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ABSTRACT The utilization of renewable energy in power generation has been increasing in recent years,
with the use of wind power sources being the most promising solution for sustainable power generation.
The doubly-fed induction generator (DFIG) is one of the most commonly used generators in wind power
generation applications, as it offers some technical of advantages. However, the increasing penetration
of wind power generation poses tremendous technical challenges in power system operation as this can
potentially affect system stability, requiring better control andmonitoring schemes. Dynamic state estimation
(DSE) offers the ability to achieve this purpose. With respect to this, the present paper proposes a DSE
framework on a high-order model of DFIG consisting of 18 states. The method uses the unscented Kalman
filter (UKF) which provides an accurate estimate of DFIG states under a strong system non linearity present
in the wind turbine system. Furthermore, this paper demonstrates the robustness of the proposed method
under different faults and noisy conditions. Finally, the paper also extends the use of UKF to estimate the
unknown inputs of a DFIG system, such as control references in the rotor-side converter (RSC) and grid-side
converter(GSC).

INDEX TERMS Doubly fed induction generator, dynamic state estimation, power system monitoring,
unscented Kalman filter, wind power generation.

I. INTRODUCTION
The growing concern on the availability of fossil fuels such
as gas and coal and their impact on environmental has led
to the increasing utilization of renewable energy sources in
power generation. As a result, the current structure of power
systems has been transforming into an increasing deployment
of renewable energy based power generation, such as wind
power and photovoltaic (PV). Due to its abundant availability,
cost-effective reasons, and scalability [1], [2], wind energy
is considered as one of the most promising solutions for
a sustainable power generation. However, the increase in
penetration of wind power generation poses tremendous
technical challenges in power system operation due to its
pertinent intermittent behaviors [3], [4], [5]. A doubly-fed
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induction generator (DFIG)-based wind turbine is one of
the most favorable and commonly used in wind power
generation applications as it benefits from variable speed
operation capabilities, which reduces mechanical stress and
posses a better power capture [6], [7]. In addition, the
ability to independently control active and reactive power is
another advantage of DFIG [8]. These technical advantages
lead to an increasing number of DFIGs integration into
power systems, which may adversely affect system stability
[9], [10].
Maintaining generator stability plays an important role

in ensuring safe and stable operation of power systems.
This is increasingly challenging due to the fact that more
and more wind power plants have been interconnected to
power systems. This condition necessities a better control
and monitoring schemes. A dynamic state estimation (DSE)
can provide a significant role to serve this purpose. This is
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possible as DSE allows estimation of internal states of a gen-
erator from terminal measurements such as voltage or output
power [11]. With this ability, monitoring, control, protection,
and assessment of power system stability are enhanced
as the internal states can be attributed to system stability
[12], [13], [14].

The extended kalman filter (EKF), unscented kalman filter
(UKF), and particle filter (PF) are probably the most popular
DSE methods applied in power systems. Related studies on
synchronous generators (SG) using EKF [15], UKF [16], and
PF [17] shows that these methods have been able to provide
an accurate estimate of SG states such as rotor speed and
angle. This indicates that the methods are applicable to DSE
in power generation. References [16], [18], and [19] have
performed a comparative study of some DSE methods. The
linearization-free methods, namely UKF and PF, have shown
better results with higher accuracy than their linearization-
based counterparts, namely EKF. The linearization process
used in EKF leads to various difficulties [16] such as
truncation error [18]. Comparing the estimation results of
linearization-free methods under various conditions, [19]
shows that PF is able to provide estimates with significantly
accuracy than those in UKF, although it is shown that PF
may fail to converge in some particular cases. The PF method
also normally requires higher number of sample points,
known as particles, to produce higher accuracy estima-
tions, resulting in a significantly demanding computational
burden.

Previous research has also demonstrated the ability of those
DSE methods to be implemented in wind turbine systems
for various purposes, such as monitoring [20], control [21],
and fault diagnosis [22]. The results from those research
have demonstrated that the techniques are also applicable
to wind turbine systems. As also observed in the case of
synchronous generators, Ref. [23] has shown that the EKF
is outperformed by the other linearization-free methods such
as UKF for estimating the states of doubly-fed induction
generators (DFIG) due to strong non-linearity present in
the case of wind turbine systems. Furthermore, obtaining
the Jacobin matrix in EKF is often a cumbersome effort,
especially in the case of a DFIG as it is normally a high-
order system. As a result, linearization-free DSE methods
are often preferred for DFIG state estimation. The work
presented in [2] and [23] shows that PF results in state
estimation with higher degree of accuracy than those in UKF,
but again it demands a significantly higher computational
cost. This is due to the fact that PF requires a large number
of particles to attain accurate results. In contrast to PF, UKF
uses a fixed set of deterministic sample point to perform
a non-linear estimation. The work in [24] shows that PF
experienced escalating computing time while UKF maintain
stable computing time, highlighting the UKF’s advantage in
computational efficiency compared to PF. The work carried
out by [2], [21], and [23] has successfully presented DFIG
state estimation using UKF. However, the model of DFIG is

merely represented by using 6 or 11 states, which may be
inadequate to capture the behaviours of DFIG in response to a
large disturbance. Furthermore, the issue related to unknown
control inputs in the rotor-side converter (RSC) and grid-side
converter (GSC) controllers has not been addressed. Refer-
ences [25], [26], and [27] have demonstrated the feasibility
of utilizing the kalman filtering methods in unknown input
scenarios.

With regards to the above mentioned problem, this paper
proposes a DSE application on DFIG-based wind turbines
to acquire an accurate estimate of the non-measurable state
variables using UKF method [28]. The contributions of the
paper are as follows:

1) The state estimate is conducted on an highly nonlinear
DFIG system modelled with 18 states. This high order
allows for a detailed representation of its dynamics, and
hence a better dynamic representation of wind turbine
during a large transient event, enhancing the accuracy
in analyzing transient events to better reflect real-world
conditions.

2) The state estimation framework is decentralized and
only requires terminal measurements of DFIGs such
as terminal voltage and current, or active and reactive
output powers. This decentralized approach is hence
expendable to any configurations of DFIG such as
stand-alone or grid-connected.

3) The robustness of the proposed method is investigated
against some realistic conditions, such as different level
of fault severity and different level of process and
measurement noises.

4) The ability of UKF is extended to estimate unknown
control inputs. This may be beneficial since some
variables may be unknown or hard to measure in some
specific configurations and cases.

The reminder of this paper is organized as follows. The
mathematical model of DFIG dynamics is discussed in
Section II. Section III provides a self-contained discussion
on UKF algorithm. In Section V, the simulation results
of several study cases on DFIG state estimation, including
voltage drops, various noise conditions, and unknown inputs,
are presented. Finally, Section VI outlines the key findings of
this paper.

II. DFIG MATHEMATICAL MODEL
The DFIG mathematical model considered in this paper is

derived from [29]. Fig. 1 shows the illustration of the system.
As can be seen this is a single DFIG connected to the
infinite bus via a series compensated line. While our study
is focused on a grid-connected DFIGs, the techniques and
approaches proposed in this paper can be extended to both
standalone and grid-connected systems, provided the system
inputs and outputs are carefully selected. It will be discussed
in detail in Section IV. The system parameters are provided
in Appendix VI.
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FIGURE 1. Illustration of the study system.

A. SERIES COMPENSATED LINE MODEL
The dynamics of series compensated line in the synchronous
reference frame is described as follows.


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 = ωb
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where iL = iqL − jidL is the current flowing through the
series compensated line.The subscripts d and q refer to the
respective variables referred on the direct and the quadrature
axis, respectively. Eb is the voltages of the infinite bus, vc
is the voltages across the capacitor, and vs is the voltages
in the DFIG terminal. ωb and ωs are the base speed and the
synchronous reference speed, respectively.

B. TERMINAL VOLTAGE MODEL
The terminal voltage vs is affected by the balance between
the current injection by DFIG, namely is + ig, and the series
compensated line current, iL . This can be described by (2) as
follows:

[
v̇qs
v̇ds

]
= ωb

[
0 −ωs
ωs 0

] [
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]
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(2)

where iBsh = (is − ig) − iL is the current across the shunt
capacitor Bsh.

C. DRIVE-TRAIN MODEL
The drive-train is modeled as a two-mass system described
by (3) as follows:
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where Tm and Te denote the mechanical torque working on
the turbine blades and the electrical torque in the generator,
respectively. ωt and ωr indicate the turbine and the rotor
speed, respectively, and Tg is the internal torque of the
model. Ht and Hg are the inertia constants of the turbine
and the generator respectively. Dt , Dg, and DTg are the
damping coefficients of the turbine, generator, and the shaft
coupling connecting the two masses. KTg is the shaft stiffness
coefficient.

D. INDUCTION GENERATOR MODEL
The induction generator can be described as a 6th order
dynamical model as discussed in [29]. However, assuming
that the DFIG operates in balance, the zero axis current
is equal to 0 and can be ignored. Therefore, the induction
generator can be model with 4 states as described by the
equation as follows.

ẋgen = Agenxgen + Bgenugen (4)
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(5)

Agen = −Bgen


−rs −ωsXs 0 ωsXm
ωsXs −rs −ωsXm 0
0 −sXm rr sXr
sXm 0 −sXr rr

 (6)

where s = 1 − ωr is the slip. xgen =
[
iqs ids iqr idr

]T .
ugen =

[
vqs vds vqr vdr

]T . is and ir denote the stator and rotor
currents, respectively. vr indicates the rotor voltage.

E. DFIG CONTROL MODEL
In this paper, the rotor side controller (RSC) and grid side
controller (GSC) are modeled as cascaded control loop with
cross-couplings as given in Figs. 2 and 3, respectively. As can
be seen, the outer loop of RSC controls the electromagnetic
torque Te for the maximum power point tracking (MPPT)
algorithm and the stator reactive power Qs, whereas the outer
loop of GSC regulates the DC-link voltage VDC and the GSC
filter reactive power Qg.
The differential equations governing the dynamic of RSC

are as follows

8̇Te = Teref − Te
8̇Qs = Qsref − Qs
8̇iqr = KpTe (Teref − Te) + KiTe8Te − icqr
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FIGURE 2. RSC control loop.

FIGURE 3. GSC control loop.

8̇idr = KpQs (Qsref − Qs) + KiQs8Qs − icdr (7)

KpTe ,KiTe ,KpQs and KiQs refer to the constants in the RSC
PI controllers. icr = icqr − jicqr = irejθ with θ =

tan−1(−vqs/vds) denotes the rotor current referred to the
control reference frame. Further, the differential equations
governing the dynamic of GSC are expressed as follows

8̇VDC = VDCref − VDC
8̇Qg = Qgref − Qg
8̇iqr = KpVDC (VDCref − VDC ) + KiVDC8VDC − icqg
8̇idg = KpQg (Qgref − Qg) + KiQg8Qg − icdg (8)

KpVDC ,KiVDC ,KpQg andKiQg refer to the constants in the GSC
PI controllers. icg = icqg − jicqg = igejθ indicates the GSC filter
current referred to the control reference frame.

F. GSC FILTER
The GSC filter current ig is affected by the voltage difference
between GSC and the terminal. Eqn. (9) describes the

dynamics of ig.

[
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i̇dg

]
=
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0

0
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+
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]
(9)

where Xg shows the filter reactance. 1vsq = vgq − vsq and
1vsd = vgd −vsd denote the voltage difference between GSC
output and DFIG terminal.

G. DC-LINK MODEL
The RSC and GSC are connected by the DC-link, which
acts as a temporary evergy storage. The nonlinear dynamics
of a DC-link capacitor voltage can be described by (10) as
follows.

CVDCVDC
dVDC
dt

= Pr − Pg (10)

where CVDC and VDC refer to the DC-link capacitor and its
corresponding voltage, respectively. Pg =

1
2 (vqgiqg + vdgidg)

and Pg =
1
2 (vqgiqg + vdgidg) indicate the power flowing from

the rotor and into the GSC filter, respectively.

III. UNSCENTED KALMAN FILTER
The Unscented Kalman Filter is a method to estimate
the dynamic states of a nonlinear system by utilizing the
unscented transformation (UT). UT was developed to trans-
form mean and covariance of a variable through nonlinear
transformation overcoming deficiencies of linearization used
in other method such as the Extended Kalman Filter [30].
A set of sample points, also called sigma points, are chosen
to estimate statistical properties of a distribution through a
nonlinear transformation. UT is illustrated in Fig. 4.

FIGURE 4. Illustration of unscented transformation.

A. SIGMA POINTS
Sigma points are selected in a deterministic step in order to
capture accurately statistical information. The sigma points
selection proposed in [31] is adopted in this paper. Suppose x
is a normally distributed L dimension vector with mean x̂ and
covariance Px , a total of 2L + 1 sigma points χ are chosen
according to (11)-(13).

χx
0 = x (11)
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χx
i = x + (

√
(L + λ)Px)i , i = 1, . . . ,L (12)

χx
i = x − (

√
(L + λ)Px)i , i = L + 1, . . . , 2L (13)

λ = α2(L+κ)−L gives the scaling parameter. α denotes a
small positive number usually smaller than 1. The secondary
scaling parameter κ is usually set to 0.

Adding the weight to each sigma point can reduce
approximation error by performing a weighted average on
the UT process. The weight for each sigma point can be
calculated according to (14)-(16).W (m) andW (c) are weights
for mean and covariance calculations, respectively.

W (m)
0 =

λ

L + λ
(14)

W (c)
0 =

λ

L + λ
+ (1 − α2

+ β) (15)

W (m)
i = W (c)

i =
1

2(L + λ)
(16)

β is the degree of freedom and its value is set to 2 for the
normal distribution.

B. UNSCENTED KALMAN FILTER ALGORITHM
The unscented kalman filter discussed in [31] will be used in
this paper. The UKF algorithmwill be described for a discrete
nonlinear system with the process equation shown as (17)
and the measurement equation shown as (18). The process v
and measurement noises w are both assumed to be normally
distributed.

xk = f (xk−1,uk−1) + vk (17)

yk = g(xk ) + wk (18)

where vk ∼ N (0,Qk ),wk ∼ N (0,Rk ).
UKF consist of two main steps, namely the time update

and measurement update. Prediction is acquired in time
update step, whereas the refined using actual measurement in
measurement update step. Initial state estimation x̂0 and the
corresponding covariance Px0 are required to initialize UKF
state estimation.

In the time update step, the prediction is acquired by
generating sigma points and transforming them through the
process model shown as (19). These transformed sigma
points can be used to calculate the prediction x̂−

k and the
respective covariance Px−k according to (20) and (21).

χx
k|k−1 = f (χx

k−1|k−1,uk−1) (19)

x̂−

k =

2L∑
i=0

W(m)
i χx

i,k|k−1 (20)

Px−k =

2L∑
i=0

W(c)
i (χx

i,k|k−1 − x̂−

k )(χ
x
i,k|k−1 − x̂−

k )
T

+ Qk

(21)

The transformed sigma points χx
k|k−1 is propagated

through the measurement model to acquire measurement
prediction ŷ−

k .

ϒx
k|k−1 = g(χx

k|k−1) (22)

ŷ−

k =

2L∑
i=0

W(m)
i ϒx

i,k|k−1 (23)

Pŷk ŷk =

2L∑
i=0

W(c)
i (ϒx

i,k|k−1 − ŷ−

k )(ϒ
x
i,k|k−1 − ŷ−

k )
T

+ Rk

(24)

Px̂k ŷk =

2L∑
i=0

W(c)
i (χx

i,k|k−1 − x̂−

k )(ϒ
x
i,k|k−1 − ŷ−

k )
T (25)

Kk = Px̂k ŷkP
−1
ŷk ŷk

(26)

In the measurement update step, the actual system
measurement yk is used to refine prediction acquired in the
time update step. The kalman gain is calculated according
to (26), then the error between actual measurement yk and
predicted measurement ŷ−

k is added to the prediction x̂−

k . The
state estimate x̂k and the corresponding covariance Pxk can be
calculated according (27) and (28).

x̂k = x̂−

k + Kk (yk − ŷ−

k ) (27)

Pxk = Px−k − KkPŷk ŷkK
T
k (28)

The state estimate x̂k and covariance Pxk acquired will be used
in the next iteration of UKF.

IV. IMPLEMENTATION
The complete dynamics of the DFIG system given in (2)
to (10) can be written in a compact form using a set of
continuous-time nonlinear state-space equations as follows.

ẋ = f (x, u) + v (29)

y = g(x) + w (30)

where x is the state vector, y is the measured output, and
u is the DFIG input. v ∼ N (0,Q) and w ∼ N (0,R) are
the additive process and measurement noises, respectively.
As obvious, the order of x is 18 with detail as follows.

x =
[
VDC xfil xGSC xdrive xind xRSC

]T (31)

The vector xfil = [iqg idg], xGSC = [8VDC 8Qg 8iqg 8idg ],
and xRSC = [8Te 8iqr 8idr 8Qs ] denote the state vector
associated to GSC filter, GSC, and RSC control dynamics,
respectively. The vector xdrive = [ωt ωr Tg] stands for the
state vector associated to the drive-train dynamics and the
vector xind = [iqs ids iqr idr ] is the state vector associated
to the induction generator dynamics.

The input and output pair must be chosen carefully with the
aims to allow a decentralized DSE. This can be carried out as
follows. The terminal current output of DFIG iDFIG which is
described by Fig. 1 is selected as the system output.

y =
[
iqDFIG idDFIG

]T
=

[
iqs − iqg ids − idg

]T (32)

whereas the terminal voltage vs is set as the system input,
namely

u =
[
vqs vds

]T (33)
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This choice of input and output pair is adopted from [32] and
allows for a distributed DSE framework. The advantage is
that the DSE is applicable to any configurations of DFIGs,
namely stand-alone or grid connected, as long as these
terminal measurements are available. In order to implement
DFIG state estimation using the discrete UKF discussed in
section III, the continuous-time model, namely (29) and (30),
needs to be transformed into its discrete-time form. We use
a simple backward Euler to estimate the time derivatives.
In other words, ẋ =

xk−xk−1
1t where 1t is the time step. If we

substitute this to (29), it yields
xk − xk−1

1t
= f (xk−1,uk−1) (34)

Therefore, the time-continuous system (29) and (30) can
be transformed into the corresponding discrete-time system
form shown as follows.

xk = xk−1 + (f (xk−1,uk−1) + vk−1)1t (35)

yk = g(xk ) + wk (36)

This discretized system is in the form of (17) and (18), and
hence is ready for DSE process.

The overall structure of the DFIG system and DSE using
kalman filter is shown in Fig. 5. We can see that in general
the DSE framework is made of two subsystems, namely
the DFIG dynamic model (top left) and the state-estimator
(bottom right). Both the subsystems are implemented in
Matlab/Simulink. The DFIG system is simulated using the
continuous-time model given in Section II, whereas the DSE
is realized using the descritized system in (35) and (36),
and discrete-time UKF algorithm provided in Section III.
We also use the zero-order hold (ZOH) to mimic the sampling
process of y and u as given in (32) and (33), respectively.
The system parameter values for the entire study are shown
in Appendix VI. In a basic DSE procedure, the model and
the parameters are always assumed to be known. Also, the
faults considered in this paper are balanced symmetrical
faults. The performance of UKF estimation is evaluated by
comparing the state estimation, x̂, with the actual state, x,
through simulations.

FIGURE 5. Framework of DSE for DFIG using UKF.

V. SIMULATION RESULTS
In this section, we will establish the robustness of the
proposed DSE framework on the DFIG system configuration
given in Fig.1. To serve this this purpose, several realistic
scenarios are carefully devised.

A. STEADY-STATE PERFORMANCE
This study case focuses on evaluating the performance of
the Unscented Kalman Filter (UKF) in estimating the state
of DFIG under steady-state conditions. In particular, we will
study the influence of initial state estimate x̂0 on x̂. For this
purpose, three scenarios are devised as follows. Firstly, the
UKF is initialized with all elements of x̂0 set to 1. Secondly,
the UKF begins with x̂0 initialized with random elements
between 0 and 1. Thirdly, the UKF uses an initialization
where all elements of x̂0 are set equal to their corresponding
steady-state values.

FIGURE 6. UKF state estimation for a steady-state condition.

The estimation results for these initial estimation cases
are depicted in Fig. 6. Although the system is modeled with
18 state variables, the estimation results of the proposed
method will only be presented for some the states in order to
save space. Virtually in all cases, the estimations eventually
converge towards the actual values of DFIG states in less
than 0.2 seconds. Most notably, the third case, where the
initial estimation matches the steady-state value, showed
the best performance as expected. Despite this fact, the
other two cases represent a more realistic condition as x̂0 is
generally unknown. For further analysis, the initial estimation
in the third case will be used throughout the rest of this
paper.
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FIGURE 7. UKF state estimation during transient: noise-free case.

B. TRANSIENT PERFORMANCE
In this case, we investigate the performance of UKF to
estimate the DFIG states during a transient condition.
To simulate the case, the DFIG system Initially operates in
steady-state. At t = 0.2 s, the mechanical torque Tm working
on the wind turbine suddenly decreases by 2%, and at the
same time there is a sudden increase in the infinite bus voltage
Eb by 1%. The system will experience a transient period in
response to these disturbances and UKF is tested to track
DFIG states. We will simulate the estimation results for both
the noise-free and noisy conditions.

The results of state estimate for the noise-free condition is
shown in Fig. 7. In the absence of noise, the UKF is able to
produce generally good estimates and track the actual state
very accurately, although initially the estimates were quite
erroneous.

Furthermore, the state estimate for the noisy condition is
provided in Fig. 8. This scenario is carried out by adding a
normally distributed process noise with mean and covariance
0 andQk = 10−12I18, respectively, and a normally distributed
measurement noise with mean and covariance 0 and Rk =

10−5I2, respectively. In stands for the n × n identity matrix.
The UKF is generally be able to emulate the states of DFIG
with a high degree of accuracy, even with the presence of
both process and measurement noises. Comparing to the
noise-free case, as expected, it is also visible that UKF
estimation takes a longer time to converge to the actual
states when the noises are present in the system, indicating
the challenge for the DFIG state estimation during noise
conditions.

FIGURE 8. UKF state estimation during transient: noisy case.

C. DIFFERENT LEVEL OF PROCESS NOISE
This case investigates the results of UKF estimation under
different levels of process noise. With the aim to demonstrate
this, the simulation is performed by adding the noise with
different covariance values which are varied as follows:
Qk = 10−16I18, 10−12I18, and 10−8I18. On the other
hand, the measurement noise covariance remains constant at
Rk = 10−6I2.

FIGURE 9. UKF state estimation for different process noise level.

Fig. 9 depicts the performance of UKF under these
scenarios. As expected, it is visible that state estimator
produces more accurate outcomes as the covariance becomes
smaller. On the other hand, the state estimates results in
more erroneous outputs or even biased estimates due to the
presence of high-level of noise. This circumstance is evident
for the case with Qk = 10−8I18. Hence, it can be concluded
that UKF produces a better estimate of DFIG states when the
system is subjected to a sufficiently small process noise.
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D. DIFFERENT LEVEL OF MEASUREMENT NOISE
In this scenario, we investigate the accuracy of UKF when
different level of noise is present in the measurement. This
is carried out by varying the covariance related to the mea-
surement noise Rk . For this, three scenarios of measurement
noise are devised as follows: Rk = 10−6I2, 10−4I2, 10−2I2,
while the process noise covariance is held constant at
Qk = 10−16I18 for all cases.

FIGURE 10. UKF state estimation for different measurement noise level.

Fig. 10 illustrate the performance of UKF under these
conditions. It is visible that UKF algorithm is eventually able
to track the actual states even when the system is subjected
to a large measurement noise covariance. Different from
the case of process noise, UKF can produce unbiased state
estimates in virtually all scenarios. It is also to be noted that
UKF require a longer time to converge to the actual states for
larger measurement noises as clearly visible in Fig. 10.

E. LOW VOLTAGE RIDE THROUGH (LVRT)
One of the grid codes of modern power systems requires
the DIFG to remain connected to the grid in the event of
a significant drop in the terminal voltage. This is known
as low voltage ride through (LVRT) [33]. In this scenario,
we investigate the ability of UKF-based DSE during LVRT.
For this purpose, we simulate a significant voltage drop at
Eb and in response to this, the terminal voltage of DFIG
will also undergo a significant voltage drop. Three cases are
constructed for this purpose, namely case-1 (60%), case-2
(70%), and case-3 (80%). In all the cases, the DFIG initially
operates in steady-state, then at t = 0.2 s, the infinite bus
voltage suddenly drops by the amount according to each
scenario

The estimation results for the three cases is presented in
Figs. 11 and 12. It is obvious beforehand that the DFIG
system exhibits a strong nonlinearity for all cases. Despite
this, UKF estimates and tracks the DFIG states with a high-
degree of precision. Also, the state estimate produces only a
slightly more erroneous outcomes as the voltage drop become
more severe. This phenomenon highlights that UKF-based
state estimator maintains the robustness even during severe
faults, which may be essential for monitoring and control
purposes of DFIGs

FIGURE 11. UKF DC link voltage estimation during LVRT.

FIGURE 12. UKF rotor speed estimation during LVRT.

F. UNKNOWN INPUTS
In this case, some of the previously known constant inputs,
namely, Qsref , Qgref , and VDCref , are treated as the unknown
inputs. See Figs. 2 and 3 to locate these control inputs. The
goal is to perform state estimate together with the unknown
inputs. It can be done by augmenting those unknown inputs
into the state vector (31), and hence the extended state space
equations become as follows.

ẋUI = fUI (xUI , uUI ) + vUI (37)

where xUI =
[
x Qsref VDCref Qgref

]T . fUI =
[
f 0 0 0

]T
with f equal to (29). The state equations pertinent to the
unknown inputs are equal to zero as they remain constant
throughout the study period. With this, we can proceed to the
UKF procedure as in the previous cases.

We then perturb the system using the same fault used
in Section V-B. The results for the unknown inputs
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FIGURE 13. UKF unknown input estimation.

Qsref , VDCref , and Qgref are provided in Fig. 13. It can be
observed that generally UKF is able to produce a high degree
estimate of the unknown inputs. Although UKF initially fails
to estimate the unknown input prior to t = 0.5 s, it is
eventually able to track the unknown inputs very accurately.

FIGURE 14. UKF state estimation with unknown inputs.

Fig. 14 illustrates DFIG state estimation output while
the unknown inputs are also estimated simultaneously. It is
evident that UKF can still provide an accurate estimates of
the states during the unfavorable conditions of missing inputs
measurements. This shows that by treating the unknown
inputs in the extended states as given in (37), UKF is capable
of providing accurate estimations for both the states and the
unknown inputs.

VI. CONCLUSION
This paper has demonstrated the robustness of UKF-based
DSE on a high-order DFIG model with 18 states. The
simulation results show that UKF is capable of producing
accurate estimations of DFIG states under steady-state and
transient conditions, and the LVRT as well as different
noisy conditions. It has been observed that UKF method
is less sensitive to the measurement noise than process

noise, as demonstrated by the simulation results that shows
UKF is able to maintain an accurate estimates under higher
measurement noise but results in inaccurate results under
higher process noise. Moreover, it has been demonstrated
that UKF produces reasonably good estimations even with
the unknown inputs. UKF is able to emulate the states of
the DFIG and the unknown inputs simultaneously. UKF has
also proved the robustness by consistently estimating DFIG
states accurately across different scenarios in simulations,
showcasing its reliability in diverse adverse conditions.
Further research could concentrate on real-time validation by
employing sensors to measure accessible states.

APPENDIX
SYSTEM PARAMETERS
See Table 1.

TABLE 1. System parameters.
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