample; Ds(G(c, z)) is the
probability that D determines that G(c, z) is a real sample.

The training process is to train D by maximizing LC + LS
and train G by minimizing LC − LS . As shown in:max

D
V (D,G) = LC + LS

min
G
V (D,G) = LC − Ls

(7)

C. WEIGHTED AUXILIARY CLASSIFIER GAN, WACGAN
The HRRP data generated by ACGAN has a high degree of
similarity to the real sample data, but some features of the
generated data will be corrupted or blurred, and the quality of
the samples is uneven. Equation (4) that the classification loss
of ACGAN adopts the cross-entropy, which accumulates the
losses of each generated sample equally. Due to the varying
quality of generated samples, the recognition effect may be
reduced if those poor quality generated samples are fed into
the discriminator D.
Therefore, it is possible to improve the ACGAN model

by introducing weight coefficients into the discriminator to
obtain a Weighted auxiliary classification GAN(WACGAN).
The weight coefficient enables D to automatically select
high-quality generated samples according to the weight size
during the training process to optimize the recognition model
and improve the recognition performance of the network
model. The discrimination probability Ds(x) is introduced
into the weight coefficient W, then the weighted discrimina-
tion loss L ′

S of D in the WACGAN model is shown as:

L ′
S = Ex∼Pdata [Wt (Ds(x)) log2(Ds(x))]

+ Ez∼Pz(z)[Wf (Ds(G(c, z))) log2(1 − Ds(G(c, z)))]

(8)

where,Wt (Ds(x)) is the weight of the real sample determined
by Ds(x); Wf (Ds(G((c, z)))) is the weight of the generated
sample determined by Ds(G((c, z))).
In the training process of WACGAN, the weighted dis-

criminative loss L ′
S is used to encourage the discriminator
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D to pay more attention to high-quality generated samples
and real samples that are judged to be fake, and increase the
corresponding weights; Try to ignore the generated samples
of low quality and the real samples judged to be true, and
reduce the corresponding weights.

The weight coefficient of the real sample can be
expressed as:

Wt (Ds(x)) = (1 − Ds(x))γ (9)

The weight coefficient of the generated sample can be
expressed as:

Wf (Ds(G(c, z))) = Ds(G(c, z))γ (10)

where, γ represents the parameter of weight attenuation
degree.

The sample loss distribution is affected by the weight
parameters γ . When γ = 2 the generated samples with low
quality have the least influence on the discriminator [29]. The
result is used in this paper, assuming that γ = 2. Therefore,
the weighted discriminative loss of D in theWACGANmodel
can be expressed as:

L ′
S = Ex∼Pdata[(1 − Ds(x))2 log2(Ds(x))]

+ Ez∼Pz(z)[Ds(G(c, z))
2 log2(1 − Ds(G(c, z)))] (11)

The training process of WACGAN is to train D by maximiz-
ing LC + L ′

S and G by minimizing LC − LS . As shown in:max
D

V (D,G) = LC + Ls

min
G
V (D,G) = LC − Ls

(12)

III. SDAE-WACGAN
WACGAN can learn the distribution structure of hidden fea-
tures of samples based on class labels, but if the samples are
directly used as inputs, the model may not be able to learn
the effective features when learning the data distribution of
real samples due to the influence of data perturbation. On the
other hand, the model does not take into ac-count the link
between the input latent variable z and the generated sample
G(z). SDAE can extract higher-level and deeper feature repre-
sentations of samples, and the hidden features extracted from
the hidden layer of SDAE can be input into the generator G as
latent variable z, which can better generate high-quality data
close to real samples. At the same time, the hidden features
extracted by SDAE are not susceptible to noise and have
better robustness to noise.

Therefore, this paper proposes a radar HRRP target recog-
nition method based on SDAE-WACGAN to solve the small
samples problem of non-cooperative radar targets.

In this method, the original sample is encoded by adding
an auto-encoder, the standard normal distribution noise is
added to the coding vector, and the latent variable contain-
ing real sample feature information and robust to noise is
extracted by the hid-den layer of SDAE. Then the latent
variable and its class information are input into the generator,
which can effectively narrow the range of the feature space of

the generator to learn the real sample, strengthen the ability
of the latent variables to correlate with the features of their
respective classes, effectively preserve the class features of
the samples during the training and recognition stage, and
further improving the recognition performance under small
sample conditions.

A. NETWORK MODEL DESIGN
The network structure of SDAE-WACGAN is shown in
Figure 5. The framework consists of SDAE, generator G, and
discriminator D, and the decoder of SDAE is used as the gen-
erator ofWACGAN. Themethod consists of the discriminator
training stage and the test stage.

FIGURE 5. The Structure of SDAE-WACGAN.

In this method, the generated HRRP sample can be
expressed as:{

yngen
}

= f (xntrue, c) = fθ (zn, c) = fθ [fφ(xntrue), c] (13)

where, f (xntrue, c) is the generated sample obtained by input
HRRP sample

{
xntrue

}N
n=1 and class label c; fφ(·) is the map-

ping function of SDAE, and φ is the coding parameter set of
SDAE. fθ (·) is a generator whose decoded parameter set is θ .
Implicit variables zn and class label c are combined to form
a joint feature (zn, c), to generate a generated HRRP sample

of the corresponding class
{
yngen

}N
n=1

. Finally, the generated

sample
{
yngen

}
and

{
xntrue

}
are entered into discriminator D to

discriminate the class of the input sample.
Below is a brief introduction to the main encoder networks,

decoder (generator) networks, and discriminator networks.

1) ENCODER NETWORK
As shown in Figure 6, the input data is passed through the hid-
den layers, fully connected layers and activation function to
obtain the mean(µ) and variance(σ 2) of the hidden variables
required for generating the HRRP samples. The activation
function adopts the Leaky ReLU function, in order to avoid
the problem of ‘‘dead neuron’’ in the ReLU function, and to
accelerate the training of the model.
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FIGURE 6. Encoder network schematic.

2) DECODER (GENERATOR) NETWORK
As shown in Figure 7, the purpose of the decoder is to
generate corresponding HRRP samples by obtaining hidden
features zn and labels c. By adding labels, unsupervised
learning is transformed into supervised learning, which
can effectively control the category of generated samples.
To obtain zn, we first extract a vector zn0 from the stan-
dard random distribution, then multiply it by the standard
deviation(σ ) and plus the mean(µ). Replace the final activa-
tion function with the sigmoid, keeping the output between
0 and 1.

FIGURE 7. Decoder(generator) network schematic.

3) DISCRIMINATOR NETWORK
As shown in Figure 8, the discriminator is used to distin-
guish between ‘‘true’’ and ‘‘false’’ samples. The inputs are
training samples, generating samples and testing samples.
Firstly, a Squeeze-and-Excitation Block (SE-Block) is added
to extract and weight the input feature information to improve
the transmission of useful features.

Then, after passing through several convolutional layers,
fully connected layers, batch normalization layers, and Leaky
ReLU activation functions, the discrimination results are
finally obtained through Softmax. The training process of the
discriminator is constrained according to equations (6), (11),
and (12).

B. THE IMPLEMENTATION PROCESS
The implementation process of the radar target recognition
method based on SDAE-WACGAN under small sample con-
ditions is shown in Figure 6. The specific steps are as follows:

Step 1 Obtain the real HRRP sample xntrue of the radar
target, perform L2 normalization and centroid alignment pro-
cessing on it, and then divide it into training samples and test
samples;

Step 2 Add random noises that conform to the normal
standard distribution to the training samples, input them into
SDAE, and obtain the latent variable zn through coding;
Step 3 The class labels c and the latent variable zn are

combined to form a joint feature, which is input into the
generator G to obtain the generated sample yngen.
Step 4 The real sample xntrue and the generated sample yngen

are input into the discriminator D to judge the authenticity

FIGURE 8. Discriminator network schematic.

and class of the samples, and then the loss value of the
discriminator D is calculated, and the network parameters are
updated with the Adam optimizer. Then the parameters of D
are fixed, the parameters of SDAE and G are updated by the
loss function.

Step 5 Repeat step 2 to step 4 through network adversar-
ial learning until the network converges and the training of
SDAE-WACGAN is completed.

Step 6 Use the trained discriminator D for target recogni-
tion, input the test samples into D for recognition, and output
the recognition results.

FIGURE 9. Flow Chart of SDAE-WACGAN.

IV. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS
A. THE DATA SET
In this paper, we use the HRRP data from three types of air-
craft measured by a certain type of radar. Under the premise
that the target does not migrate through resolution cells rela-
tive to the radar, the k-th (k=1, 2,. . . , K) distance cell in the
m-th echo signal can be approximated as

xk (t,m) ≈ xk (m)

= ejθ (m)
Vk∑
i=1

σkiejϕki(m) (14)

where θ (m) represents the initial phase of them-th echo, Vk is
the number of scattering points in the k-th distance cell, is the
intensity of the i-th scattering point in the k-th distance cell,
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and ϕki(m) is the phase. The m-th distance image x(m) can be
obtained by arranging all the distance cells sequentially.

The HRRP examples diagrams for three types of aircraft
are shown in Figure 10, which aremedium jet aircraft Z, small
jet aircraft X, and medium propeller aircraft L. The radar
operates in the C-band, with a signal bandwidth of 400MHz.
The sampling points for each class of aircraft are 256, which
includes 256 distance cells. Adaptive angular domain seg-
mentation is used for angular domain segmentation of frames
to obtain the HRRP data which is less sensitive to orientation.
Each of the three classes of target samples contains 600 pieces
of data, for a total of 1800 samples. They are divided into
training sets and test sets ac-cording to the ratio of 0.7:0.3,
that is, the training set has 420 samples of each class and the
test set has 180 samples of each class.

FIGURE 10. HRRP example diagram for three types of aircraft.

Data need to be processed before the experiment starts.
Since the original HRRP data obtained contains intensity sen-
sitivity and displacement sensitivity, these two sensitivities
need to be processed before the HRRP samples are sent to
the model to eliminate the instability caused by them to the
network model.

The data needs to be processed before the experiment
begins. Since the raw HRRP data contains intensity sen-
sitivity and displacement sensitivity, these two sensitivities
need to be processed before sending the HRRP samples
to the model to eliminate their instability on the network
model. First, L2 normalization is used to eliminate the
influence of HRRP intensity sensitivity. Raw HRRP data
xraw = [x(1), x(2), . . . , x(N )], and L2 normalized data can
be expressed as:

x
norm

=
xraw√
N∑
i=1

x(i)2

(15)

where, N represents the total number of HRRP range units,
that is, the dimension of xraw; x(i) is the I-th element of xraw.

Then, the centroid alignment method is used to eliminate
the influence of displace-ment sensitivity. By calculating the
centroid position of the data, the HRRP data is then shifted
left or right to obtain newHRRP data. The calculation process
of the center of mass g is shown as:

g =

∑N
i=1 i · xnorm(i)∑N
i=1 xnorm(i)

(16)

Finally, the HRRP data after L2 normalization and centroid
alignment are shown in Figure 11. The processed HRRP

samples have amplitudes ranging from 0 to 1, with the
centroid near the center point.

FIGURE 11. Raw HRRP data (left) and processed data (right).

B. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS
In this paper, we first give the comparison between generated
samples by SDAE and real samples; Then we experimentally
compare the recognition effects of CNN, ACGAN+CNN,
SDAE, WACGAN, AE-ACGAN, and the SDAE-WACGAN
method proposed in this paper under the condition of small
samples; Finally, the original HRRP is noised by adding
Gaussian white noise with different energies, so that the
SNR of the input signals are 5dB, 10dB, 15dB, 20dB, 25dB
and 30dB, respectively, to compare the recognition perfor-
mance of the SDAE-WACGAN method at different SNRs,
and to compare with the other several methods mentioned
above.

1) COMPARISON BETWEEN GENERATED SAMPLES AND
REAL SAMPLES
The original HRRP sample xntrue is input into the encoder of
SDAE to extract the deep latent features and get the latent
variable zn, and then the class information ci of this sample
is input into the decoder (which is both the decoder of SDAE
and the gener-ator of WACGAN) along with the latent vari-
able to get the generated sample yngen through the decoder.
Each type of target generates 420 samples at a ratio of 1:1, and
a test sample is randomly selected to generate the generated
sample through the trained SDAEmodel. The test sample and
generated sample are shown in Figure 12.

Root Mean Square Error (RMSE) is used to give the error
results of the test sample and the generated sample. RMSE is
defined as:

σ =

√√√√ 1
N

N∑
n=1

||
⌢xn − xn||22
||xn||22

(17)

where σ is root mean square error; N represents the number
of test samples; xn represents the N-th original sample; ⌢xn
indicates the generated sample of xn.

The root mean square error between the three target test
samples and the generated samples is shown in Table 1. It can
be seen from Figure 12 and Table 1 that the generated samples
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FIGURE 12. HRRP diagram of three types of test samples and generated
samples.

TABLE 1. RMSE between three types of target test samples and
generated samples.

FIGURE 13. t-SNE Comparison of dimensionality reduction results.

obtained by this model can well reflect the data distribution
of the original samples.

The t-Distributed Stochastic Neighbor Embedding (t-SNE)
is used to visually com-pare the original HRRP dataset and
the generated HRRP dataset. The results after reducing the
extracted features to two dimensions are shown in Figure 13.
Compared with the original dataset, the target features of
each target of the generated dataset have a clearer boundary
after dimensionality reduction, which is more conducive to
the identification of the target. Therefore, the use of SDAE
can improve the divisibility of the features.

2) RECOGNITION PERFORMANCE ANALYSIS
The generated samples and real samples are input into the
discriminator D to determine the authenticity and category
of the samples, and the loss value of D is calculated. The
network parameters are updated by the Adam optimizer. Then
fix the parameters of D, and use the loss function to adjust
the parameters of SDAE and generator G. Then continuously
update parameters to make the network converge and com-
plete the training of SDAE-WACGAN. Finally, the trained
discriminator D is used for target recognition, the test samples
are input into D for recognition, and the recognition result is
output.

The decoder generates 420 samples for each type of target
in a 1:1 ratio and expands them to the training set, that is,
the training set contains a total of 840 samples for each

type of target. In this paper, we first compare the impact
of training sets with different sample sizes on the final
recognition results. Figure 14 shows the recognition effect of
the SDAE-WACGANmethod when each type of target in the
training set contains 340/440/. . . /840 samples.

FIGURE 14. Comparison of recognition rate results under different
numbers of samples.

Experiments show that when the number of original sam-
ples per class is 170 (the number of samples after expansion
is 340), the method can achieve a recognition accu-racy of
79.5% on the test set, showing better recognition performance
under small sample conditions. With the increase of the num-
ber of samples in the training set, the method’s recognition
accuracy on the test set gradually improves and levels off,
showing the robustness of this method in radar HRRP data
recognition.

Furthermore, in order to verify the recognition perfor-
mance of SDAE-WACGAN for HRRP recognition under
different SNR conditions, Gaussian white noise with different
energies was added to the original data, resulting in signals
with SNRs of 5dB, 10dB, 15dB, 20dB, 25dB, and 30dB. The
definition of SNR is shown as:

SNR = 10 log10

(
Psignal
Pnoise

)
(18)

where, Psignal is the average power of HRRP, and Pnoise is the
noise power.

This paper compares the average recognition accuracies of
the test set after training with the methods used in this paper
when the number of original samples per class is 170 and 420,
as shown in Table 2.

As shown in Table 2, the recognition accuracy of the model
decreases as the SNR decreases. However, the SDAEmethod
used in this paper can effectively extract hidden features that
are not easily affected by noise, it has better robustness to
noise

Therefore, even when the sample size is small and the
SNR is low, the recognition accuracy of the method used
in this paper is still 63.8%. When the sample size reaches a
certain size and the SNR is low, the recognition accuracy of
the method rises to 75.5%, as the SNR increases, the model
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TABLE 2. Comparison of recognition accuracy of SDAE-WACGAN under
different SNRs.

FIGURE 15. Comparison of recognition rates under different sample sizes
for six methods.

recognition accuracy gradually rises and tends to stabilize,
indicating that the SDAE method is robust to noise.

3) COMPARISON AND ANALYSIS OF RECOGNITION
PERFORMANCE WITH OTHER MODELS
To further illustrate the advantages of the radar target HRRP
recognition algorithm based on SDAE-WACGAN under
small sample conditions, a comparative analysis of six meth-
ods proposed in this paper, including SDAE-WACGAN,
CNN, ACGAN+CNN, SDAE,WACGAN, andAE-ACGAN,
is performed. The input data is the original data without
noise processing. Comparing the impact of different sample
sizes on the final recognition results, the average recognition
accuracy of each method is shown in Figure 15.
As shown in Figure 15, the recognition accuracy demon-

strated by each method is relatively low when the sample
size is small, but the method used in this paper still manages
to maintain more than 78%. When the number of original
samples is 120, the recognition rate of the SDAE-WACGAN
method is 78.0%, which is 8.92% higher than SDAE, 6.45%
higher than WACGAN, and 4.89% higher than AE-ACGAN.
However, the traditional CNN algorithm performs poorly
under small sample conditions, with an average recognition
accuracy of only 45.3%. As the sample size increases, the

FIGURE 16. Comparison of recognition rate results of six methods with
different numbers of samples and different SNRs. (a) /(b)/ (c) /(d)/
(e) /(f) represent the recognition accuracy of each model at different
SNRs for different numbers of samples.

recognition accuracy of each method improves significantly,
and the method used in this paper still has at least a 3.74%
improvement over other recognition algorithms. The experi-
mental results prove that the radar target recognition method
used in this paper has obvious advantages under small sample
conditions.

Furthermore, this paper compares the recognition perfor-
mance of six recognition algorithms with different sizes of
training sets and different SNRs, and the recognition accu-
racies of each method are shown in Figure 16 after noise
addition to the original data.

The above experimental results show that when the number
of samples is sufficient, with the improvement of the SNR, the
recognition performance of SDAE-WACGAN is comparable
to that of AE-ACGAN and is significantly better than that of
the other four methods. However, when the SNR decreases,
the features extracted by the SDAE are more robust to noise,
so the method used in this paper has better recognition
performance for radar targets.

Under the small sample dataset, the method used in this
paper has significant ad-vantages both in the case of low SNR
and high SNR, especially in comparison with AE-ACGAN.
Due to the improvement made on the ACGAN model by
introducing weight coefficients into the discriminator, the
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samples generated by WACGAN are of higher quality than
those generated by ACGAN, and the distribution of these
samples is closer to the real samples. Therefore, the recogni-
tion effect of SDAE-ACGAN under small sample conditions
is more pronounced.

The results of the above multiple comparison experiments
show that the SDAE-WACGAN method proposed in this
paper exhibits good overall performance in small-sample
scenarios and can effectively solve the problem of insufficient
non-cooperative target samples in radar target recognition.
Meanwhile, as the number of samples increases and the
SNR decreases, the method still maintains high recogni-
tion performance and keeps good generalization perfor-
mance and robustness to noise in both small-sample and
sample-sufficient scenarios.

V. CONCLUSION
In this paper, a target recognition method based on the
SDAE-WACGAN is pro-posed under the condition of
small samples, aiming at the practical situation of radar
non-cooperative target recognition with few samples andwith
more noise in the data. The method first uses SDAE to extract
the hidden features that are not easily affected by noise from
the noisy data and reconstruct the noise-free sample data;
then introduces weight coefficients into the discriminator of
ACGAN to obtain a WACGAN model, which enables the
discriminator to automatically select high-quality generated
samples based on the weight size during training process to
optimize the recognition model and improve the recognition
performance of the network model.

This paper conducts recognition experiments on the mea-
sured data from three types of aircraft targets, by comparing
with several other methods, the method used in this paper
achieves higher recognition accuracy in small-sample, high-
noise scenarios, and demonstrates certain advantages in
different SNRs and different numbers of sample sets. The
results show that the SDAE-WACGAN method proposed in
this paper has bet-ter performance in HRRP recognition of
non-cooperative targets.

In practical radar applications, in addition to noise infor-
mation, radar echo signals also contain a certain amount of
ground clutter and meteorological clutter, which can interfere
with the recognition of normal targets. In addition to using
clutter suppression methods to filter out clutter, the next step
is to study more robust and generalizable RTR algorithms to
deal with clutter interference. In addition, he bandwidth and
sampling rate of the radar system will also have an impact
on the target echo signal. the bandwidth or sampling rate is
too low will lead to the loss of signal details or inaccuracy,
which in turn affects the depiction of the target structural
details.The impact of radar bandwidth and sampling rate on
radar target recognition is also a problem that needs to be
considered in the next step. Finally, there is often a sample
imbalance between the samples of non-cooperative targets,
therefore, the sample imbalance problem in non-cooperative
target recognition will also be investigated in the next step.
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