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ABSTRACT Recent commodity x86 CPUs still dominate the majority of supercomputers and most of
them implement vector architectures to support single instruction multiple data (SIMD). Although research
on architectural exploration requires computer architecture simulators and a number of simulators have
been developed, only a few tools support recent x86 SIMD instructions. This paper describes gem5-AVX,
an extended version of the gem5 simulator that enables simulating recent x86 SIMD extensions, especially
targeted for high performance computing (HPC). The gem5-AVX comprises advanced vector extension
(AVX), AVX2 and subsets of AVX-512, except for cache and memory management instructions. Moreover,
it covers full set of streaming SIMD extensions (SSE) and subsequent extensions that are required to
simulate HPC workloads. It can simulate the key features of the AVX, AVX2 and AVX-512 such as 256 and
512 bits wide registers, three and four operands syntax, fused multiply-add (FMA), vector gather-scatter
using vector scale-index-base (VSIB), mask registers, embedded broadcasting, compressed displacement
memory addressing mode. We evaluate the accuracy of gem5-AVX by comparing its results to those of real
hardware and Intel’s software development emulator (SDE) running benchmark suites,i.e., high-performance
linpack (HPL), high-performance conjugate gradient (HPCG) and NAS parallel benchmark (NPB) which
are representative programs in the HPC field. The gem5 and gem5-AVX are compared with the speed-up
of HPL benchmark according to configuration combinations. Gem5-AVX, with mean absolute percentage
errors of 7.3-9.2% and 9.2-11.9%, is more accurate than gem5, which showsmean absolute percentage errors
17.9-21.5% and 19.7-29.7% for Haswell and Skylake processors, respectively.

INDEX TERMS Gem5 simulator, x86 SIMD, AVX, AVX2, AVX-512.

I. INTRODUCTION
A single core has technical limitations, such as the stagnation
of clock frequency and power dissipation, and recent
advancements have been made to improve performance
by applying multiple processors to a chip, leading to
the generalization of multi-core and many-core processors.
However, consistent efforts to improve the performance of
uniprocessors have enabled data-level parallelism (DLP) to
embody single instruction, multiple data (SIMD) parallel
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processing at a relatively lower cost for enhanced per-
formance. Accordingly, most current CPUs implement a
vector architecture that supports SIMD, which has led to
‘‘the re-emergence of vectors’’ [1]. Recent commodity x86
CPUs dominate most of the supercomputers [2] and most of
them also implement vector architectures to support SIMD.
The recent x86 SIMD extension, 512-bit advanced vector
extention (AVX-512) [3] is supported both in Intel and in
AMD by the Zen4 processor [4].

Although research on architectural exploration requires
computer architecture simulators and a number of simulators
have been developed, only a few tools support recent
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x86 SIMD instructions, i.e., AVX, AVX2, and AVX-512.
A previous study on x86 simulators [5] surveyed results of
simulators that simulate computer architectures are presented
with 11 categories of simulation techniques; specifically,
experimental and real hardware results were compared for six
selected simulators including gem5 [6], Sniper [7], PTLSim
[8], Multi2Sim [9], MARSSx86 [10], ZSim [11]. Each
simulator has its own strength and specializes in a specific
field, but none of the timing and cycle-accurate simulators
that assist x86 ISA support recent x86 SIMD extensions.

Among these existing simulators, the gem5 platform is
widely considered in studies on computer architectures,
encompassing both system-level and processor micro-
architectures [6]. It serves as a valuable tool for testing novel
concepts related to vector architectures. In the vector archi-
tecture, gem5 accommodates the ARM’s SVE, supporting
a maximum vector length (MVL) of up to 2048 bits, or
32 elements, each 64 bits in length. Additionally, it supports
the RISC-V vector extension for both short (approximately
512-bit) and long (16384-bit or greater) vectors [12]. Despite
such advantages of gem5, the following challenges are
faced while implmenting x86 SIMD extensions in gem5.
First, gem5 supports the multimedia extension(MMX) and
streaming SIMD extension(SSE), which are integrated into
the core micro-architecture; however, it lacks support for
the recent X86 SIMD extensions. Second, gem5 simulates
SSE instructions without supporting a vector architecture for
SSE, thereby causing inaccuracies as a vector length per
register gets wider. The last challenge is associated with
size and complexity. The x86 SIMD has a large number
of instructions, as it creates instructions distinguished from
existing opcodewhilemaintaining deprecated instructions for
backward compatibility, and there are variants of register,
memory, and constant type for each mnemonic. SSE and
its family have over 300 unique mnemonic instructions,
AVX and subsequent extensions have hundreds of instruc-
tions, whereas subsets of AVX-512, especially AVX-512F
(foundation), AVX-512CD (conflict detection), AVX-512DQ
(doubleword and quadword), AVX-512VL (vector length
extension), AVX-512BW (byte and word) that are supported
with Intel’s Skylake processor, also have instructions not less
than AVX’s. Specifically, AVX-512 becomes more complex
depending on the size of operands, broadast, zeroing and
mask registers.

In related works of AVX-512 extensions in a gem5 [13]
was considering various aspects in terms of supporting the
out-of-order CPU model, new memory addressing modes,
Evex and Vex prefixes, decoding schemes, etc. while apply-
ing the processing-in-memory (PIM) feature to the gem5 used
AVX-512 intrinsics during the microbenchmark of vector
functional units (VFU). A gem-forge-framework [14] par-
tially used theAVX-512 instructions even expanding decoder,
oerands, register, and so on. No previous works provided
specific design and implementation for AVX-512 instructions
support including main features such as gather-scatter and
mask register in detail.

To the best of our knowledge, this work is the first to
1) design and simulate SSE-to-AVX-512 instructions in gem5
and 2) enabling 128-bit or wider SIMD execution in micro-
operations. Thus, this study has the following contributions:

• Enabling SIMD execution in micro-operations It
is extended to simulate 128-, 256-, and 512-bit vec-
tor instructions and can be extended to 1024 or
2048 bits in the future. Moreover, modules for three
and four operands syntax, FMA, vector gather-scatter
using vector scale-index-base (VSIB), mask register,
scalar memory mode with automatic broadcast, and
compressed-address displacements are designed and
implemented.

• Covering SSE (all versions), AVX, AVX2 and subset
of AVX-512. The gem5 has implemented SSE, SSE2,
and SSE3; however, it does not support SSSE3, SSE4.1,
and SSE4.2. Herein, vector instructions that were
not implemented in SSE3 and the instructions of
SSSE3, SSE4.1, and SSE4.2 versions implemented in
gem5-AVX.

• Verifying with HPC benchmark suites. For the
extended gem5 simulator implemented in this way, func-
tional correctness was confirmedwith high-performance
LINPACK (HPL), high-performance conjugate gradient
(HPCG), and NAS parallel benchmark (NPB), which are
representative benchmark programs in the HPC field.

The remainder of the paper is organized as follows:
Section II introduces the vector extensions of x86 ISA and
essential terminologes. Section III addresses the challenges to
motivate our idea. Section IV describes the design goals, and
Section V presents our implementation in detail. Section VI
evaluates the functional correctness with benchmark suites.
Section VII summarizes the related work, and Section VIII
draws conclusions.

II. RELATED WORKS
The zsim [11] and sniper [7] simulators are capable of
supporting Intel AVX-512 instructions among six selected
simulators in the previous study [5]. However, both simula-
tors have primarily focused on providing accurate and fast
simulations for multi-core systems. The sniper simulators uti-
lizes interval simulation to achieve its high-speed simulation
goals, while zsim uses instrumentation-based timing models.
Despite this, both simulators perform simulations for out-of-
order execution based on dynamic binary translation (DBT),
which limits their ability to provide cycle-accurate timing
simulations.

As far as we konw, two studies have implemented support
for AVX in gem5 [13], [27]. The objective of their studies
was not to implement AVX in gem5; instead, AVX instruction
simulation in gem5 was necessary to facilitate the research
process. An AVX support to gem5 [28] related to the
study [27] describes the outlines of their enhanced gem5
and ares source code on the Web. However, they introduce
their limitations such as partially implementating vector
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FIGURE 1. Structure of xmm register in gem5 and an example of
micro-ops about ADDPD in SSE.

instructions and omissions of mask registers and broadcating.
The other work, PIM-gem5, [13] addressed that their new
gem5 can simulate AVX and AVX-512 instructions. Also,
it depicts themodules in the x86 ISA andOut-of-Order (OoO)
CPU models, which were changed to support AVX-512 ISA.
However, they briefly introduced and did not share source
code.

III. BACKGROUND
A. X86 SIMD
MMX can perform addition/subtraction operations for two
32-bit integers, four 16-bit integers, or eight 8-bit integers
data using eight 64-bit wide registers, i.e., MM0–MM7. It has
been expanded to 3DNow technology and includes instruc-
tionsmostly related to floating-point operations. Registers are
expanded from SSEs to 128-bit wide, where XMM0–XMM7
are expanded to 16 registers, i.e., XMM8–XMM15. Accord-
ingly, operations for four 32-bit integers or two 64-bit double-
precision floating-point numbers have become feasible.
Instructions are continuously added to SSEs to be expanded
to SSE2, SSE3, SSSE3, and SSE4, and from SandyBridge
to AVX, which is known as advanced vector extension.
Regarding AVX, a 128-bit vector length has been expanded
to 256 bits, whereas the number of instruction operands
have increased from two to three. AVX only supports
floating-point operations; however, AVX2 has been added
to instructions, including fused multiply–add (FMA) and
integer operations. Recently, AVX-512 SIMD technology
has been used for performing 512-bit-wide register and
512-bit operations in the Knights Landing (KNL) processor.
As AVX-512 can perform eight 64-bit double-precision
floating-point operations simultaneously, it is effectively used
to enhance computational science where double precision
is used for accuracy. With regard to x86 SIMD technology,
gem5 supports MMX, SSE, and SSE2 but partially supports
SSE3, SSSE3, and SSE4.

B. AVX
Intel AVX enhances the performance of SIMD instruction
sets in prior generations by using a new instruction encoding
scheme called the vector extension prefix (VEX). And it
provides improved features that surpass those offered by
previous 128-bit SIMD extentions. FMA and Intel AVX2
are both technologies that enable high-throughput arithmetic
operations. FMA specializes in fused multiply-add, as well as
fused multiply-subtract, and so on. AVX2, on the other hand,
provides 256-bit integer SIMD extensions that accelerate
computation in 128-bit integer SIMD instructions. The
Intel AVX-512 family comprises a collection of instruction

TABLE 1. Nomenclature.

set extensions, including AVX-512 Foundation, AVX-512
Exponential and Reciprocal instructions, AVX-512 Conflict,
AVX-512 Prefetch, and additional 512-bit SIMD instruction
extensions. Intel AVX-512 instructions are natural extensions
to Intel AVX and Intel AVX2.

IV. SSE EXECUTION PROBLEMS IN GEM5
Currently, MMX and SSE instructions are executable in
gem5; however, it does not provide an SSE vector register.
Intel has currently added a 128-bit register set (the XMM
registers) for executing SSE floating-point instructions.
However, gem5 defines XMM registers as a 64-bit floating-
point type used in MMX, which is the previous version of the
SSE.

Fig.1(a) shows a user-level ADDPD instruction for intro-
ducing two double-precision floating-point values in the
SSE format, in which the values of the xmm1 and xmm2
registers are added and the result then is saved in the xmm1
register. Fig.1(b) shows the code converted to micro-ops in
gem5 for the ADDPD instruction, in which one destination
register and two source registers are explicitly expressed. Two
micro-ops are generated, as shown in Fig.1(b), because the
XMM register is divided into two 64-bit registers, and these
registers are accessed separately, as shown in Fig.1(c). Owing
to this XMM register structure, the source operand of the
SSE instruction represents a memory location, and micro-ops
need to be added to access two 64-bit memory modules when
loading data via memory access. This particular phenomenon
becomes more evident when the vector length of a register
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FIGURE 2. The overall pipeline and internal components of the O3CPU
model for Gem5-AVX include the following: the red-text-displayed box
represents added modules, while the blue-text-displayed box represents
modified modules.

increases. Therefore, vector registers allocating continuous
memory of 128 bits or higher for every entry must be
implemented for executing x86 SIMD instructions in gem5.
Moreover, it helps expand to 256-bit and 512-bit vector
registers in addition to SSE. Furthermore, an interface must
be added for transmitting data to the issue-execute-writeback
(IEW) stage and the structure of the vector register.

V. METHODOLOGY
A. REFLECTING THE PRINCIPLE OF GEM5 DESIGN
Gem5 is the result of the successful integration of two
powerful simulation frameworks, M5 [15] and GEMS [16],
which brought together their respective strengths to create
a versatile and robust platform for architectural exploration
and experimentation. As a result, many parts of the gem5
simulator have independent features at the ISA level. In addi-
tion, gem5 satisfies the design requirements for supporting
multiple ISAs by separating components of the simulator
into ISA-dependent, ISA-independent, and ISA-independent
base class with ISA-dependent inheritance [17]. Therefore,
in order to simulate AVXs instructions in gem5, focus should
be placed on the ISA-dependent and ISA-independent base
class with ISA-dependent inheritance parts of the instruction-
side components. Instruction behavior and instruction decod-
ing are considered ISA-dependent on the instruction side.
And, among these components, the ISA-dependent parts
are ISA Description, Microcode, Predecoder, and Decoder,
while the dependent parts are StaticInst and Microassembler
through inheritance.

B. VECTOR ARCHITECTURE MODEL OF GEM5-AVX
Fig.2 shows the components of gem5 viewed from a high
level for the O3CPU model pipeline among CPU models
executable in gem5, and the components that are added
or modified for expanding to gem5-AVX. Fig.2 does not
show every execution unit, due to space limitations. The
overall structure is tightly coupled with the existing module.
Execution units are used through a port in Intel x86 micro-
architecture, where scalar arithmetic and logic unit (ALU)
and vector ALU are not distinguished by port, and load and
store units are not distinguished into vector and scalar as
well. Furthermore, issue queues for instructions are shared
between scalar instruction and vector instructions in terms

of micro-operations. Therefore, the vector-related structure is
expanded by adding one of the existing modules to each stage
of the pipeline by reflecting the superscalar structure through
the port.

Intel AVXs use the VEX prefix for 128- and 256-bit vector
instructions, and for AVX-512 it uses the EVEX perfix. In the
current gem5 method of using a float register of MMX ISA,
vector registers must be added for SSE extension and further
considering the expansion into AVX and AVX-512. These
vector registers should be linked with the vector register
file used by user-level instructions, as well as the physical
register file (PRF), register alias table(RAT), and free register
list(FRL) elements. A mask register added to AVX-512 ISA
must be implemented similar to the element added to the
vector register. Lastly, in the current gem5, The memory
access methods of 128, 256, and 512 bits must be considered
as well.

C. GENERATION OF DECODER AND MICRO-OPS
EXECUTION IN GEM5-AVX
Fig.3 illustrates the components that are executed in
accordance with the ISA-dependent and ISA-independent
components as explained in Section V-A, and the structure
that creates C++ code for the decoder and instruction
execution, where the meaning of each component and the
extended information for AVXs are described.

1) ISA DESCRIPTION
The Decoder specification is provided as a core element
of the ISA description language within the M5 simulation
framework. The ISA author describes what instructions exist,
how they are encoded, andwhat they do by using ISA descrip-
tion language [17]. With regard to the AVX instructions,
when expressing the instructions using the ISA description
language, reference was made to the opcode-syntax notation
in the AMD64 manual [18]. The first character, uppercase
letter, indicates the addressing method, and the second
character, lowercase letter, specifies the type of operand.
In the three operand syntax, the destination and separated first
source operand are reflected in the document by replacing the
H character, which means YMM or XMM register specified
by the VEX/XOP.vvvv field, with an uppercase letter. As for
the mask operand, there are two cases. When the mask
register is used for masking, it is distinguished from the case
where the mask register itself is used for operation. In all
cases, the lower character is represented by v, which means a
word, doubleword, or quadword (in 64-bit mode) depending
on the effective operand size, and represented by the upper
character recorded in Table 1.

2) INSTRUCTION FORMATS
The instruction name and operand specification are passed
to a python function called specializeInst which figures out
what to do with it. If the operand specification describes
more than one version of the instruction, for instance
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FIGURE 3. The flow of generating decoder and execution code starting from Decoder Specification to ISA parser component by using ISA description
language.

one that uses memory and one that uses registers, the
instruction’s information is passed into another funciton,
doSplitDecode, which separates out those versions and passes
each individually back through the same system MultiInst is
just a compact way of describing multiple related Insts.

3) PREDECODER
The Predecoder retrieves necessary information from the
diverse sizes of instructions, including those of Intel x86
architecture. Intel AVXs use the VEX prefix for 128-bit
and 256-bit vector instructions, and for AVX-512 it uses
the EVEX prefix. The syntax for AVXs are generalized to
support three operands, but the existing two-operand syntax
is maintained by adding additional operand information to the
VEX prefix to be used. Additionally, operand information is
encoded in the immediate byte as four-operand instructions.
Moreover, the EVEX prefix which is used for AVX-512,
encodes a greater amount of information than the VEX prefix,
including mask registers with zeroing and broadcast flags.
Therefore, to execute Intel AVX and AVX-512 instructions,
the predecoder obtains the necessary information from the
VEX and EVEX prefixes in the Decode stage in Fig.2 and
passes it to the next stage through the ExtMachInst structure.

4) INST AND MICROCODE
Many CISC processors have instruction decoders that are
capable of converting the complex CISC instructions into
RISC-like simpler instructions known as microcodes. These
microcodes then traverse the pipeline of internal cores. The
gem5 provides a microcode assembler that defines micro-ops
for macro-ops corresponding to user-level instructions.

5) SPECIALIZE WITH MACRO-OP GENERATION
The Specialize component sets the necessary information
for the macro-op generation request made by the specialInst
function in the Instruction Formats, and creates the pattern of
the macro-op. When defining a new macro-op, the Specialize
component performs the necessary work and connects the
macro-op definition to the Instruction. In gem5-AVX, the
Specialize component creates different registers for each
AVX macro-op, i.e. xmm, ymm, and zmm registers, and
includes the mask register information if it is a separate
macro-op. The Specialize component also adds the register
information for the second operand, i.e. the first source
operand, to the register information sent to the Predecoder

component in the ExtMachInst structure using the EmulEnv
class. In particular, the processing of the mask register is
performed using the OpMaskEmulEnv class inherited from
the existing EmulEnv class. In this way, the macro-ops for
each instruction are defined in the Inst module, and micro-
ops are executed using the class instance created by the
Microcode using the ExtMachInst structure.

6) MACRO-OP DEFINITION AND OPERANDS
TheOperandsmodule defines the operands used inmicro-ops
in the Micro-ops Definition component, which are mapping
to register in C++ code when generating code for register
in the Micro-ops Definition component. The Operands
module is defined in the Inst module, which implements
the execution code for micro-ops defined in the Macroop
Definition component. In gem5-AVX, the VecRegContainer
class, which is a vector type with various vector lengths,
is defined using the standard template library (STL) array
class and supports various data types. This structure allows
for accessing vector registers as subgroups and facilitates
the implementation of micro-op code. AVX and AVX-512
instructions perform element-wise operations without using
the mask register, and the mask register index is zero in most
cases. However, when the mask register is set in AVX-512
instructions, logic is required to reflect the mask off state
in the existing value or set the element to zero if it is not
masked. Therefore, the implementation of micro-ops has
been divided into two cases: one with mask register and one
without. In addition, the Macroop Definition component also
defines different macroops depending on the use of the mask
register.

7) MICRO ASSEMBLER
The Micro Assembler component assembles the microcode
included in the macroop. This includes definitions of symbols
used in the microcode, as well as mapping of the register
types and their indices to the predecoder EmulEnv class
register information. The generated code and objects created
in previous steps are passed to the ISA parser component.
The ISA parser component includes a parser for the
ISA description language provided by M5, and generates
C++ header and source code for decoder and execution.
In gem5-AVX, the ISA parser component was modified to
add an OpMaskOperand class to the Code Parser section for
processing mask register operands.
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D. FUNCTIONAL MULTI-VERSIONING (FMV)
Function multi-versioning(FMV) (a new element) was not
considered previously in gem5. One of the characteristics
of the HPC workload is that a math library specialized for
computations such as Basic Linear Algebra Subprograms
(BLAS) [19], Linear Algebra PACKage (LAPACK) [20],
and Math Kernel Library (MKL) [22] is used. Specifically,
the library is provided in the FMV method to ensure new
instruction set extensions are usable while considering the
compatibility with a previous processor when the same ISA
is used. We must inspect whether the processor provides
relevant features that are usable before usingAVX extensions.
The Intel reference guide explains a general procedural flow
for checking whether AVX instructions are usable based on
CPUID and XGETBV instructions [23].

VI. IMPLEMENTATION DETAILS
This section describes some of the implementation details
and other relevant insights into the simulator that will be
distributed via web. Fig.3 shows the final stage of the
decoding process for the decoder, which generates C++code
for components and micro-ops involved in the execution of
the generated instruction.

A. INSTRUCTION TO MACRO-OP
The decoding hierarchy is described by List.1, which
shows the decoding of user-level instructions into macro-ops
and themapping ofmacro-ops tomicro-ops, including the use
of VEX and EVEX encoding for one-, two-, and three-byte
opcodes.

LISTING 1. Decoding hierarchy of description specification.

For instructions in Intel’s manual, the notation for operands
and information on the prefix functionality of the VEX prefix,
operand size, and other details are used to distinguish AVX
from AVX-512 and to configure the decoding hierarchy for
AVX-512.

LISTING 2. Example code of VexMultiInst and EvexMultiInst.

List.2 provides an example code using the ISA descrip-
tion language to define the definitions and operands for
VINSERTF32 × 4, VINSERTF64 × 2, EVEX-encoded
256-bit and 512-bit AVX-512 instructions, and VEX- and
EVEX- encoded VADDPD instruction. For VEX-prefix
encoded instructions, the instruction is prefixed with VEX_,
and for EVEX-prefix encoded instructions, the instruction is
prefixed with EVEX_. The vector length is indicated by the
lowercase letter that follows the instruction name, with each
letter representing a 256-bit ymm register or a 512-bit zmm
register, and lowercase letters that do not indicate a vector
length represent a 128-bit xmm register.

The first example instruction inserts a 128-bit granular-
ity offset, which is multiplied by the last operand, into
the destination register by copying the remaining fields
from the corresponding fields of the second operand. The
second example instruction is implemented to use VEX
and AVX-512, with each having its own VexMultiInst and
EvexMultiInst objects to compactly represent the macro-ops
generated for each instruction format component. The VEX
and EVEX instructions compactly represent the macro-ops
that are generated based on the vector length, as described
in the first example. The Inst method is called directly
or indirectly through the VexMultiInst and EvexMultiInst
methods or through the specializeInst function of the
Specialize component. The Specialize component generates
a name for the macro-op based on the variable name and
arguments specified in the description specification, and
appends the information about the arguments to the postfix,
as shown in the comment in List.2. Note that the first and
second operands of the VINSERT64× 2 instruction represent
ymm/zmm registers, while the third operand represents an
xmm register. This is because the lower letter ‘dq’ in the
argument represents the size of the operand.

B. MACRO-OP TO EXECUTION CODE OF MICRO-OP
List.3 includes a code snippet defining the macro-ops for
the VADDPD instruction, which is generated through the
previous section.

LISTING 3. Example code of macro-ops for VADDPD instruction.

In macro-ops, micro-ops are defined for AVX instructions,
and for AVXs, the prefix gem5_ is added. Micro-ops without
mask register instructions are executed in the same way as
micro-ops with the same function name. Therefore, the List.3
example includes a function call with the gem5_avx_ prefix.
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LISTING 4. Execution code of micro-ops for VADDPD.

LISTING 5. Operands supporting multiple precision.

When a mask register is included, the function call uses the
gem5_mask_ prefix. The name of the micro-op executing
function is derived from Intel’s intrinsic function name,
and the destination register is represented by ymm1/zmm1,
and the first and second source registers are represented
by ymm2/zmm2 and ymm/zmm, respectively. The opmask
represents the mask register.

List.4 includes the code for the functions that execute the
micro-ops defined in the previous section’s macro-ops.
The double precision floating-point values are added using
the df postfix, which is defined in the operand_types of List.5

LISTING 6. Architectural vector registers.

and represents the C++ double type. Micro-ops with mask
registers need to either reflect the result of the micro-op in
the destination register or set the corresponding field of the
destination register to zero if the mask is turned off. The last
macro-op in List.3 includes a micro-op definition that sets the
third source operand to the previous register value using the
first source operand.

The VecRegContainer class, as depicted in List.5, is capa-
ble of accommodating various data types. However, the
execution unit requires a method for utilizing the data in the
register during computation. Note that List.5 does not show
every operand types and operands, due to space limitations.

C. STRUCTURE OF VECTOR AND MASK REGISTER
This work supplements the existing Gem5 by adding
temporary vector registers, named uvec(micro vector), for
micro operations and separating the architectural vector
register index into a separate component to be used in the
XMM, YMM, and ZMM registers. The low and high 64-bit
parts of the XMM register are combined into a single index,
and the same index value is returned for the same register
index for XMM, YMM, and ZMM registers.

The vector register structure is closely related to user-level
instructions and the contiguous memory space structure
required for storing data in the vector physical register.
The VecRegContainer class in the standard C++ library is
used for the vector physical register file (PRF) structure.
Therefore, 32 architectural vector registers are separated from
the floating-point registers, and they are connected to the
vector PRF and enum type as depicted in List.6.
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LISTING 7. Instruction script of micro-ops for VGATHERDPD.

LISTING 8. Handling broadcast load operation.

D. VECTOR GATHER-SCATTER WITH VSIB
A vector register (VR0-VR15) replaces a general-purpose
register (GPR) in the index field. Therefore, to access
individual memory locations, the VSIB memory address is
used, and the index value is extracted from the vector register
and loaded into the vector register. This code is an example
of a macro-op instruction script that uses the VSIB to gather
double-precision floating-point values.

Vector gather-scatter instructions have been designed as
a sequence to perform each gather-scatter operation. The
value of loopCount(t3) (line 2) is determined based on the
type of register and the size of the loaded element, and is
set to 8 when a 64-bit floating-point value is loaded into
a 512-bit zmm register, as shown in the List.7. The mask
register is also considered with zeroing flags. A mask bit
is checked (line 6) and it is skipped when the mask bit is
zero (line 7). Zeroing-mask is executed the micro-ops, i.e.
gem5_mask_move_epu64 at the last part (line 17).

E. BROADCAST
In gem5, load operations are processed as part ofMicroLoad-
InitialAcc,MicroLoadExecute, andMicroLoadCompleteAcc.
As for AVX-512 load operations,MicroEvexLoad is used, and

flags related to broadcasting are included. The broadcasting
operation is performed, and the flag is set in the EVEX head,
which specifies the relevant field.

When processing broadcast load operations, the memory
access size is changed from accessing the entire 512-bit
memory to only the necessary size, and the value of elemSize
is determined based on EVEX_W flags. In the complete part,
the data is copied to each element and stored.

VII. EXPERIMENTAL EVALUATION
A. TEST SYSTEM ENVIRONMENT
Fig.4 depicts the overall environment setup for the experi-
ments. Using a server equipped with two Intel Xeon Gold
6346 processors with 16 cores in each processor.

FIGURE 4. Whole experimental environment.

The host machine runs Ubuntu 22.04.2 LTS as its operating
system, and the docker server version is 20.10.22. The
gem5-AVX development used gem5 base version 20.1.0.0.
Development and testing were conducted in a container,
with CentOS and Ubuntu being used as the operating
systems for the container. The container base image was
created using CentOS 8.1.1911 and Ubuntu 20.04 container
images, respectively. To build the Ubuntu container image
for gem5 development, the Dockerfile, i.e. ubuntu20.04-all-
dependencies, provided by gem5 was used as a reference.
In the CentOS container image, scons and python3 package
were installed, and the gfortran-static package was installed
with version 8.2.1-3 for the FORTRAN program. The math
libraries are utilized with OpenBLAS [21] and Intel MKL
[22], an open-source library and a vendor-provided library,
respectively. In case of Intel MKL, the Intel hpctoolkit’s math
library was linked, which is provided by the Intel OneAPI
package for HPC purposes [24].

B. TARGET CONFIGURATION FOR GEM5-AVX
The common configuration is based on the values set in
previous studies [5], [25], which were tested on Intel X86
processors. In addition, the modifications made in this work,
i.e. from the number of physical float registers to the number
of vector physical registers, and the values that change
depending on the processor family, instruction queue entries,
load/store queue entries, the integer/vector PRF, etc. are
newly set. The settings of the parameter values according to
the CPU processor can be seen in Table.2.
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TABLE 2. Processor’s family configuration.

C. EXPERIMENTAL SETUP
We conduct our experiments to verify functional correctness
of the gem5-AVX. To do so, we generated benchmark
programs representative of the HPC field using the GNU
compiler and Intel compiler with various options. And we
compared the result of benchmarks simulated by gem5-AVX
with Intel SDE tool. Core system from Haswell with AVX2
to Skylake with AVX-512 ISA is set through parameter
values and return values for CPUID andXGETBV instruction
introduced in section.V-D. Cache hierarchy is set to a
structure with L1, L2 cache and shared L3 cache, and is
the same for all tests. The parameter value is in Table.2.
The benchmark applications are compiled with two state-of-
the-art compilers, GNU GCC and Intel Compiler. The math
library used is OpenBLAS and Intel MKL.

D. BENCHMARK PROGRAMS
To evaluate the capability of our simulator we have used
a benchmark suites, HPL, HPCG, and NPB, representative
programs in the HPC field.

1) HIGH-PERFORMANCE LINPACK (HPL)
HPL is a benchmark designed to evaluate the floating-point
performance of a computer system. The algorithm used by
HPL is primarily focused on solving a dense system of
linear equations. The algorithm is changeable and can be
tuned via 17 parameters as shown in Table.3 and previous
research [26] addressed that HPL performance has very high
correlation with N, NB, P and Q. We conducted performance
measurements of gem5 on a single core with fixed values of
P and Q, both set to 1. During testing, we varied the values
of N and NB. Additionally, for each setting of N and NB,
we performed tests using OpenBLAS and the Intel MKL
library. It is important to note that when using AVX-512,
the execution of FMA instructions varies depending on
the parameter values for panel factorization, specifically
left, crout, and right-looking variants, resulting in FMA132,
FMA213, and FMA312, respectively. Therefore, in the
performance measurements, only N and NB parameters were
considered, while for functional correctness verification, tests
were conducted for all possible options, i.e. left, crout, right,
of PFACT and RFACT parameters.

2) HIGH-PERFORMANCE CONJUGATE GRADIENT (HPCG)
The HPCG Benchmark is a performance measurement tool
designed to access the computational capabilities of HPC

TABLE 3. Configuration of HPL benchmark for evaluation.

systems and is intended as a complement to the HPL
benchmark. The benchmark employs conjugate gradient
iterative solver to solve a system of linear equations with
a sparse matrix. The benchmark utilizes the 3.1 version.
The default compile option presented in Table.4 is activated
to generate executable code for each of AVX, AVX2, and
AVX3.2. Additionally, the version that incorporates Intel
MKL utilizes the Intel Optimized HPCG benchmark, which
is optimized to leverage Intel oneAPI MKL. Intel Optimized
HPCG binds MKL for each of GCC and ICC and generates
executable code using AVX, AVX2, and AVX3.2 compile
options.

3) NAS PARALLEL BENCHMARK (NPB)
The purpose of NPB benchmark is to provide a com-
prehensive assessment of parallel computers. It comprises
five kernels and three pseudo-applications. And among the
pseudo-applications of it, block tri-diagonal (BT) solver
and lower-upper Gauss-Seidel (LU) solver have vectorized
versions of the code, which are generated explicitly with the
option to utilize that code. The test classes consist of small
(S), workstation size (W), and standard test problem (A).

TABLE 4. Compile options to build benchmark programs.

E. HPC BENCHMARK CONFIGURATION
The characteristics of the HPC benchmark program can
be broadly categorized into three aspects: OpenMP, MPI,
and the math library. OpenMP serves as the de facto
standard for multicore utilization, employing thread-level
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FIGURE 5. Speed-up ratios against the combinations of N and NB parameter values with OpenBLAS and Intel MKL libraries for Haswell and Skylake
processors.

parallelism. MPI, on the other hand, is a standard that
supports node-level parallelization and is inherently included
in codes for programs like HPL. Additionally, the math
library incorporates functions containing basic linear algebra
system (BLAS) for swift execution. Firstly, the MPI library
is skipped during execution for serial codes, such as those in
NPB, that do not use the MPI library or for programs like
HPCG, which explicitly exclude MPI application using the
HPCG_NO_MPI flag. For programs like HPL that include
the MPI library, dummy MPI code provided by NPB is
utilized. This involves adding code that immediately returns
without performing any tasks for all MPI functions called in
HPL, creating dummy routines and binding the correspond-
ing library. Next, similar to the MPI version, NPB has a
separate code that utilizes OpenMP for execution. In the case
of HPCG, OpenMP application is explicitly excluded using
the HPCG_NO_OPENMP flag, while HPL requires the addi-
tion of compilation options for OpenMP to be executed. Last
but not least, the math library is a critical component of the
benchmark program. In this study, the benchmark program is
executed using two math libraries: BLAS (OpenBLAS) and
Intel MKL.

VIII. RESULTS AND ANALYSIS
A. COMPARISON OF ACCURACY BETWEEN INTEL SDE’S
RESULTS AND GEM5-AVX RESULTS
We tested gem5-AVX against the benchmark suite introduced
earlier. First of all, in terms of coverage, previous gem5
was not possible to simulate programs containing AVX
instructions, whereas we found that the code linked with
compilation options or libraries containing AVX instructions
runs normally. In the case of HPL, we executed various
problem size and configuration combinations, and in the case
of NPB, we tested the problem size for S, W, and A classes.
We compared the information output by the benchmark
program, such as problem result values, norm error, etc. to see
if the results were consistent with those executed on real
hardware and Intel SDE tool. For the HPL benchmark, the
same results were obtained for various parameter configura-
tions. In the HPCG benchmark execution, there were cases
where differences occurred, and the difference was caused by
an error about round off in the reciprocal (RCP) instruction,
however the test was successful or passed as the residual
error was below the threshold. NPB benchmark is tested for
S, W, and A classes. The difference in results occurs when
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executing the CG kernel built with the Intel compiler with
AVX-512 option. The reason is that the precision flag part of
MXCSR register is set when an exception of floating point
operation occurs, and our gem5-AVX implementation does
not reflect the exception handling of floating point operation,
so this part is left as future work. Other than that, we got the
same results for all other benchmarks in NPB, i.e., BT, LU,
DC, EP, FT, IS, LU, MG, SP, UA.

B. VALIDATION
We validate gem5-AVX against real processors, i.e., Haswell
and Skylake. In our experiments, we calculated the speed-up
by taking the ratio of the wall-clock time for the configuration
with values of N=512, NB=128 as a base case. And we
compared the mean absolute errors with the results of
execution time between gem5 and real hardware and between
thoese of gem5-AVX and real hardware. Fig.5 shows a
comparative plot of the performance measured for the HPL
benchmark, where we presented the speed-up of HPL with
combinations of parameters listed in Table.3. All the results
show the same tendency as the parameters of problem size
(N) and block size (NB). increase.

FIGURE 6. Mean absolute percentage errors (less is better) of gem5 and
gem5-AVX in Haswell (left) and in Skylake (right).

As shown in Fig.6, gem5-AVX, with mean absolute
percentage errors of 7.3-9.2% and 9.2-11.9%, is more
accurate than gem5, which shows mean absolute errors
17.9-21.5% and 19.7-29.7% for Haswell and Skylake
processor, respectively.

In this work, the following items are not supported:
1) memory alignment, 2) system-level and cryptography
instructions, 3) exceptions of SIMD and FMA instructions,
and 4) related half-precision floating points. Unaligned
memory access is processed similar to aligned memory
access. Floating-point exception is not processed, and the
round-off mode is not discussed in detail. Lastly, certain
aspects related to half-precision, i.e., conversion, detection,
and arithmetic, that are frequently applied to AI and deep
learning are not considered.

IX. CONCLUSION
In this paper, we detailed the design and implementation
of gem5-AVX, an extended version of gem5, to enable
simulation of recent SIMD extensions of x86 ISA. The
work focuses on the key features of AVXs such as 256- and
512-bit registers, three and four operands syntax, vector
gather-scatter with VSIB, mask registers, broadcasting, and

compressed displacement memory addressing mode. The
gem5-AVX is the first, to the best of our knowledge, to design
and implement micro-architecture for AVX-to-AVX-512.
The gem5-AVX validate speed-up of HPL benchmark with
mean absolute percentage erros of 7-9% and 7-12% whereas
gem5 show 14-19% and 17-27% for Haswell and Skylake
processor, respectively.

Since the discovery of vulnerabilities such as Meltdown
[29] and Spectre [30] in Intel processors, various methods
and types ofmicro-architectural data sampling (MDS) attacks
have been discovered [31], [32]. Recently, the Downfall
attack [33] was introduced, which targets the vector gather
instruction provided by AVX2 and AVX-512. Gem5-AVX
which design and implement recent micro-architecture is
needed to analyze these vulnerabilities and we can obtain the
insight necessary to solve the problems.
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