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ABSTRACT The skeleton-based action recognition technology can effectively avoid the background
interference and occlusion problems in the image. However, the recognition of similar actions is still a
challenge. In this paper, a multi-scale dynamic topological modeling method (MDTM) is proposed to
solve this problem. The topological modeling through the convolution kernel generated from the original
data, increases the connection of the convolution process to the original data compared to the previous
randomly generated ones, effectively distinguishing similar actions. In addition, MDTM uses a multi-scale
temporal convolutional network to obtain a wider receptive field, which can effectively extract the temporal
information in the action. At the same time, a dynamic topology learning method is utilized to design a
spatiotemporal information extractor that can effectively extract the spatiotemporal information in the action
to dynamically adjust the topology structure. Extensive experiments have performed on three large-scale
datasets, NTU RGB + D 60, NTU RGB + D 120, and NW-UCLA to validate the effectiveness of MDTM.
The results show that MART-GCN performs better than the others in terms of accuracy and number of
parameters.

INDEX TERMS Multi-scale graph convolution, adaptive convolution kernel, action recognition, dynamic
topology.

I. INTRODUCTION
As a central task of video understanding and an important
direction of computer vision, human action recognition has
always been a hot topic in the field of artificial intelligence.
With the rapid development of human action recognition
technology, it has been widely used in video surveillance,
smart home, sports competition, medical rehabilitation, and
other fields [1], [2], [3], [4], [5]. However, due to the
complexity of research and the limitations of the dataset,
action diversity, occlusion, and light variation have been
main challenges and difficulties in human action recognition.
In recent years, skeleton-based action recognition technology
has received extensive attention. Comparedwith image-based
action recognition technology, it has better robustness
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and accuracy. Most importantly, it can avoid background
interference and occlusion problems in the image.

Skeleton-based action recognition method is used to
identify the actions and behaviors of the human body through
the analysis and processing of the skeleton, which usually
adopts deep learning models to extract the key points of
human skeleton from images or videos, and then analyzes
and identifies the movement trajectory of these key points to
realize the recognition and classification of human action.

In [6], [7], [8], [9], [10], [11], and [12], graph convolutional
neural networks are used for feature extraction and classifi-
cation of skeleton data. In [6], the ST-GCN model manually
defines the adjacency matrix to traverse the neighbor
nodes, and multiple adjacency matrices are formed using a
partitioning strategy of spatial configurations, with assigned
different weights. To better facilitate the discrimination of
similar actions, a learnable mask is added to each layer
to weigh the different joints to adjust the contribution of
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the node features to their adjacent nodes. However, the
skeleton diagram used in ST-GCN is predefined, which
displays only the human physical structure, and the adjacency
matrix applied in ST-GCN is fixed in all layers, lacking the
flexibility to model the multilayers of semantic information.
Accordingly, in [7], the 2s-AGCN model improves the
adjacency matrix by dividing into three parts, including the
physical structure of the human body, the trainable weights
for data learning, the unique graph learned per sample.
To improve the flexibility of the adjacency matrix, the second
part designs a trainable data-driven weight, and the third part
generates unique graphs for each sample using the embedding
function. DGNN [8] considers that some parts of the body
are strongly related in some action classes, but there is no
connection between them in the adjacency matrix based on
the physical structure of the human body. To solve this
problem, DGNN utilizes adaptive graphs instead of fixed
graphs for the aggregation of neighbor nodes. DGNN directly
takes the association matrix A [9] as the model topology,
which is fixed before training and then unfixed, which
improves the flexibility of topology construction. Unlike
DGNN, Dynamic GCN [10] designs a context encoding
network and beds it into graph convolution to automatically
construct end-to-end skeleton topology. Each sample in the
data in Dynamic GCN has a unique topology in each graph
convolutional layer, namely, the topology is automatically
adjusted during training, resulting in a dynamic topology,
which greatly improves the expression and flexibility of the
model.Meanwhile, the context encoding network proposed in
the paper does not need to construct a prior topology, which
is fully data-driven, and able to aggregate the contextual
information of the joint. However, the design of the above
topology increases the model complexity and requires longer
training time. In addition, more context information needs
to learn the topology, which has certain requirements for the
data set.

In this paper, a multi-scale dynamic topological mod-
eling graph convolutional network is designed to perform
skeleton-based action recognition. First, the dynamic learning
topology modeling is adopted to dynamically adjust the topo-
logical graph to better capture the temporal relationship in the
action. At the same time, instead of using the prior topology
including the physical structure of the human body, the
adjacency matrix directly randomly initialized by the normal
distribution as the shared topology of MDTM. By doing so,
the topology depends entirely on the experimental data for
learning, and enhances the flexibility of themodel, and avoids
the process of manually defining the topology structure,
which reduces the complexity of the model to some extent.
Second, topological modeling, node aggregation and other
operations through the convolution kernels generated from
the original data are used to enable the model to extract richer
and more meaningful feature representations. In addition, the
spatiotemporal properties of actions are also considered in
the topology modeling, which not only models the adjacency
matrix with spatial dimensions, but also integrates the action

information of time dimensions into the adjacency matrix,
enriching the features extracted by the graph convolution.
Third, the three branches of the graph convolution are joined
in the spatial module for channel dimensions, with the
added edge convolutional module, which greatly reduces the
number of model parameters. Finally, three skeleton-based
action recognition datasets NTU RGB + D 60 [13], NTU
RGB + D 120 [14], and NW-UCLA [15] are used to evaluate
the performance of proposed MTRGCN compared with the
state-of-the-art methods. The main contributions of this paper
are summarized as follows:

1) A spatiotemporal topological modeling module using
an adaptive convolution kernel is presented to enhance
the connection between the adjacency matrix and the
raw skeleton data, which is more favorable to themodel
to distinguish between similar actions.

2) A dynamic topological modeling approach as well as
multi-scale temporal convolutional modules is used to
reduce model training time while increasing flexibility.

3) By performing extensive experiments, the effectiveness
of the model is demonstrated on three large-scale
datasets, NTU RGB + D 60, NTU RGB + D 120, and
conducting Northwestern-UCLA.

II. RELATED WORK
Graph neural network (GNN) [16], [17], [18], [19], [20] is a
class of deep learningmodel used to process graph data. It has
become a research hotspot in the fields of computer vision,
natural language processing and recommendation system in
recent years. There are many kinds of graph neural networks,
including graph convolutional network GCN [16], graph
attention network GAT [17], graph autoencoder GAE [18],
etc. Among them, GCN [16] is like CNN, which has strong
feature learning ability. Its essential purpose is to extract the
spatial features of topological graphs. It is the mainstream
way to achieve the goal in both spatial and spectrum domains.
Because the Fourier transform usually assumes that the graph
structure is fixed, in the frequency domain, it is difficult
for the graph convolutional network to directly process
the dynamic graph because the graph changes over time,
and involves the eigenvalue decomposition of the matrix,
resulting in high complex computation. Therefore, spatial
domains-based graph convolutional network is usually used
for action recognition [21], [22], [23], [24].

Early skeleton-based behavioral recognition uses RNN
[25], [26], [27], [28], [29], [30] or CNN [31], [32], [33], [34],
[35] to learn temporal features, however these methods focus
on the connection between time series and pay little attention
to the effects between joints. Graph convolution network
extends CNN to the Euclidean structure, Yan et al. [6]
first put forward the temporal graph convolution network
(ST-GCN) skeleton model, which extends the graph convo-
lution network to spatiotemporal map model and uses for
behavior recognition of skeleton sequence general repre-
sentation. According to the human body physical structure,
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FIGURE 1. Basic network framework.

a manually defined topology is designed in ST-GCN based
on the skeleton sequence structure spatiotemporal diagram,
which is applied to the spatiotemporal map convolution, and
generate higher level of features on the graph. However,
the manually defined topology is difficult to achieve the
aggregation of nodes without physical connection, which
greatly affects the recognition rate and generalization of
the network. To obtain more connectivity relationships
between the joints, and improve the expressive ability of
the model, ST-GAT [21] defines the spatiotemporal adjacent
nodes and aggregation functions of the root node through
the attention mechanism. The AS-GCN [22] introduces an
encoder-decoder structure to capture action-specific potential
dependencies directly from the actions. The graph topology
of MS-AAGCN [23] can be learned end-to-end based on
the input data. The MPA-GC [36] can adaptively learn
the topology of each part of the body, and dynamically
aggregate their correlations. FLAGCN [37] proposes two
graph convolution methods to capture different aspects of
human behavioral information. Frame-level graph convolu-
tion constructs the human topology for each data frame,
while the adjacent graph convolution captures the features
of the adjacent joints. These methods enable the dynamic
adjustment of the topology by adding the learned topology
according to the input data. However, the topology is identical
in different channels, which reduces the flexibility of the
network to extract features. CTR-GCN [24] can efficiently
aggregate features in different channels and improve the
expression ability of the model. However, it still relies on
fixed topology and requires different refinement networks for
different datasets, with poor network generalization.

III. PROPOSED METHOD
In MTRGCN, a multi-scale graph convolution module using
different topology modeling methods in different channels is
proposed to increase network generalization, and randomly
initialized adjacent matrix as a shared topology is used
to enhance the connection between topology structure and
input data. At the same time, an adaptive convolution kernel

generated by raw data is designed to improve the recognition
performance of the model for similar actions.

A. PREPARATION
The graph on the skeleton data can be represented as G =

(V ,E,X ), where V is the set of vertices (or nodes) in
the graph. In the context of the skeleton sequence, each
vertex represents a body joint, for example, the head, neck,
shoulder, elbow, wrist, hip, knee, and ankle.E is a set of
edges in a graph representing the connections between pairs
of body joints. For the human body, adjacent joints are usually
connected, such as head to neck, neck and shoulder, elbow
and shoulder, etc. X ∈ RC×T×V (C ,T , and V represent the
number of channels, length of time, and number of skeletal
joints, respectively) is a set of joint coordinates or attributes
associated with each node. Thus, the graph convolution can
be represented by:

H (l+1)
= σ

(
D̃1/2ÃD̃1/2H (l)W (l)

)
(1)

where H (l)
∈ RN×d is the node feature matrix of layer l,

N is the number of nodes in the graph, and d is the feature
dimension of each node. W (l)

∈ RN×d ′

is the weight matrix
of layer l and d ′ is the dimension of the output features.
Ã = A + IN is the result after the adjacency matrix A plus
the self-loop and IN Is the N -dimensional identity matrix. D̃
is a matrix of angular angles whose diagonal elements are
D̃ij =

∑
j Ãij. σ (·) is an activation function, usually using the

activation function or other non-linear functions.
A common practice in previous works sets A to a series of

manually defined matrices (defined according to the physical
structure of the human body) and learns Ã further using
some methods [7], [23], [24]. Ã Can be static, as a trainable
parameter, or a dynamic parameter generated from the input
data. Although the manually defined adjacency matrix can
more intuitively show the connection of nodes, it is limited in
flexibility and may lead to worse identification performance
than pure data segmentation methods. Therefore, we ran-
domly initialize the coefficient matrix PA ∈ R3×V×V to make
the PA completely learnable. So, the formula for the graph
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FIGURE 2. The constituent framework of the MDTM.

convolution can be written as follows:

H (l+1)
= σ (ÂH (l)W (l)) (2)

where, Â is the topology learned by using PA.

B. OVERALL ARCHITECTURE
Based on multi-scale dynamic topological modeling
(MDTM) and multi-scale temporal convolutional (MTC),
a light and efficient graph convolutional networkMATR-GCN
is constructed for skeleton-based action recognition.
As shown in Fig. 1, the entire network consists of 10 basic
blocks, followed by a global average pool and a classifier
to predict action categories. The number of channels for
the 10 blocks was 64-64-64-64-128-128-128-256-256-256.
The time dimension is halved by time convolution in blocks
5 and 8. The basic blocks of our MATR are shown in
Fig. 1 as dashed boxes, each block mainly consists of a
spatial modeling module, a temporal modeling module, and
a residual connection.

C. MULTISCALE DYNAMIC TOPOLOGY
MODELING MODULE
Manually defined static topologies require more network
layers to obtain information about each other, increasing
network complexity, and are not the best choice for models.
Therefore, MDTM are proposed, which utilizes different
modeling functions for different channels of the adjacency
matrix, and dynamically adjusts the topology according to the
input data.

Fig. 2 shows the proposed MDTM module. The first
three branches of the module are the Adaptive Graph

convolution module (A-GC) for channel topology modeling
of the adjacency matrix and feature aggregation, and the
bottom path is the Edge convolution module (EdgeConv)
for fusing local information and its own information. Each
branch undergoes a 1 × 1 convolution to reduce the channel
dimension to a quarter of the original one. Finally, the four
branches are concatenated in the channel dimension to obtain
the output.

In terms of adjacency matrix information aggregation, the
operation of adding the output results of four branches are
changed to concatenate them on channels, which greatly
reduces the number of parameters in the model. At the same
time, EdgeConv are spliced to capture important features in
the input data and reduce redundant information. Its process
is expressed as:

Z = σ (bn(Oout + down)) (3)

where, Z ∈ RCout×T×V (Cout = K × C ′′) is the output
of MDTM, σ (·) is the activation function ReLU, bn(·)
and down are batch normalization and residual connection
respectively. The output of each branch is concatenated in the
MDTM module in the channel dimension to obtain Oout ∈

RK×C ′′
×T×V (K = 4), which is expressed as:

Oout = [Y (X:1):1 ∥ Y (X:2):2 ∥ Y (X:3):3 ∥ E(X:4)] (4)

X:i = conv(X̃ )i (5)

X̃ ∈ RC×T×V and E ∈ RC ′′
×T×V are the inputs of the

MDTM module and the output of the EdgeConv module;
conv(·), O(·), and || represent 1 × 1 convolution, concate-
nation of channel dimensions and connection operations,
respectively; Y:i ∈ RC ′′

×T×V and X:i ∈ R(C/4)×T×V are the
input and output of the A-GC in the ith (i ∈ 1, 2, . . . ,K ) path.
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FIGURE 3. The constituent framework of the A-GC.

1) ADAPTIVE GRAPH CONVOLUTION
In the traditional graph convolution [6], [7], [22], the
adjacency matrix is predefined according to the physical
structure of the human body. However, in some actions,
the nodes are not physically connected, for example, the
nodes between the two feet play a key role. In this regard,
A-GC is proposed in MDTM, in which the adjacency matrix
can be automatically adjusted according to different input
data. At the same time, three dynamic modeling functions
are designed, and the convolution kernel generated by the
original data is used to increase the connection between
the adjacency matrix and the input data and improve the
generalization of the model.

The A-GC uses X ∈ R(C/4)×T×V as input, where C/4,
T , and V are expressed as channel number, joint number,
and input frame number, respectively. The A-GCmainly con-
sists of four parts, including feature transformation, model
building, dynamic adjustment, and information aggregation,
as shown in Fig. 3.

As shown in Fig. 3, the lower box is the feature
transformation section. The T (·) function is used to transform
the input data into a high-level representation to extract richer
features. The process is expressed as follows:

X̂ = T (X ) = XW , T (·) = conv(X ) (6)

Among them, X̂ ∈ RC ′′
×T×V is the transformed feature,

W ∈ RC ′′
×C is the corresponding weight matrix, T (·) is the

function of feature transformation.Moreover, the convolution
with 1 × 1 convolution kernel size is chosen.

The upper box part is the model building block, which
is used to generate the coefficient matrix S ∈ RC ′

×V×V ,
(C ′

= (C/4)/r)(r is the decay rate). The middle part
is the dynamic adjustment module, which is used to generate
the final adjacencymatrix Â ∈ RC ′′

×T×V . The right part is the
information aggregation module, which uses the adjacency

FIGURE 4. The compositional framework of the three modeling functions.

matrix Â to aggregate the generated advanced features. The
process of the whole A-GC is expressed as:

Y = I (D (M (X )) ,PA, X̂ ) (7)

where Y ∈ RC ′′
×T×V is the output of A-GC, and I (·),

D(·), and M (·) represent the node aggregation function,
dynamic adjustment function and topology modeling func-
tion, respectively. The node aggregation function and the
dynamic adjustment function are shown in Equations 8 and 9:

YC’’TV = I (Â, X̂ ) =

V∑
i=1

ÂC’’ViX̂C’’Ti (8)

Â = D(S,PA) = conv(S) + αPA (9)

where, α is the trainable parameter, enabling dynamically
adjusting the topology of the adjacency matrix Â.

As shown in Fig. 4, as the coefficient matrix PA has three
channels, three topological modeling functions (MOD 1,
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FIGURE 5. The compositional framework of the EdgeConv.

MOD 2, and MOD 3) are constructed and applied to the
first three paths of MDTM. The dotted area on the left is
the topology modeling function MOD1, with input as X ∈

R(C/4)×T×V . To reduce the number of calculation parameters,
they are respectively convolvedwith a convolution kernel size
of 1 × 1 to reduce the channel dimension, and an average
pooling operation is performed on one of the outputs. Finally,
the outputs are L ∈ RC ′

×V×T and Ker ∈ RV×T , and then Ker
is used as the convolution kernel to perform the convolution
operation on L. The process is expressed as follows:

SC’VV = M1(L,Ker) = σ (
C ′∑
i=1

LVTC’ · KerVT1) (10)

where σ (·) is the activation function Tanh. In MOD1, the
convolution kernel generated from the original data is used,
so that the generated topology is more suitable for the training
data and can better represent the connections between nodes.
As shown in the upper yellow box on the right in Fig. 4,
it is the MOD2 topology modeling function. After the input
data is convolved with the kernel size of 1 × 1 and the
pooling operation, three outputs A ∈ RC ′

, B ∈ RC ′
×V , and

C ∈ RV×C ′

are obtained. Batch matrix multiplication of
B and C is performed and then added to A. The process is
expressed as follows:

SC’VV = M2(A,B,C) = σ (AC’1V +

C ′∑
l=1

CVl · BlV) (11)

where σ (·) is the activation function Tanh. In MOD 2, we use
batch matrix multiplication, which allows simultaneous
matrix multiplication operations on multiple matrices, thus
enables efficient parallel computing, saves model training
time, and allows matrix multiplication between different
locations, making it easier for models to capture the
relationship between spatial locations. As shown in the pink
box on the bottom right side in Fig. 4, it is the MOD 3

topology modeling function. After 1 × 1 convolution and
pooling operations, respectively, the output 8 ∈ RC ′

×V and
9 ∈ RV×C ′

are obtained, and the pair subtraction operation
is made. The process is expressed as follows:

SC’VV = M3(9, 8) = σ (9C’1V − 8C’V1) (12)

where σ (·) is the activation function Tanh.

2) EDGE CONVOLUTION MODULE
Since the human body may have small posture adjustments
or local movement differences when performing actions,
resulting in the overall actions looking similar but not
identical, for similar actions, the differences between them
are usually reflected in the local changes of the body, for
example, in ‘reading’ and ‘writing’, only the hand movement
changes are different. For the recognition of similar actions,
more local information is needed to distinguish them, and we
incorporate the EdgeConv module into the model to learn the
relationship between nodes and feature representation in the
data. EdgeConv can capture the relationship between nodes,
so that the model can better understand the topology of the
graph data.

The basic composition of EdgeConv is shown in Fig. 5. The
module input is X ∈ R(C/4)×T×V , which is input into the Get
graph_feature module after time pooling to obtain the local
graph features of each node. The graph features are input into
the 1 × 1 convolution and Max pooling layer for update and
integration to obtain the output E ∈ R(C ′′

×T×V ).
The Get graph feature module is shown in the dashed

box on the right in Fig. 5. The K Nearest Neighbors
(KNN) algorithm is used to obtain the indices of the nearest
K (K is 3) neighbor nodes of each node, and a feature
map containing the relationship between the node and its
neighbors is constructed according to the K indices. The
generated feature map is spliced with the original data
to obtain the final graph feature. In the KNN algorithm,
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FIGURE 6. The compositional framework of the MTC.

FIGURE 7. Multi-stream fusion framework.

we use the Manhattan distance instead of the commonly used
Euclidean distance as a measure of the distance between
a node and its neighbor nodes. Compared with Euclidean
distance,Manhattan distance is more suitable for dealingwith
the non-Euclidean structure of graph data, and the calculation
is simpler, which reduces the number of parameters of the
model.

D. MULTI-SCALE TEMPORAL CONVOLUTION MODULE
Time series data usually contains information at different
time scales. To model the behavioral information at different
time scales, a multi-scale temporal convolution module is
used, which can consider information at multiple scales at
the same time, to capture the behavioral characteristics of
the data more comprehensively. Inspired by the work of
Liu et al. [38], temporal convolutions with different dilation
coefficients are used to extract temporal features in MART-
GCN. As shown in Fig. 6, there are four branches in total. The
first two branches use dilated convolution with dilation rate
of 1 and 2 respectively to increase the time receptive field;
the third branch uses maximum pooling to extract the main

features of the time dimension in the data, and the last branch
uses residual connection to enhance the connection with the
network of the previous layer. Each branch is subjected to
1 × 1 convolution to reduce the channel dimension, facilitate
the later channel splicing, and reduce the number of model
parameters.

IV. THE EXPERIMENTS
In this section, we conduct experiments on three pub-
lic datasets: NTU RGB+D 60, NTU RGB+D 120 and
Northwest-UCLA. The specific implementation of the
experiment is as follows: Firstly, the ablation experiment of
the model is conducted on the NTU RGB+D 60 dataset
using joint flow with cross-subject evaluation benchmark,
in terms of the model accuracy and complexity. Secondly,
the accuracy of the four modalities of joint, bone, joint
motion and bone motion is tested on the Northwest-UCLA
dataset, and the four-stream fusion test is performed. Then,
the visualization of a class of samples is performed in
the NTU RGB+D 120 dataset and the Northwest-UCLA
dataset, and the visualization of confusion matrix and
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adjacency matrix on the NTU RGB+D 60 and Northwest-
UCLA datasets. Finally, the proposed MART-GCN is
compared with the state-of-the-art models on three datasets
respectively.

A. DATASET
NTU RGB+D 60. The NTU RGB+D 60 dataset is a widely
used skeleton-based action recognition dataset consisting
of 56880 samples divided into 60 categories. The samples
were performed by 40 different people and captured by
three cameras to ensure a variety of actions. Each sample
consists of 25 human joints, specifically 3D coordinates. The
evaluation of this dataset includes a cross-view (X-view)
benchmark and a cross-subject (X-sub) benchmark. They
verified the diversity of the model’s actions under different
viewpoints and different roles. For the X-view benchmark,
the training data is from cameras 2 and 3, and the test data is
from camera 1. For the X-sub benchmark, the training data
are from 20 subjects and the testing data are from the other
20 subjects.

NTU RGB+D 120. The NTU RGB+D 120 dataset is
a large 3D skeleton dataset for human action recognition,
which is an extension of the NTU RGB+D 60 dataset. This
version has 113,945 skeleton clips divided into 120 classes.
The movements were also performed by three people
captured by 106 cameras. There are also two ways to validate
benchmarks: across subjects (X-sub) and across Settings
(X-set). The training data is from 53 subjects and the testing
data is from the other 53 subjects of theX-sub benchmark. For
the X-set benchmark, the training data comes from samples
with even collector ids and the test data comes from samples
with odd ids.

Northwestern-UCLA. The Northwest-UCLA dataset is
a popular skeleton dataset captured by a Kinect camera.
These actions are grouped into 10 classes for 1494 skeleton
sequences. Specifically, the actions were performed by
10 different subjects. The evaluation setup is like the
cross-view benchmark for the NTU RGB+D 60 dataset. The
training data is captured by cameras 1 and 2, and the test data
is from camera 3.

B. IMPLEMENTATION DETAILS
The experiments were performed on a single GPU3090 using
the Pytorch platform. The model has an initial learning rate
(lr) of 0.1 and a decay factor of 0.1. We use the cross-entropy
loss function as our classification loss function, and the
optimization method is SGD with momentum 0.9 and weight
decay 0.0004. For the stability problem, we adopt the warm-
up strategy [35] in the first five epochs. We set the batch
size to 64 on the NTU RGB+D 60 and NTU RGB+D
120 datasets and 16 on the Northwestern UCLA dataset.
The training Settings on NTU RGB+D 60, NTU RGB+D
120 and Northwestern UCLA datasets are 100, 120 and 65,
respectively, and the learning rate decay stages are (35,55,80),
(35,55,100) and 65, respectively.

TABLE 1. Comparisons of the validation accuracy of MATR with different
configurations.

C. ABLATION EXPERIMENT
To highlight the effectiveness of the proposed MATR-
GCN model, extensive experiments are conducted on NTU
RGB+D60 datasets. First, we tested our model with different
components to verify the effectiveness of each component of
the model. In addition, we construct models with different
input data modalities, mainly: joint flow, bone flow, joint
motion, and bonemotion flow, and then compute the accuracy
for each data stream separately.

1) EFFECTS OF MODEL COMPONENTS
We use ST-GCN [6] as the baseline, and due to its static
shared topology, the topology structure is untrained and
shared in each layer. For fair comparison, we change the
model structure, so that the adjacency matrix is trained
together with the data, and the adjacency matrix is not
passed between each layer. As shown in Table 1, under the
X-sub benchmark of NTU-RGB+D dataset, MDTMmodule,
MTC module and randomly initialized adjacency matrix
(PA) module are respectively replaced with the modules
used by our model MATR. When all of them are replaced
with the modules used by our model MATR, the accuracy
is the highest (0.6% increase), and the parameter number is
the lowest (1.01 M decrease). This shows the effectiveness
of MDTM module, MTC module and PA module. Using
MDTM instead of the spatial modeling module in the
baseline, the accuracy of the model is improved by 0.2%, and
the number of parameters is reduced by 0.21M. On this basis,
adding random initialization adjacency matrix, the accuracy
of the model is improved by 0.3% compared with the baseline
model. We prove the effectiveness of our designed MDTM
and PA. Using the MTCmodule instead of the time modeling
module in the baseline, the accuracy of the model is increased
by 0.1%, and the number of parameters is reduced by 0.8 M,
which proves the effectiveness of the MTC module.

As shown in Table 2, under the X-sub benchmark of
NTU-RGB+D dataset, the comparison of model accuracy
and parameter number under different combinations of the
three topology modeling modules (MOD1, MOD2, MOD3)
is carried out. Seeing from the table, when MOD(1,2,3) is
used, the model accuracy is the highest, which shows the
effectiveness of multi-scale modeling.

As shown in Table 3, it shows the experimental results
under the X-sub benchmark of NTU-RGB+D dataset.
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TABLE 2. Comparisons of accuracy and model parameters after three
modeling functions (MOD1,MOD2,M- OD3) are combined.

TABLE 3. Comparison of accuracy and parameter quantity.

TABLE 4. Comparison of validation accuracy of model a for different data
modalities.

We gradually replace the spatial-temporal modeling module
in the baseline with MATRs (shown in the dashed box in
Fig. 1), and when all are replaced with our MATR basic
block, the accuracy is the highest (0.6% improvement), and
the parameter number is reduced to half of the original
(1.09 M reduction), which verifies the effectiveness and
lightweight of our model MATR-GCN. After that, we verify
the influence of EdgeConv and channel concatenation (CAT)
by either removing EdgeConv from the MATR-GCN model
or replacing the CAT method with the element addition
method. We can see that the accuracy of MATR-GCN w/o
EdgeConv is decreased by 0.3% compared with MATR-
GCN, while the number of parameters is only reduced by
0.05M, which shows that EdgeConv effectively enhances the
model’s discrimination of similar actions when increasing the
number of lower parameters. The number of parameters of
MATR-GCNw/o CAT is increased by 0.88M compared with
MATR-GCN, which shows that CAT can effectively reduce
the number of parameters of the model.

2) THE IMPACT OF MULTI-STREAM EXPERIMENTS
Multi-stream structure [7], [11], [23] is often used in the field
of skeleton-based action recognition, which can significantly
improve the recognition performance of the model. In this
section, we evaluate the importance of the multi-stream
structure in the model. We show the recognition performance
of the model with four streams, mainly joint, bone, joint
motion, and bone motion. The same model is used for all

TABLE 5. Comparisons of the recognition accuracy with the
state-ofthe-art methods on the NTU-RGB+D dataset.

TABLE 6. Comparisons of the recognition accuracy with the
state-of-the-art methods on the NTU-RGB+D 120 dataset.

TABLE 7. Comparisons of the recognition accuracy with the
state-of-the-art methods on the NW-UCLA dataset.

flows, and the final prediction result is generated by fusing
the weighted sum scores of the four flows, as shown in Fig. 7.
In Table 4, we show the results ofmulti-stream fusion using

the best configuration formulated in the model of MATR-
GCN. As shown in the table, the recognition accuracy varies
for each flow. Therefore, we utilize the weighted sum to
fuse the results of the four streams. According to the table,
assigning a high weight to the joint motion flow will result
in performance loss because its contribution to the whole
multi-flow structure is less than the contribution of the joint
and bone flows.

D. VISUALIZATION
Our dataset, the adjacency matrix, and the visualization of
the experimental results are shown in Fig. 8 and Fig. 9.
Fig. 8(a) and (b) show the visualization of one sample in the
NTU RGB+D 120 dataset and the Northwest-UCLA dataset,
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FIGURE 8. Visualization of the dataset and adjacency matrix.

respectively. Fig. 8(c) and (d) show the visualization results
using fixed topology and using learnable topology on the
NTU RGB+D 60 dataset, respectively, and the comparison
shows that our learnable adjacency matrix improves the
physically defined topology, thus producing richer features.
In addition, the three channel topologies shown in Fig. 8(d)
prove that our method can learn unique topologies based
on different data from different channels. Fig. 9(a) and (b)
show the confusion matrix of our model under NTU RGB+D
60 dataset and Northwest-UCLA dataset, respectively. More-
over, the results prove the superior recognition performance
of ourmodel. The red boxes in Fig. 9(a) are two pairs of action
categories that are easily confused (reading and writing,
putting on shoes and taking off shoes). In Fig. 9(b), ‘moving
around’ and ‘carrying’ are easily recognized as’ throwing ’.

E. COMPARISON WITH OTHER METHODS
To demonstrate the effectiveness of our model, we make
a comparison with state-of-art methods on three public
datasets: NTU RGB+D 60, NTU RGB+D 120, and
Northwest-UCLA. And we do comparisons of model param-
eters on NTU RGB+D dataset, which proves the lightweight
of our model. The compared models are GCN-based methods
including [6], [7], [8] [10] [22], [23], [24] [37] [40], [41],
[42], [43], and [44], CNN-based method including [39], and
RNN-based methods including [30] and [29]. For a compre-
hensive comparison, the metrics reported by EfficientGCN
[45] are used for the evaluation, and the results are shown in
Tables 5, 6 and 7.

As shown in Table 5, on the X-sub and X-view benchmarks
of the NTU-RGB+D 60 dataset, our model achieves a
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FIGURE 9. Confusion matrix visualization.

significant improvement in recognition accuracy compared
with GCN and CNN based methods. For example, compared
to MSSTNet [39], our model improves by 2.9% and 1.6%
on X-sub and X-view benchmarks, respectively. In GCN-
based methods, ST-GCN [6] uses a manually defined
topology and is fixed on all layers. On this basis, 2s-
AGCN [7] and AS-GCN [22] improve the topology structure
by designing embedding functions and encoder-decoder.

Compared with ST-GCN, 2s-AGCN and AS-GCN, our
model achieves improvements of 11%, 5% and 5.7% on
the X-sub benchmark and 8.6%, 1.8% and 2.7% on the
X-view benchmark, respectively. In terms of the num-
ber of model parameters, compared with the advanced
model CTR-GCN [24], the number of parameters of our
model is reduced by 0.44 M, while achieving comparable
performance.
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Table 6 shows the comparison results of our model on
the two benchmarks X-sub and X-set of the NTU-RGB+D
120 dataset, which are 88.9% and 90.6%, respectively. The
results show that the performance of our model is better
than most methods, which is 0.4% higher than 2s-ICE-
GCN [40] under X-set benchmark, and only 0.2% lower than
2s-ICE-GCN [40] under X-sub benchmark. For the CNN-
based method, under the X-sub and X-set benchmarks, the
recognition accuracy of our model is 3.6% and 4.6% higher
than that of the MSSTNet [39] method, respectively. The
comparison results demonstrate the superior classification
performance of our model on large-scale datasets.

As shown in Table 7, our model exhibits superior
recognition performance on the Northwest-UCLA dataset.
Compared with RNN-based methods, our recognition accu-
racy is 7.1% and 3%higher than the Ensemble TS-LSTM [29]
and 2s-AGC-LSTM [30], respectively. For the CNN-based
method, the recognition accuracy of our model is 1% higher
than the MSSTNet [39]. Among the GCN-based methods,
our model improves the recognition accuracy by 6.7%, 0.5%,
2.4% and 0.2%, respectively, compared with 2s-AGCN [7],
DCA-SGIN [43], IA-ASGCN [42] and ACC-GCN [44].
The comparison results of three datasets demonstrate that
our model has superior recognition performance and strong
generalization on datasets of various scales.

V. CONCLUSION
For accurate skeleton-based action recognition, a multi-
scale adaptive graph convolutional model (MATR-GCN) is
designed in this paper. InMATR-GCN, amulti-scale dynamic
topology modeling module is preseted to concatenate the
channel dimensions of three Adaptive Graph Convolution
(MA-GC) branches and one edge convolution branch, which
greatly reduces the number of model parameters and running
time. The multi-scale temporal convolution module is used
to increase the time dimension receptive field. Moreover,
random initialization coefficient matrix as the original
adjacency matrix input model, and adaptively learn the
connection relationship between nodes in the data through
three topological modeling functions of MA-GC to enrich
the topology structure of the adjacency matrix. Extensive
experiment results show that the proposed MATR-GCN
performs better than the up-to-date methods in terms of
on three datasets: NTU RGB+D, NTU RGB+D 120 and
Northwestern UCLA for accuracy and number of parameters.

However, limited by the number of skeleton joints, the
recognition of some subtle behavioral actions is still a
challenging task. In the future, we will consider using speech
text generation method to assist model training, and design
a loss function to supervise and regulate the model training
process to enhance the model recognition performance.
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