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ABSTRACT As key components of smart factories, intelligent production machines are gradually becoming
a major capital asset of companies in the market, offering connectivity, interoperability, and services.
However, due to commercial and technological constraints, production machines rarely provide enough
information for customers to develop data-driven applications. Therefore, this research proposes that
intelligence be built into them to assist in production control and allow relevant data to be collected
and made available for future use. In order to realize this proposal, an operational paradigm for such
systems is first outlined in this paper. Then, the states of workpieces in a production environment are
classified, and the methods of generation, operation, and transfer of instances are described. The next
step is to build an intelligent product-driven manufacturing system using Data Distribution Service (DDS).
Intelligent workpieces and machines collaborate to complete production tasks in such a system. During this
collaborative process, an intelligent workpiece continuously collects relevant data and packages it together
for the customer on its transformation into a final product. The feasibility of this intelligent product-driven
manufacturing system is examined by upgrading a classic manufacturing factory. In addition, the study
explores the system architecture, the implementation of a classic system upgrade, the production data
collection, and the intellectualization of data assets. In conclusion, the results of this study will help machine
builders expand their business models, providing customers with production machines that carry data for
advanced data-driven applications.

INDEX TERMS Data distribution service, intelligent product, manufacturing system, product life cycle,
industry 4.0, industrial automation.

I. INTRODUCTION
Production machines, such as CNC machining centers or
industrial robotic arms, are an effective form of produc-
tion asset by means of which goods are manufactured.
Manufacturers of production machines add connectivity and
intelligence to their products to assist customers (usually
manufacturers of other goods) with condition monitor-
ing, maintenance management, and process improvement
to achieve goals of increased manufacturing efficiency or
reduced costs. Although production machines often come
with pre-defined functions and data, customers may modify
the products or add peripherals to extend their applications.
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Also, customers may need more extensive product lifecy-
cle data to develop data-driven intelligence features, such
as prognostic and health management (PHM) [1] or digital
twin [2], [3].

Product lifecycle can be segmented into the beginning
of life (BOL) in the factory, middle of life (MOL) in
the customer’s application, and end of life (EOL) in the
disposition process. Although the customers have enough
detailed knowledge aboutMOL [4], accessing sufficient BOL
data of production machines, like production approaches
or quality control results, is not easy. This makes it dif-
ficult for customers to identify the differences between
identically-marketed production machines, leading to con-
fusion and inefficient use. For example, they do not know
whether or not two machines of the same model require
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different recipes to make the same goods and whether dif-
ferent maintenance plans must be used for them. Obviously,
the interruption of data traceability between BOL and MOL
restricts the degree of intelligence of production machines
themselves or when integrated with other assets.

The difficulty of obtaining the production traceability of
production machines is due to two reasons. First, the lack of
mutual trust mechanisms can lead to machine manufacturers’
unwillingness to share their manufacturing or usage data [5],
[6]. Such commercial or legal concerns are research issues
in supply chain integration and trust management and are
beyond the scope of this study. The second reason is the
lack of suitable ways for machine manufacturers to provide
customers with access to relevant data. While manufactur-
ers collect data that can help them improve product design
and manufacturing process, it is also considered necessary
to provide this data to customers in a way the latter can
use for system planning, simulation, integration, and safety
[7], [8], [9].

AutomationML, an XML-based format for handling plant
engineering metadata, has been promoted to integrate engi-
neering data formats [10]. Lüder et al. have demonstrated that
the AutomationML format they developed based on process
description does that and is a suitable way to provide the large
amounts of information needed in the modeling of industrial
processes [11]. AutomationML is also used to model mecha-
tronic systems, improve automation, optimize production,
and detect defects [12], [13], [14], [15]. AutomationML was
applied to enrich ISA-95 to solve the lack of semantics of
low-level components. Schmidt and Lüder summarized how
to access or map data to AutomationML metamodels for
use in the production life cycle [16]. While AutomationML
supports consistent and lossless data exchange, the collection
and storage of dynamic data in the manufacturing stage still
lacks an implemented methodology.

Meanwhile, common sense dictates that cloud services be
applied to manufacturing because of their many advantages,
such as resource-sharing and openness. Hence, sharing data
on the cloud is an available pathway that production trace-
ability data sharing must support. For example, Helo et al.’s
proposal of a cloud-based ecosystem to improve stake-
holder collaboration takes such an approach [17]. However,
as Jess et al. point out [6], all these approaches still face the
stumbling block of companies’ unwillingness to reveal their
confidential information. Another issue is the storage costs of
the machine manufacturer that maintains the collected data.

Therefore, an important motivation for this paper is to
explore waysmachinemanufacturers can collect data for their
purposes and provide the data to customers with suitable,
economical methods. The authors believe that if machines
in production are given intelligence at the manufacturing
stage, they can collect data about themselves. In this way,
customers can obtain relevant data directly from themachines
after delivery without crossing the network or authenticating
against external databases. To this end, this study proposes
a new intelligent product-driven paradigm and develops a

manufacturing system based on the paradigm. The main
goals of this study are to (1) Develop a paradigm for
intelligent products to assist in data collection and man-
ufacturing, including role, connectivity, functionality, and
interactivity. (2) Design and apply Data Distribution Ser-
vice (DDS) technology to implement a system realizing
the intelligent product-driven manufacturing paradigm. (3)
Adapt a classic manufacturing system in an experimental
factory to conform to the proposed architecture and verify its
feasibility. (4) Investigate the differences between intelligent
product-driven and classic manufacturing systems.

The core contributions of this paper can be summarized
in the following key points: (1) A unique distributed con-
trol architecture is proposed that leverages DDS technology
and enables intelligent products to coordinate manufacturing
operations with machines autonomously. (2) By delineating
various process states, the authors establish the potential of
intelligent products as dynamic data carriers while provid-
ing actionable insights for transitioning from centralized to
distributed manufacturing systems. (3) An approach is intro-
duced to intellectualizing product data, fostering adaptability
and versatility within the manufacturing ecosystem. (4) Its
analysis of system transmission tests offers a comprehen-
sive examination of DDS network performance, emphasizing
the influence of scalability and reliability on the proposed
system.

The organization of this paper is as follows. Section II
reviews the current status of the field and this study,
discussing classic manufacturing systems and distributed
manufacturing systems, the application of intelligent prod-
ucts in factories, the characteristics of middleware, the issues
to be solved, and the study’s objectives. Section III describes
the study’s paradigm for assistance with manufacturing, oper-
ations, and system integration using intelligent products.
Included are the reasons for choosing DDS and the appli-
cation design. Section IV reports the process and results of
transforming the experimental classic manufacturing system
into a distributed system. Section V summarizes the experi-
mental results and the findings of the communication tests.
Section VI discusses the differences between the distributed
system and classic systems, the distributed system’s advan-
tages and disadvantages, and the features and limitations of
the proposed network. Finally, Section VII summarizes the
study.

II. RELATED RESEARCH
A. MANUFACTURING SYSTEM ARCHITECTURE
1) CLASSIC MANUFACTURING SYSTEMS
The information system architecture of a real-world factory
is usually based on the ANSI/ISA 95 standard [18]. In this
architecture, components or modules are grouped into five
hierarchical levels: machine, production line, floor, plant, and
distribution, according to the objectives of the task, and then
they are integrated between or within the hierarchical levels.
A classic network architecture for manufacturing systems
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consists of shop floor communication, business layer commu-
nication, and supply chain communication [19]. The need for
connectivity and real-time requirements determines the com-
ponents included in each communication network. A classic
manufacturing system usually uses a centralized information
computer center and a distributed control system (DCS).
A DCS is usually a PLC-based bus network that provides
good configurability, reliability, and ease of maintenance of
the production line through inter-connected and conditional
signals. Because of the simple architecture and ease of imple-
mentation, classic manufacturing systems are widely used in
the real world. However, classic manufacturing systems often
face several drawbacks: (1) The centralized message process
under the control of the computer center creates single points
of failure that can render thewhole system inoperable. (2) The
tightly coupled components make it difficult to expand
the system. (3) Changing processes requires adjustments
to the processing logic within the computer center, thereby
creating potential system instability and risk.

2) DISTRIBUTED SYSTEM ARCHITECTURE
As information and communication technologies evolve,
existing ANSI/ISA 95 standard-based hierarchical industrial
information systems are expected to make the transforma-
tion to interactive architectures across hardware or functional
levels through CPS [20]. Network and virtual object-based
CPS can bring greater flexibility, efficiency, adaptability, and
reliability to manufacturing systems. In addition, intelligent
product and manufacturing system interactions can bring
benefits such as increased product tracking accuracy, reduced
inventory levels, and automated inventory management by
providing real-time product data [21]. When every individual
unit can communicate with each other to organize itself and
work together, this distributed manufacturing system is also
known as a Holonic manufacturing system [22], [23], [24],
[25]. The differences and evolution of the various Holonic
manufacturing systems are discussed in a review study by
Kaiser et al. [26]. The main characteristics of Holonic manu-
facturing systems are scalable modularity, high flexibility and
adaptability, reliable distributed decision-making, autonomy,
and better reliability at the supervisory and planning levels
in the automation pyramid. Because of these characteristics,
distributed manufacturing systems are considered the future
trend.

B. INTELLIGENT PRODUCTS IN MANUFACTURING
McFarlane et al. introduced the concept of intelligent prod-
ucts, which they defined as a product that has a unique iden-
tifier, can effectively communicate with its environment, can
hold its relevant data, can present its features or production
requirements, and can participate in or determine its des-
tiny. The concept has become a reality observed everywhere,
driven by Industry 4.0 technologies such as the Internet of
Things, big data, cloud services, and artificial intelligence.
To clarify the definition of intelligent products, Raff et al.

selected 38 key papers from the Web of Science (WoS)
database, analyzed the content, and, on the basis of prototypes
and definitions, classified intelligent products into four dif-
ferent categories, namely, digital, connected, responsive, and
intelligent. The authors identified the historical development
of production machines as following their classification. Pro-
ductionmachines were digitized early on in order to automate
production. During this period, manufacturers targeted the
manufacturing functions of their productionmachines tomeet
efficiency-oriented needs. From around the 2000s, produc-
tion machines gradually started offering limited connectivity,
such as serial port uploading of programs. Then, contributing
to the quality of inter-asset communication, data exchange
standards, such as MTConnect up to the latest universal
machine tool interface standard (umati) [27], [28], [29], are
proposed and define that production machines should present
data in the appropriate semantics. Now, production machines
can continue collecting relevant data after being sold to cus-
tomers to provide autonomous or customized services [30],
[31]. This approach has enabled manufacturers to gradually
become service providers [32], [33].

Connectivity-enabled Industry 4.0 components (I4C) are
essential for achieving CPS and distributed architectures [34].
By adding administration shells made of software and
communication technologies to production machines or com-
ponents that have limited connectivity, assets can be upgraded
to the I4C level with the ability to connect, respond, and
provide more intelligent services [35], [36]. Some studies
have demonstrated that products based on asset administra-
tion shells can be more flexible in meeting system integration
requirements [37], [38], [39]. The authors argue that Industry
4.0 componentization can be regarded as an implementation
of intelligent products. When production machines and com-
ponents are interconnected and interoperable, a distributed
manufacturing system can be efficiently integrated into the
information system.

Modeling I4C for intelligent and autonomous applications
is a topic that has recently received significant research atten-
tion from a number of different perspectives. One approach
proposed by Grangel-González et al. is to develop semantic
information models for administration shells so objects can
be easily integrated into existing standards [40]. Zhang et al.
have studied smart product design frameworks and product
life cycle interaction strategies in the context of their envi-
ronment interaction model [41]. Fleischmann et al. report
that a subject-oriented modeling language, Parallel Activity
Specification Schema, is suitable for designing I4C, espe-
cially for implementations with OPC UA [42]. Another I4C
design framework based on multiple agents with different
tasks and optimization has been proposed by Veiga et al. [43],
[44]. These modeling framework studies explore the design
purposes and implementation of I4C.

It is worth mentioning that related material to be produced
and the work-in-progress (here referred to as workpieces)
are not necessarily considered part of a distributed system.
The workpieces that studies have called ‘smart items’ [45]
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may lack sufficient application support to exhibit intelligence
in practice. For example, due to a lack of power supply
or active response capability, the workpieces might require
tracking identification tags (e.g., RFID technology) or add-on
electric devices and updating the corresponding status records
on the storage media. Although the workpieces may have a
physical entity and corresponding digital record, they behave
passively in the system by being moved, stored, processed,
and measured. In short, they are not given the intelligence to
determine their own destiny.

C. MIDDLEWARE FOR INDUSTRIAL SYSTEMS
In order to build smart manufacturing systems in factories,
middleware can effectively reduce the complexities of inte-
gration work [46]. Middleware acts as a communication
abstraction layer in a distributed system, allowing for the
interoperability of subsystems built on different hardware
platforms, operating systems, or programming languages.
Standard middleware commonly found in industrial systems
includes MQTT, OPC UA, ROS, and DDS [47]. Following is
some of the middleware relevant to distributed systems:

• Message Queuing Telemetry Transport (MQTT) is a
lightweight communication standard for performance-
constrained hardware and low-bandwidth networks
[48]. Based on the publish/subscribe (Pub/Sub) mech-
anism, MQTT provides hierarchical structure-based
messages and uses brokers to store and forward mes-
sages to clients within the network. In addition, MQTT
provides the basic quality of service (QoS) for setting
message republication behaviors. Although MQTT is
the most popular communication standard on the Inter-
net of Things, it still has shortcomings in security,
disorder, and reliability [49].

• OPC Unified Architecture (OPC UA) is a service-
oriented communication protocol designed to enable
machines as data source servers to provide relevant
data and services to customers [28]. An initiative of the
European manufacturing industry, OPC UA supports
overarching industry application semantics, such as the
injection molding machine standard (Euromap 77/83)
and umati [29]. OPC UA recently started supporting
Pub/Sub, but the native OPC UA Pub/Sub mechanism
does not support QoS policies. OPCUA also provides a
discovery mechanism based on local discovery servers
so that newly registered machines can be found by
existing participants [50].

• Data Distribution Service (DDS) technology is also
communication middleware based on Pub/Sub mech-
anisms, but it provides more QoS settings to achieve
reliability, priorities, and persistent control of mes-
sage distribution. DDS is often used in industrial
systems [51]. For example, the second generation
of the Robot Operating System (ROS 2.0) is based
on DDS [52]. The efficiency of DDS comes from
the design of the global data space (GDS), where

pre-defined topics are registered and via which data can
be transferred between writers and readers. Another
important feature of DDS is the decentralized discovery
mechanism, which allows participants to join the DDS
network freely and exchange data through the GDS.
These DDS features enable loose coupling, interoper-
ability, and fine control of industrial automation [53].

D. GAPS AND OBJECTIVES
Intelligent product development is gradually building auton-
omy and intelligence to improve productivity and quality in
various fields. Moreover, in order to evaluate the charac-
teristics of production machines more precisely, customers
increasingly expect to acquire BOL phase data about the
machines they purchase. The authors observed that the
trend in machine communication standards [27], [28], [29]
also implicitly assumes more BOL stage information from
machine manufacturers. Important BOL stage data can help
to predict equipment health [54], evaluate product perfor-
mance by use of a virtual system [55], improve production
efficiency or product quality [8], and ensure system safety [9].
However, production machines rarely come with histori-
cal information about their production process performance.
Raw data is lacking in particular, so the data based on which
users can develop applications is limited to that at hand.
Furthermore, even given a relationship of trust established
between the machine manufacturer and the customer, eco-
nomical and easy-to-maintain ways to collect and preserve
large volumes of raw data are needed. To do this, workpieces
with basic intelligence can be deployed on the manufacturing
floor and assist in the production process, collecting infor-
mation about themselves and making it available directly to
customers as an objective to pursue in the future.

III. SYSTEM DESIGN
A. PARADIGM
The product-service systems (PSS) lifecycle model devel-
oped by Cavalcante et al. is applied to analyze the activities of
production machines, with results listed in Table 1. The PSS
model divides the life cycle into four periods: Idea & Design,
Realization, Use, and End of Life. The first two periods
are usually regarded as BOL, as the product enters produc-
tion by the machine manufacturer. After delivery, production
machines help to produce the customer’s goods during the
Use period, and disposition marks the End of Life period.
Data collection activities over the lifecycle of the intelligent
production machine can be summarized as follows. In the
Idea & Design period, the production machine should collect
data on requirements, design specifications and documents,
and production plans about itself. Over most of the Realiza-
tion period, when the machine is on the shop floor of the
machine manufacturer, production traceability data should
be collected, including, for example, used facilities, process
logs, and testing/inspection results. Then, the delivered intel-
ligent production machine can provide data to the customer,
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TABLE 1. The proposed operation forms of iProducts in their lifecycle.

who can collect further usage data for advanced services.
In the End of Life period, all this collected data may be
returned to the machine manufacturer for re-design of the
product and its next-generation successors.

The interaction paradigm during the Realization period is
plotted in Figure 1. In a smart factory, intelligent products
can be divided into two types. The first type is machines
or components that perform production activities, hereafter
referred to as ‘‘intelligent machines (iMachines).’’ They are
already well-connected and can accept orders to carry out
manufacturing tasks. The second type is items that are to be
produced or are in production, such as materials and unfin-
ished products. For ease of classification, the second type of
intelligent product is referred to here by the term ‘‘intelligent
workpiece (iWP).’’ Their instancesmay be digital or physical,
and the behaviors may be passive or active. During this
period, iWPs can communicate with iMachines and other
intelligent assets in the manufacturing system. i.e., they can
independently collect data, analyze and judge the current
situation, and make corresponding decisions independently.
Also, at the end, the iWPwill officially take on product status,
an iMachine with intelligence and relevant data.

To construct the above intelligent product, a digital twin
(DT) implementation framework is necessary. The combina-
tion of the administration shell concept and the multi-level
modeling approach [56] provides a suitable guideline. The
cyberspace iWP, i.e., the digital instance, must have a data
interface, a virtual model to support physical instance map-
ping and a knowledge model to make decisions, as shown

in Figure 2. These models can help the iWP to perform
production tasks autonomously.When the iWP achieves iMa-
chine status, these models and the information collected
during production will support the customer’s DT applica-
tion. In addition, the iWP can be separately conceptualized as
a complete virtualization, digital twins, and an autonomous
operation, depending on the stage of the relevant operation
during production.

1) FULL DIGITALIZATION
When a manufacturer accepts an order from a customer, the
production task manager generates a digital instance of an
iWP with information on design and production, such as
component data, a digitalized geometric model, a kinematic
mechanism, and a projection plan. The design information
helps model the iWP virtual space, which will be mapped
to its physical instance at the next stage. The knowledge
space model constructed by the production plan will guide
the activities of the iWP in the workshop based on its status.
As production has not yet started, there is no physical body
for the iWP hosted in the workshop. In this stage, all digital
instances of iWP waiting for production are managed by a
computer, their boarding host. The virtual and knowledge
models, i.e., design and production planning, can be easily
and cost-effectively revised in this form.

2) DIGITAL TWINS
After production starts, the iWP begins to have a physi-
cal instance as raw material or semi-finished product. The
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FIGURE 1. Intelligent production machine life cycle paradigm.

FIGURE 2. Instance states of the proposed manufacturing system.

physical instances may be temporarily not digitized due to
the lack of corresponding computing hardware or the neces-
sary instance power source. In this stage, iWPs exist on the
production line as simple DT. i.e., they continue to be hosted
on the original computer and are linked to the corresponding
physical instances by its data interface and identification
technology that synchronizes their statuses. The constructed
knowledge space model in the iWP digital instance will direct
its physical instance activities. Data from the manufacturing
process is also synchronized with the iWP’s digital instance.

3) AUTONOMOUS OPERATION
With the merging of digital and physical instances, the
iWP becomes autonomous in form and can communi-
cate and interact directly with the manufacturing system.
An autonomous iWP can interact directly with any intelligent
product and perform production tasks. In this form, the iWP
can directly collect data about its processes and decide its
destiny.

Although the proposal is based on the analysis results of
the Realization period, it has applicability to the other iWP
periods. For example, the autonomous operations stage can
be regarded as a kind of service to customers.

B. INFORMATION SYSTEMS INTEGRATION
1) REASONS FOR CHOOSING DDS
Because the aim is to collect data from the iProduct relevant
to production, the volume ofmessages of different sizes about
the manufacturing system, including recipes, programs, doc-
uments, and images, can be expected to be significant. Also,
compared to stationary iMachines, the status and connectivity
of a dynamic iWP continuously change with progress in the
production process, and this is expected to result in informa-
tion management issues. For example, an iWP will probably
switch among several local networks and collaborate with
different objects during logistics. This situation requires over-
coming the issues of participation and interaction. Therefore,
choosing the most suitable communication middleware for
this is the main concern in system integration.

The authors chose DDS for the following reasons. First,
DDS has a clear advantage in its discovery mechanism, used
to solve the issue of changing areas. When a workpiece
enters a new area, intelligent products can quickly recognize
each other, establishing their identities and enabling peer-to-
peer connections. Second, DDS has a self-description feature,
making it easier for intelligent products to communicate and
collaborate. Finally, DDS supports a variety of QoS policies
appropriate for different application scenarios and can prop-
erly handle different message priorities. For example, a wide
variety of data for monitoring, controlling, and evaluating
production status or product quality may be transmitted in
the manufacturing system to meet production management
requirements, with transmission latency times usually less
than one second [57]. As a result, DDS is more flexible
and configurable and thus more able to handle the various
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FIGURE 3. The GDS message map of the proposed manufacturing system.

issues involved in managing intelligent products than other
middleware.

2) MESSAGES IN THE GDS
In the integration process for an industrial information sys-
tem, it is necessary to clarify the requirements for message
exchanges. This study requires a production plan for produc-
tion when creating an iWP instance. When the iWP instance
completes any task, it must record its production progress.
In addition, iWP instances need to communicate with iMa-
chines to perform operations and obtain process responses to
determine their current production progress and status. Based
on these requirements, the relevant topics of messages shown
in Figure 3 are planned in the GDS of the DDS network.
Initially, the task receiver will provide production recipe
information to the iWP. The iWP will return a confirmed
response on receiving the production recipe information.
When the iWP is ready to engage with an iMachine, it assigns
operation parameters and obtains process results upon oper-
ation completion. The iWP can also periodically report the
production progress to the task receiver or finally. The iWP
can collect data about itself, including its production plan and
history, and direct the iMachine’s actions through the above
GDS design.

3) INSTANCE TRANSFER
The easiest way to move the digital instance of an iWP
from its boarding host to the corresponding physical body
is through data media. The content of iWP will be stored
in the data media, such as XML, drawing, and SQLite files.
With a well-designed interface combining data and control
processes, instance transfer can be carried out by simply
copying or moving the data media. Digital instance transfer
involving functionality or interfaces may require a more com-
plex approach, such as container technology. The behavior
may be different before and after transferring. The concept is
illustrated in Figure 4.

IV. IMPLEMENTATION
A. SYSTEM DEVELOPMENT
A proof of concept of the intelligent product-driven manufac-
turing system was carried out using the FESTO CP-Factory

FIGURE 4. Illustration of a digital instance transfer.

shown in Figure 5(a). The hardware and software involved
included an ASRS machine as an automatic storage system
for materials and finished products, a MagBack machine for
placing covers, an MPress machine as an assembly press, and
a computer center on which the manufacturing execution sys-
temMES4 was installed. Conveyor belts and carriers achieve
logistics between machines. The system’s machines had
embedded Siemens Simatic S7-1500 PLCs, which exchanged
information in packets with a defined data structure in MES4
via standard TCP sockets [58]. Therefore, these machines
can accept commands of the manufacturing execution sys-
tem from the computer center to perform production tasks.
The default FESTO CP-Factory with the architecture shown
in Figure 5(b) can be considered a classic manufacturing
system.

In order to implement the intelligent product-driven man-
ufacturing system, the study had to re-make this classic
manufacturing system. The steps were as follows:

• Step 1: A DDS network was built to enable the exchange
of messages between the various physical nodes. The
DDS used was eProsima Fast DDS with version 2.0.0,
a complete and free open-source DDS project based on
the OMG DDS 1.4 and OMG RTPS 2.2 standards. The
message implementation was coded in Interface Defi-
nition Language (IDL) to define the topics of Figure 2,
allowing real-timemessage exchanges between physical
nodes using the Pub/Sub mechanism. The DDS net-
work comprised a cluster of nodes built with Raspberry
Pi 4 Model B, containing a Broadcom BCM2711 quad-
core Cortex-A72 processor and 4 GBLPDDR4memory,
and having the Ubuntu 20.04 LTS operating system
based on the Linux kernel version 5.4.

• Step 2: To be a host for an iWP digital instance, the phys-
ical node hardware requires a pre-configured software
environment. The environment included a DDS node
process to connect to the GDS for data exchanges and
an agent process to interact with other nodes. The iWP’s
digital instance, i.e., the SQLite content, determined
its interactive behavior and the payloads of messages
published to the other physical nodes.
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FIGURE 5. The classic manufacturing system: (a) Photograph;
(b) Production flow.

• Step 3: Since the proposed distributed system did
not have a computer center but only a management
node, a Raspberry Pi could be used to handle the
required production tasks, generate the digital iWP
instances in the form of SQLite files, and transfer
them to the physical nodes at the appropriate moments.
Once the SQLite file of an iWP digital instance
was transferred to its corresponding iWP hardware,
the completed iWP could detect the environment and
respond actively using the configured DDS and agent
processes.

• Step 4: Connecting the machines to the DDS network
was also important integration work. Message agents
were established between the machines and the DDS
network. The original PLCs of the machines already had
OPC UA servers providing an interface to read machine
information and control machine behavior, but they did
not support DDS. Therefore, Raspberry Pi was deployed
as an administration shell between the machines and the
DDS network. With this, each machine and its admin-
istration shell was conceived as an iMachine, able to
interact with other intelligent products through the DDS
network.

As a result, the finished architecture is shown in Figure 6.

FIGURE 6. Intelligent product-driven manufacturing system architecture
using DDS.

B. DIGITAL INSTANCE OF INTELLIGENT WORKPIECE
In order to verify the feasibility of the system, an order of
several products is sent to the already constructed system
to carry out production. The iWP digital instance, which
the management node generates, consists of data media and
its administration shell (AS), as shown in Figure 7. The
data media of the iWP digital instance uses SQLite to store
the production plan, traceability data, and other information
required by the system. The AS has a data interface to the
DDS network, performs data exchanges, and analyzes data
content. It has a listener that listens to the DDS network for
information about the physical instance’s logistical status,
start and stop times, and responses from the process. When
the AS receives the instruction to start production, it will
order the ASRS machine to bind the carrier, the physical
material, and the digital instance through an RFID tag and
activate the iWP’s digital twin state. Based on the data content
and physical instance status, the AS can decide the action
of the iWP, send process commands to the machine, and
update production history and other data content. Please refer
to Algorithm 1 for data agent control logic. Based on this
logic, when a carrier enters any physical machine, its AS
will determine whether to instruct the machine to perform an
operation or exit the machine, ensuring accurate and consis-
tent data collection. This process continues until the iWP has
completed all the tasks of the production plan.

V. PERFORMANCE EVALUATION
Relevant data collected from manufacturing systems may
include recipe and status values, files, images, and video
streams, and the payload sizes of this data will affect
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FIGURE 7. Illustration of iWP digital instance.

Algorithm 1 Data Agent for Intelligent Workpiece (iWP)
Agent:
Create a SQL database for the iWP
Start Listener of DDS network
Initialize flag for Digital Twin

while true:
if isDigitalTwin is false:
if GUID in RecipeInfo message
matches iWP’s GUID:
Commit production plan to database
Set first step to nextStep
Set Digital Twin flag to true
Broadcast RecipeInfoRes message

else isDigitalTwin is true:
if nextStep does not exist:
Commit Finish state to the database
Broadcast ProduceRep message

if a carrier arrives at a machine:
if the carrier is empty at the ASRS:
Set iWP bindedCarrierId to carrier
Id

if active machine Id matches that in
nextStep:
Broadcast assignOp message to start
operation

else:
Broadcast assignOp message to
release carrier

Listener:
Collect phyiscal instance state
if production state is changed:
Commit production state to the
database

network transmission performance. In order to understand
the actual benefits that a DDS network can provide intelli-
gent product-based manufacturing systems or the limitations
it may introduce, this section evaluates a series of system
properties that include Round-Trip Times (RTT), message

reception rate, and throughput, which represent message
latency, the number of messages, and the amount of data that
can be transmitted in a given time unit, respectively. Almost
all the QoS policies of the test used the default values pro-
vided by Fast DDS. Only the reliability setting was changed
to ‘‘Reliable’’ in order to simulate the basic settings of a
mission-critical message transmission. The hardware used for
the performance test included four Raspberry Pi 4 Model
B and a Dray VigorSwitch G1080 network switch, which
provides a 1000 Mbps network interface, 16 Gbps switching
capability, and network storm control for broadcast, multi-
cast, and unicast. All Raspberry Pi were connected to the
switch through RJ45 network cables.

A. LATENCY
Firstly, RTT message transmission tests were carried out to
see whether DDS moved messages between nodes quickly,
so it was an effective production management assistance tool.
Production management processes often create messages in
the form of queries and responses that round-trip back and
forth between nodes, like the pair AssignedOp and Assigne-
dOpRes in Figure 2. A production order is only confirmed
after the sender has received a response from the receiver.
This means that an RTT value is a measure of the timeli-
ness of the DDS network in carrying out such production
management tasks. In the paradigm followed by this study,
most of the iWP’s messages in the fully digitalized or digital
twin stage were transmitted within a single host. After taking
physical form, the iWPs transferred messages across hosts.
Therefore, this section describes in-host testswithin the same
host and cross-host tests between hosts on different Raspberry
Pi. The tests were conducted in unicast mode, using different
payloads, starting from 8 bytes and increasing to 32 KiB by
an exponent of 2. RTT values were recorded 1000 times, and
their characteristics were analyzed.

A breakdown of the results for the in- and cross-host RTT
tests over the different payload lengths is presented first.
Figure 8 shows the statistical distribution of in-host RTT.
As the payload length increased, there was a gradual RTT
increase, but it was negligible, doubling for a 2048-fold pay-
load length increase from 8 bytes to 32 KiB. It should be
added that a percentage (less than 8%) of anomalous RTT
values in the in-host tests exceeded 1000 µs, but they are
not plotted in Figure 8. We suggest that the delay for the
larger payloads is due to the performance limitations of the
Raspberry Pi 4B hardware.

Figure 9 shows the statistical distribution of the cross-host
RTT tests. Compared with the average in-host test values
of 200 to 300 µs, cross-host RTT values were significantly
higher in the 200 to 5000 µs range. Significant jitter, i.e.,
variation in RTT values, can be observed in Figure 9. For
example, in Figure 9(a), two groups of message transmission
times can be observed, one at 600µs and the other at 2900µs.
As the payload length increased, jitter and latency increased
gradually, as seen in Fig. 9(b).
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FIGURE 8. In-host testing RTT distribution.

FIGURE 9. Cross-host testing RTT distribution.

Standard statistical metrics are given in Table 2, and aver-
age RTT values are plotted in Figure 10, providing a general
overview of RTT performance. In-host transmission perfor-
mance was undoubtedly very good, with high speeds and low
variation. Most messages were transmitted within hundreds
of microseconds. Cross-host transmission performance was
mainly affected by the performance of the switch. There
was performance degradation of 7.5 times, approaching an
order of magnitude, over in-host times, accompanied by
greater variation. When the payload size exceeded 1 KiB,
the variation in RTT started to increase. At sizes greater
than 4 KiB, transmission performance degradation increased
significantly due to limitations imposed by the network’s
maximum transmission unit (MTU), usually 1,500 bytes
per packet in an Ethernet network. When the length of the
packet enclosing the payload was larger than the MTU, the

TABLE 2. Round-trip time tests statistic results.

FIGURE 10. Average RTT of in-host and cross-host over various payload
lengths.

transmission was divided into several packets, and a delay
resulted. Nevertheless, the results show that DDS always met
real-time production management requirements, i.e., produc-
tion dispatch or SCADA usually requires only one-second
transmission performance.

B. MESSAGE RECEPTION RATE AND THROUGHPUT
In order to further understand the impact of message length
on the collection of iProducts receiving information and
reporting on states in the factory, the throughput of the DDS
network with payloads of different lengths was then tested.
In each test, the publisher continuously sent subscribers as
many messages as possible of the specified length. Each test
recorded the number of messages subscribers received in
100 seconds to measure message reception rate (MRR) and
throughput. All tests were conducted in cross-host mode.

1) MULTICAST TEST
Multicast performance was tested to simulate the process
of a task receiver distributing work to iWP. In the test, one
publisher continuously delivered messages of a given length
to multiple subscribers. The test variables were the number
of assigned subscribers, ranging from 1 to 3, and the payload
length, ranging from 8 bytes to 8 MiB.

The test results are shown in Fig. 11. Changes in MRR
for a given number of subscribers were insignificant when
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FIGURE 11. The relationships among payload length, message reception
rate, and throughput in multicasting.

the message length was less than the network MTU. In this
case, MRR can be regarded as a constant. When the mes-
sage length exceeded the MTU, MRR decreased gradually.
The relationship between it and throughput approached
inverse proportionality. As MRR decreased with data length
increases, throughput continued to increase until it reached
saturation; after that, it can also be regarded as a constant.

Based on the above observations, a generic evaluation of
the MRR can be expressed in the following form, PN ,L

PN ,L =


P1,MTU
N

if N = 1&L < MTU
P1,MTU ·MTU

N · L
otherwise

(1)

where N is the number of subscribers, and L is the mes-
sage length. For the Raspberry Pi used in this study, the
P1,MTU obtained after fitting is about 24550. A comparison
between this fitting result and the actual test values is shown
in Figure 12.

FIGURE 12. The evaluated message reception rate of various payload
lengths.

Table 3 shows theoretical evaluation results for larger num-
bers of subscribers obtained from Equation (1). When the
message length is less than MTU, for 10000 subscribers,
the network can provide an MRR of about 2.46, which
is sufficient for factories where recipes only require pro-
cess parameters. For larger payload recipes and hundreds of

TABLE 3. Theoretical message reception rates with multicasting.

machines, the systemwill likely take longer to sendmessages,
and it is hard to expect it to be successful in most such cases.
However, since actual recipe assignments are infrequent and
content length is often less than the MTU, the DDS network
can still satisfy the requirements of management tasks requir-
ing multicast in many cases.

2) REPORTING TEST
In contrast to the case of one-to-many multicasting, reporting
is done by multiple iProducts to a few or only one manage-
ment system to update it/them on the status of production
progress. In this case, reporting performance is a function
of the limits of the management system’s ability to handle
large messages. In a reporting test, multiple publishers con-
tinuously send messages with a given length to a specified
subscriber. Test variables are the number of publishers, rang-
ing from 1 to 3, and the payload length of the message,
ranging from 8 bytes to 8 MiB.

FIGURE 13. The relationships among payload length, message reception
rate, and throughput in reporting.

Figure 13 shows the results of the reporting performance
tests. It can be seen that the main pattern is similar to that
of the multicast performance tests, i.e., MRR decreases, and
throughput reaches a limit as both payload length and the
number of iProducts involved increase. However, whileMRR
behavior remained the same as in the previous tests, in the
manner explained by Equation (1), throughput, with mes-
sage reception count, reached zero for payload lengths that
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exceeded 64 KiB, i.e., the subscriber did not receive any
messages at all, when receiving messages from 2 or more
publishers. This means that DDS transmission is unsuitable
for large payloads near or over 64 KiB in length. Reducing
the size of data or splitting it into multiple messages may be
the only way large amounts of data can be transmitted.

VI. DISCUSSION
The aim of this research was to develop an intelligent
product-driven manufacturing system that allows customers
to write data-driven applications using relevant data that their
products autonomously collect. The following describes the
results of this research and other studies:

1. Distributed Control Architecture: A classic manufac-
turing system operates with a computer center directing
the interactions between the machines and the work-
pieces. In this study, control and tracking of the intel-
ligent product were distributed so that the machines
and intelligent products could directly coordinate and
conduct manufacturing operations themselves. To this
end, the necessary processes and forms of intelli-
gent products were developed, and system architecture
was designed using DDS technology and its partic-
ular message patterns. Finally, prototype tests in an
experimental plant verified that the intelligent products,
as designed, could direct the manufacturing process
and collect relevant data.

2. State Design of Intelligent Products: The study
described intelligent products and their states as fully
digital, digital twins, or autonomous. Each form’s oper-
ations and transfer mechanisms were implemented in
the experimental factory. Therefore, the study estab-
lished the feasibility of using intelligent products as
data carriers. However, focusing on the DT form, i.e.,
when all the digital instances of products exist on a
single computing device, their operational behavior is
similar to that of a classic manufacturing system. The
main difference between the two is whether the digi-
tal instances can exist independently of their boarding
host or not. In view of this relationship, the approach
proposed here can serve as a reference if one wants
to transform a centralized manufacturing system into
a distributed manufacturing system.

3. Data Collection and Transfer: The instances in the
system collected relevant information on mounted data
media when exchanging information through the DDS
network. This economical approach meant information
related to production control and manufacturing was
distributed only to entities that needed it, avoiding
data exposure, a risk with network transmission, and
reducing the cost of data storage compared to storing
this information in the cloud or on shared media. This
mechanism also provides machine manufacturers with
a more economical and secure way to store BOL data,
increasing the benefit of data transfer to customers with
their products.

4. Administration Shell for Data: During implementation,
it was observed that the essence of the iWP digital
instance is data media. In order to allow data to interact
with other intelligent products, the approach of this
study added an administration shell to data media.
A low intelligence was added to the agent based on
the multi-level modeling approach [56] for the devel-
opment of digital twins. This approach is similar to
that of several AutomationML studies [11], [16], [59].
The difference with those studies is that this one sug-
gests that the administration shells for combining data
media should also adapt to the situation. For example,
the iWPs in this study use management nodes and
workpiece entities as administration shells for differ-
ent usage purposes. The contribution of this study is
the intellectualization of the data in the BOL stage of
intelligent products.

5. Latency and Jitter: As the amount of data transferred
across hosts increased, there was a gradual increase in
both latency and jitter, indicating that the system was
under greater processing load, degrading transmission
performance. Secondly, when packet size exceeded
the maximum transmission unit (MTU), the packet
was split into several smaller packets for transmission,
thereby causing critical additional processing time.
These results may serve to remind users of the need
to ensure that packet size does not exceed the net-
work’s MTU when designing message structures to
avoid unnecessary delays. Despite these observed vari-
ations in transmission performance, the experimental
results show that the DDS system can provide stable
and reliable transmission performance under known
conditions, ensuring the smooth operation of produc-
tion management.

6. Multicast Performance: Several key observations can
be made about the multicast tests in which a publisher
transmits messages to multiple subscribers. When the
message length was below the MTU, MRR took gener-
ally unvarying, constant values inversely dependent on
the number of subscribers. Exceeding the MTU, MRR
decreased gradually, and the relationship between it
and throughput was inversely proportional. As data
length increased further, throughput increased until sat-
uration. On the basis of this use of Fast DDS and
Raspberry Pi to collect performance data and establish
simple estimation methods, we have come to several
conclusions in evaluating the limitations and appli-
cability of various schema. For task dispatches that
require only process parameters, a DDS network can
reliably serve 10,000 iProducts. However, for complex
and larger payloads, such as complex G-code programs
for CNCmachining centers that often involve the trans-
fer of tens of KiB, performance will drop to less than
one transfer per second serving hundreds of machines.
Payload lengths greater than 64 KiB create challenges
for message distribution, for example, in Augmented
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Reality or Virtual Reality applications. Still, the DDS
network built into the Raspberry Pi will satisfy most
real-world management needs despite the relatively
low distribution frequency of the actual processor.

7. Report Performance: When multiple publishers sent
messages to the same target, performance was simi-
lar to that of multicasting, i.e., MRR and throughput
remained constant or decreased with the increase of
payload length and the number of publishers. Beyond
data lengths of about 64 KiB, however, both dropped to
zero, meaning the subscriber did not receive any mes-
sages at all. Data that is too large may not be suitable
for DDS transmission, and it is recommended that alter-
native methods be used, such as reducing the length of
the data and splitting it into multiple publications.

VII. CONCLUSION
This study proposed a distributed manufacturing system
framework using intelligent products as its main production
control unit and DDS as its communication middleware and
validated it in an experimental factory. In this framework,
intelligent products acted as production control units in the
production process and submitted the data they collected to
the customer. This approach gives data a status approaching
that of intelligent products. At the same time, the performance
of DDS asmiddleware was tested and evaluated in the factory.
The results show that although transmission in the DDS
network was affected by delay and jitter, production manage-
ment tasks were not affected. MRR and throughput depended
on the number of multicast targets and message length, but
this was not a problem for small messages of length less
than the MTU. However, their impact must be considered
when transferring larger amounts of data. In summary, the
study lays out a new intelligent product-drivenmanufacturing
system approach that will contribute to developing innovative
production management methods and business models for
manufacturers.

Compared to real-world industrial manufacturing systems,
the manufacturing system designed, implemented, and ana-
lyzed in this study is simple, using an experimental factory
and focusing on single-assembly production control. In addi-
tion, the investigation of digital asset management and control
at the BOL stage was limited. Therefore, the study’s system
integration work and discussion may not apply to real-
world factories. Because of these limitations, possible future
research directions include:

1. Expansion of the scope of system integration would
provide more comprehensive product-related informa-
tion relevant to a wider range of applications and
services targeting, for example, the supply chain and
product life cycle. This expansion would allow the col-
lection of product-related information more effectively
and provide more information for customers optimiz-
ing their data-driven applications and services. At the
same time, if the proposed system framework were to

be applied to a real-world factory, developers would
have to be aware of the changes to processes that might
result from the distributed system and the impact on
system architecture. In addition, protecting the data in
smart products and disclosing them only to customers
is also an important data privacy issue.

2. It is worth exploring the value that can be derived from
data by studying administration shells for different
data types and sources and exploring their inter-
actions. Specific examples include computer-aided
design (CAD) data to help customers build virtual
factories or computer-aided engineering (CAE) data to
develop digital twins.

3. Constructing a system complexity analysis methodol-
ogy and applying it to system improvement is a third
research avenue. If the complexity of a system can be
quantified, then processes, architectures, and message
routes can be adjusted and optimized based on metrics.
Such improvements would enhance a system’s perfor-
mance, flexibility, and scalability.

4. The manufacturing system considered in this study
was primarily one of flow production, where physical
tracking and transfer of the iWP were simple. In the
case of a project-based production system, for exam-
ple, where the production process involves multiple
assemblies, the paradigm of this study would need
further elaboration, and the work incorporating the
information system would need to be carefully car-
ried out. Even so, the operational forms and instance
transfers presented in this study provide the basis for
building advanced approaches to complex production
situations.

5. Once intelligent products can determine their destiny,
it is expected that they will be able to assist in many
more production activities, including smart logistics,
quality improvement, and energy optimization. For
such purposes, more advanced middleware or refer-
ence architectures should be considered. For example,
a multi-edge access framework [60] may be suitable for
developing applications based on thewisdomof crowds
and intelligent products.

For subsequent research, researchers should also use ROS2
and container technology. DDS requires greater software
development skills and currently lacks adequate community
support compared to other popular communication mecha-
nisms. ROS 2 technology, based on DDS, benefits frommany
online resources, allowing for accelerated exploration of sys-
tem planning and research into more complex manufacturing
behavior.

REFERENCES

[1] J. Zendoia, U. Woy, N. Ridgway, T. Pajula, G. Unamuno, A. Olaizola,
A. Fysikopoulos, and R. Krain, ‘‘A specific method for the life
cycle inventory of machine tools and its demonstration with two
manufacturing case studies,’’ J. Cleaner Prod., vol. 78, pp. 139–151,
Sep. 2014.

VOLUME 12, 2024 16459



C.-T. Lin, H.-J. Lu: Intelligent Product-Driven Manufacturing System Using DDS

[2] N. Yousefnezhad, A. Malhi, T. Kinnunen, M. Huotari, and K. Främling,
‘‘Product lifecycle information management with digital twin: A case
study,’’ presented at the IEEE 18th Int. Conf. Ind. Informat. (INDIN),
Warwick, U.K., Jul. 2020.

[3] D. Lehner, S. Sint, M. Vierhauser, W. Narzt, and M. Wimmer, ‘‘AML4DT:
A model-driven framework for developing and maintaining digital twins
with AutomationML,’’ in Proc. 26th IEEE Int. Conf. Emerg. Technol.
Factory Autom. (ETFA), Sep. 2021, pp. 1–8.

[4] J.-H. Shin, D. Kiritsis, and P. Xirouchakis, ‘‘Design modification sup-
porting method based on product usage data in closed-loop PLM,’’ Int.
J. Comput. Integr. Manuf., vol. 28, no. 6, pp. 551–568, Jun. 2015.

[5] M. Zhang and B. Huo, ‘‘The impact of dependence and trust on supply
chain integration,’’ Int. J. Phys. Distribution Logistics Manage., vol. 43,
no. 7, pp. 544–563, Aug. 2013.

[6] T. Jess, P. Woodall, and D. McFarlane, ‘‘Overcoming limited dataset
availability when working with industrial organisations,’’ in Proc. IEEE
13th Int. Conf. Ind. Informat. (INDIN), Jul. 2015, pp. 826–831.

[7] S. Faltinski, O. Niggemann, N. Moriz, and A. Mankowski, ‘‘Automa-
tionML: From data exchange to system planning and simulation,’’ in Proc.
IEEE Int. Conf. Ind. Technol., Mar. 2012, pp. 378–383.

[8] K.-P. Lin, C.-M. Yu, and K.-S. Chen, ‘‘Production data analysis system
using novel process capability indices-based circular economy,’’ Ind. Man-
age. Data Syst., vol. 119, no. 8, pp. 1655–1668, Sep. 2019.

[9] Y. Keshun, Q. Guangqi, and G. Yingkui, ‘‘Remaining useful life prediction
of lithium-ion batteries using EM-PF-SSA-SVR with gamma stochastic
process,’’Meas. Sci. Technol., vol. 35, no. 1, Jan. 2024, Art. no. 015015.

[10] A. Lüder and N. Schmidt, ‘‘AutomationML in a nutshell,’’ in
Handbuch Industrie 4.0: Produktion, Automatisierung Und Logistik,
B. Vogel-Heuser, T. Bauernhansl, and M. ten Hompel, Eds. Berlin,
Germany: Springer, 2016, pp. 1–46.

[11] A. Lüder, L. Hundt, and A. Keibel, ‘‘Description of manufacturing pro-
cesses using AutomationML,’’ in Proc. IEEE 15th Conf. Emerg. Technol.
Factory Autom. (ETFA), Sep. 2010, pp. 1–8.

[12] M. Vathoopan, H. Walzel, W. Eisenmenger, A. Zoitl, and
B. Brandenbourger, ‘‘AutomationML mechatronic models as enabler
of automation systems engineering: Use-case and evaluation,’’ in Proc.
IEEE 23rd Int. Conf. Emerg. Technol. Factory Autom. (ETFA), vol. 1,
Sep. 2018, pp. 51–58.

[13] A. Mazak, A. Lüder, S. Wolny, M. Wimmer, D. Winkler, K. Kirchheim,
R. Rosendahl, H. Bayanifar, and S. Biffl, ‘‘Model-based generation of
run-time data collection systems exploiting AutomationML,’’ Automa-
tisierungstechnik, vol. 66, no. 10, pp. 819–833, Oct. 2018.

[14] P. Novák, F. J. Ekaputra, and S. Biffl, ‘‘Generation of simulation models
in MATLAB-simulink based on AutomationML plant description,’’ IFAC-
PapersOnLine, vol. 50, no. 1, pp. 7613–7620, Jul. 2017.

[15] G. N. Schroeder, C. Steinmetz, C. E. Pereira, and D. B. Espindola,
‘‘Digital twin data modeling with AutomationML and a communication
methodology for data exchange,’’ IFAC-PapersOnLine, vol. 49, no. 30,
pp. 12–17, 2016.

[16] N. Schmidt and A. Lueder, ‘‘The flow and reuse of data: Capabilities of
AutomationML in the production system life cycle,’’ IEEE Ind. Electron.
Mag., vol. 12, no. 2, pp. 59–63, Jun. 2018.

[17] P. Helo, Y. Hao, R. Toshev, and V. Boldosova, ‘‘Cloud manufacturing
ecosystem analysis and design,’’ Robot. Comput.-Integr. Manuf., vol. 67,
Feb. 2021, Art. no. 102050.

[18] Enterprise-Control System Integration—Part 1: Models and Terminol-
ogy, Standard IEC 62264-1:2013, Int. Electrotech. Commission, Geneva,
Switzerland, 2013.

[19] T. O. Boucher and A. Yalçin, ‘‘Introduction,’’ inDesign of Industrial Infor-
mation Systems, vol. 1. New York, NY, USA: Academic, 2006, pp. 1–25.

[20] B. Vogel-Heuser, G. Kegel, and K. Wucherer, ‘‘Global information archi-
tecture for industrial automation,’’ Atp-Automatisierungstechnik, vol. 51,
nos. 1–2, p. 108, Jun. 2013.

[21] D. McFarlane, S. Sarma, J. L. Chirn, C. Y. Wong, and K. Ashton, ‘‘The
intelligent product inmanufacturing control andmanagement,’’ IFACProc.
Volumes, vol. 35, no. 1, pp. 49–54, 2002.

[22] P. Valckenaers, H. Van Brussel, L. Bongaerts, and J. Wyns, ‘‘Holonic
manufacturing systems,’’ Integr. Comput. Aided Eng., vol. 4, no. 3,
pp. 191–201, Jul. 1997, doi: 10.3233/ICA-1997-4304.

[23] J.-L. Chirn andD.McFarlane, ‘‘Evaluating holonic control systems: A case
study,’’ IFAC Proc. Volumes, vol. 38, no. 1, pp. 211–216, 2005.

[24] D. C. Mcfarlane and S. Bussmann, ‘‘Developments in holonic production
planning and control,’’Prod. Planning Control, vol. 11, no. 6, pp. 522–536,
Jan. 2000.

[25] C. Indriago, O. Cardin, N. Rakoto, P. Castagna, and E. Chacòn, ‘‘H2CM:
A holonic architecture for flexible hybrid control systems,’’ Comput. Ind.,
vol. 77, pp. 15–28, Apr. 2016.

[26] J. Kaiser, D. McFarlane, G. Hawkridge, P. André, and P. Leitão,
‘‘A review of reference architectures for digital manufacturing: Classifi-
cation, applicability and open issues,’’ Comput. Ind., vol. 149, Aug. 2023,
Art. no. 103923.

[27] (Aug. 2023).MTConnect Standard—Part 1. Fundamentals, Version 2.2.0.
[Online]. Available: http://www.mtconnect.org/

[28] (Nov. 2017). OPC Unified Architecture: Specification—Part 1: Overview
and Concepts, Version 1.0.4. [Online]. Available: https://opcfoun
dation.org/

[29] (Jul. 2022).OPC UA for Machine Tools—Part 1: Machine Monitoring and
Job Overview, Version 1.01.1. [Online]. Available: https://reference.opcf
oundation.org/MachineTool/v100/docs/

[30] X. Yang, P. Moore, and S. K. Chong, ‘‘Intelligent products: From lifecy-
cle data acquisition to enabling product-related services,’’ Comput. Ind.,
vol. 60, no. 3, pp. 184–194, Apr. 2009.

[31] Amazon Web Services. (2024). Manufacturing on AWS. Accessed:
Jan. 22, 2024. [Online]. Available: https://d1.awsstatic.com/architecture-
diagrams/ArchitectureDiagrams/manufacturing-on-aws-ra.pdf

[32] M. Schroeck, A. Kwan, and J. Kawamura, ‘‘Ecosystem-driven portfolio
strategy: Building a portfolio of digital industrial solutions leveraging
powerful business ecosystems,’’ in Digital Industrial Transformation.
New York, NY, USA: Deloitte Insights, 2019. [Online]. Available:
https://www2.deloitte.com/xe/en/insights/focus/industry-4-0/business-
ecosystem-strategy.html

[33] J. Cavalcante and L. Gzara, ‘‘Product-service systems lifecycle
models: Literature review and new proposition,’’ Proc. CIRP, vol. 73,
pp. 32–38, Jul. 2018. [Online]. Available: https://doi.org/10.1016/
j.procir.2018.03.324

[34] M. Hoffmeister, ‘‘Industrie 4.0: The Industrie 4.0 component,’’
Plattform Industrie 4.0, Apr. 2015. [Online]. Available: http://85.214.
218.90/platform/content/documents/ZVEI-Industrie-40-Component-
English.pdf

[35] C. Diedrich, A. Belyaev, T. Schroder, J. Vialkowitsch, A. Willmann,
T. Usländer, H. Koziolek, J. Wende, F. Pethig, and O. Niggemann,
‘‘Semantic interoperability for asset communication within smart facto-
ries,’’ in Proc. 22nd IEEE Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), Sep. 2017, pp. 1–8.

[36] H. Bedenbender et al., ‘‘Relationships between I4.0 components—
Composite components and smart production,’’ Plattform Industrie
4.0, Feb. 2018. [Online]. Available: https://www.plattform-
i40.de/IP/Redaktion/EN/Downloads/Publikation/relationships-i40-
components.html

[37] Z. Bradac, P. Marcon, F. Zezulka, J. Arm, and T. Benesl, ‘‘Digital twin
and AAS in the Industry 4.0 framework,’’ IOP Conf. Ser., Mater. Sci. Eng.,
vol. 618, no. 1, Oct. 2019, Art. no. 012001.

[38] L. Neto, P. Torres, R. Dionisio, S. Malhão, and G. Gonçalves,
‘‘An Industry 4.0 self description information model for software compo-
nents contained in the administration shell,’’ presented at the 8th Int. Conf.
Intell. Syst. Appl., Jul. 2019.

[39] X. Ye and S. H. Hong, ‘‘Toward Industry 4.0 components: Insights into and
implementation of asset administration shells,’’ IEEE Ind. Electron. Mag.,
vol. 13, no. 1, pp. 13–25, Mar. 2019.

[40] I. Grangel-González, L. Halilaj, G. Coskun, S. Auer, D. Collarana, and
M. Hoffmeister, ‘‘Towards a semantic administrative shell for Industry 4.0
components,’’ in Proc. IEEE 10th Int. Conf. Semantic Comput. (ICSC),
Feb. 2016, pp. 230–237.

[41] H. Zhang, S. Qin, R. Li, Y. Zou, and G. Ding, ‘‘Environment interaction
model-driven smart products through-life design framework,’’ Int. J. Com-
put. Integr. Manuf., vol. 33, no. 4, pp. 360–376, Apr. 2020.

[42] A. Fleischmann, A. Friedl, D. Großmann, and W. Schmidt, ‘‘Modeling
and implementing of Industrie 4.0 scenarios,’’ in Modelling To Program,
A. Dahanayake, O. Pastor, and B. Thalheim, Eds. Cham, Switzerland:
Springer, 2021, pp. 90–112.

[43] J. T. Veiga, M. A. O. Pessoa, F.-C. Junqueira, P. E. Miyagi, and
D. J. dos Santos Filho, ‘‘Control of manufacturing systems by HMS/EPS
paradigms orchestrating I4.0 components based on capabilities,’’ in Tech-
nological Innovation for Applied AI Systems, L. M. Camarinha-Matos,
P. Ferreira, and G. Brito, Eds. Cham, Switzerland: Springer, 2021,
pp. 62–70.

16460 VOLUME 12, 2024

http://dx.doi.org/10.3233/ICA-1997-4304


C.-T. Lin, H.-J. Lu: Intelligent Product-Driven Manufacturing System Using DDS

[44] J. T. Veiga, M. A. O. Pessoa, F. Junqueira, P. E. Miyagi, and
D. J. dos Santos Filho, ‘‘A systematic modelling procedure to design
agent-oriented control to coalition of capabilities—In the context of I4.0
as virtual assets (AAS),’’ Computers, vol. 10, no. 12, p. 161, Nov. 2021.

[45] D. McFarlane, V. Giannikas, A. C. Y. Wong, and M. Harrison, ‘‘Product
intelligence in industrial control: Theory and practice,’’Annu. Rev. Control,
vol. 37, no. 1, pp. 69–88, Apr. 2013.

[46] A. Balador, N. Ericsson, and Z. Bakhshi, ‘‘Communication middle-
ware technologies for industrial distributed control systems: A literature
review,’’ presented at the 22nd IEEE Int. Conf. Emerg. Technol. Factory
Autom. (ETFA), Limassol, Cyprus, Sep. 2017.

[47] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, ‘‘OPC
UA versus ROS, DDS, and MQTT: Performance evaluation of Industry
4.0 protocols,’’ in Proc. IEEE Int. Conf. Ind. Technol. (ICIT), Feb. 2019,
pp. 955–962.

[48] HiveMQ. (2020).MQTT&MQTT 5 Essentials: HiveMQGmbH. [Online].
Available: https://www.hivemq.com/mqtt-5/

[49] B. Mishra and A. Kertesz, ‘‘The use of MQTT in M2M and IoT systems:
A survey,’’ IEEE Access, vol. 8, pp. 201071–201086, 2020.

[50] (2022). OPC Unified Architecture Discovery and Global
Services (Release 1.05.02). [Online]. Available: https://reference.
opcfoundation.org/GDS/v105/docs/

[51] G. Pardo-Castellote, ‘‘OMG data-distribution service: Architectural
overview,’’ in Proc. IEEE Mil. Commun. Conf., vol. 1, Oct. 2003,
pp. 242–247, doi: 10.1109/MILCOM.2003.1290110.

[52] J. Park, R. Delgado, and B. W. Choi, ‘‘Real-time characteristics of ROS
2.0 in multiagent robot systems: An empirical study,’’ IEEE Access, vol. 8,
pp. 154637–154651, 2020.

[53] H. Pérez, J. J. Gutiérrez, S. Peiró, and A. Crespo, ‘‘Distributed architecture
for developing mixed-criticality systems in multi-core platforms,’’ J. Syst.
Softw., vol. 123, pp. 145–159, Jan. 2017.

[54] N.-K. Hsieh, W.-Y. Lin, and H.-T. Young, ‘‘High-speed spindle fault
diagnosis with the empirical mode decomposition and multiscale entropy
method,’’ Entropy, vol. 17, no. 4, pp. 2170–2183, Apr. 2015.

[55] A. Abdul Kadir, X. Xu, and E. Hämmerle, ‘‘Virtual machine tools and vir-
tual machining—A technological review,’’ Robot. Comput.-Integr. Manuf.,
vol. 27, no. 3, pp. 494–508, Jun. 2011.

[56] C. Zhang et al., ‘‘A multi-level modelling and fidelity evaluation method
of digital twins for creating smart production equipment in Industry 4.0,’’
Int. J. Prod. Res., Aug. 2023, doi: 10.1080/00207543.2023.2246161.

[57] D. Brandl and C. Johnsson, ‘‘Beyond the pyramid: Using ISA95 for
industry 4.0 and smart manufacturing,’’ in InTech Magazine. NC, USA:
International Society of Automation, Oct. 2021, pp. 14–16. [Online].
Available: https://www.isa.org/intech-home/2021/october-2021

[58] F. Wascher, ‘‘MES4: Communication with MES 4,’’ Festo Didactic SE,
Denkendorf, 2014.

[59] E. Gonçalves, A. Freitas, and S. Botelho, ‘‘An AutomationML based
ontology for sensor fusion in industrial plants,’’ Sensors, vol. 19, no. 6,
p. 1311, Mar. 2019.

[60] C. Zhang, G. Zhou, J. Li, F. Chang, K. Ding, and D. Ma, ‘‘A multi-access
edge computing enabled framework for the construction of a knowledge-
sharing intelligent machine tool swarm in Industry 4.0,’’ J. Manuf. Syst.,
vol. 66, pp. 56–70, Feb. 2023.

CHIN-TE LIN was born in Kaohsiung, Taiwan,
in 1979. He received the bachelor’s, master’s, and
Ph.D. degrees in mechanical engineering from the
National Taiwan University, Taipei, in 2002, 2005,
and 2012, respectively.

In 2012, he joined the Industrial Technol-
ogy Research Institute (ITRI). During his tenure,
he completed various projects, including the Pro-
cess Monitoring of CNC Machine Centers, the
Industrial Upgrading of a Saw Blade Company,

the Development of Software and Hardware for Machine Tool Communi-
cation Agents, and the Information Systems for Smart Manufacturing. Since
2019, he has been a Faculty Member with the Department of Mechanical
Engineering, National Central University, Taoyuan, Taiwan. His current
research interests include computer-aided integration in manufacturing and
the application fields, includes manufacturing systems, artificial intelligence
applications, production scheduling, and robotics in industry.

HONG-JI LU received the bachelor’s and mas-
ter’s degrees in mechanical engineering from the
National Central University, Taiwan, in 2020 and
2022, respectively.

From 2020 to 2022, he was a Teaching Assis-
tant of various courses with the National Central
University. He also assisted in research to incor-
porate the Internet of Things (IoT), distributed
systems, and industrial communication protocols
into industrial manufacturing systems, aiming to

optimize production processes. Since 2022, he has been a Product Applica-
tion Engineer with the Industrial IoT Business Group, Advantech Company
Ltd. He is responsible for solving customer problems, proposing more
feasible solutions, and promoting the practical application of smart IoT in
industrial fields.

VOLUME 12, 2024 16461

http://dx.doi.org/10.1109/MILCOM.2003.1290110
http://dx.doi.org/10.1080/00207543.2023.2246161

