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ABSTRACT This paper proposes a novel adaptive predictive Proportional-Integral-Derivative (PID)
controller utilizing an output recurrent fuzzy broad learning systems (ORFBLS) forMultiple-InputMultiple-
Output (MIMO) digital control systems, aiming to effectively adapt to changing setpoints and dynamic
environments. The proposed controller, MIMO ORFBLS-APPID controller in short, is proposed to extend
the application of ORFBLS as an adaptive adjustment mechanism for PID gains parameters, where the
controller gain matrices are automatically tuned over time by employing the Jacobian transformations
of the MIMO ORFBLS identifier. Three theorems are established to ensure proper usage and successful
applications of the proposed controller. The setpoints tracking control performance and disturbance rejection
abilities are firmly illustrated by performing three simulations to the multivariable nonlinear dynamic
systems. Moreover, one experimental study to the laboratory-built extrusion barrel in a plastic injection
molding machine is done to validate the effectiveness and practicality of the proposed control method.
Through comparative simulations and experimental results, the proposed controller has been shown to
outperform two existing control methods in terms of control performance indexes.

INDEX TERMS Adaptive control, auto-tuning, intelligent control, output recurrent fuzzy broad learning
systems (ORFBLS), parameter adjustment algorithm, PID controller.

I. INTRODUCTION
Adaptive control methods offer strong solutions for nonlin-
ear industrial processes, while the conventional fixed gain
proportional-integral-derivative (PID) controller offers a sim-
ple yet approachable control. Thewell-established PIDmech-
anism compares setpoint trajectories and measured outputs
for continuous corrections based on error-dependent gains.
Tuning these proportional, integral, and derivative terms
online and in real-time enables tailored responses adapting to
changing setpoints, disturbances, or deviations [1], [2], [3],
[4], [5].
To achieve an adaptive predictive PID control approach,

there are several recent studies that have influenced the
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writing of this paper. The study in [6] proposed an adaptive
PID controller by leveraging the gains dynamics of dis-
crete PID with an adaptive time-delay control (TDC). The
equivalence relationship between TDC and PID controller
is used to derive the adaptive gains. The authors in [7]
proposed an adaptive PID approach by utilizing adaptive
fuzzy gain-scheduling (AFGS) and applied it for tempera-
ture control regulation of a continuous stirred tank reactor
(CSTR), in which the adaptive fuzzy logic controller effec-
tively adjusted the gains and compensates CSTR model
nonlinearity, which evolved around its dynamic operating
trajectory.

On the other hand, the following studies introduced the
use of fuzzy as an adaptive control and system identifi-
cation that gave another great insight into how the fuzzy
system works. The study in [8] proposed a performance
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improvement of induction motor speed response by replac-
ing the proportional-integral (PI) controller with an adaptive
neuro-fuzzy inference system (ANFIS) controller. Another
study [9] introduced dynamic surface control into the adap-
tive backstepping recursive design algorithm along with the
Nussbaum function technique to tackle unknown control
directions and fuzzy logic systems to identify unknown non-
linear functions. Similarly, the authors in [10], [11], and [12]
integrated dynamic surface control and adaptive backstep-
ping algorithms by utilizing fuzzy logic to identify unknown
nonlinear functions and the Nussbaum function method to
tackle unknown control directions. Finally, all those previ-
ously mentioned studies provided valuable insights into how
adaptive algorithms perform in different applications. Specif-
ically, adapting fuzzy logic systems to identify unknown
nonlinear functions in each step of the recursive learn-
ing processes can enhance system identification. Further
enhancements of fuzzy logic to identify unknown nonlinear
functions for better system identification might be possible
by enhancing the fuzzy structure into a fuzzy broad learning
system (FBLS).

FBLS is a kind of flat two-layered neural network pre-
sented by integrating the Takagi-Sugeno (TS) fuzzy subsys-
tem [13] into a broad learning system (BLS) [14], [15]. This
FBLS assigns each of the fuzzy set membership values or the
intermediate outputs of the TS fuzzy subsystem before aggre-
gating it into the output layer to produce the fuzzy system
output, as the input to each enhancement layer node inside
BLS, and then combines the TS fuzzy subsystem outputs with
all the enhancement layer outputs along with their weights to
generate the FBLS output [14], [16], [17], [18].
Initially, employing FBLS as the compensator has been

proposed by the authors in [19] and [20], where the FBLS has
been proposed to recursively update the three-term gains of
PID control and utilized it to control the tools grinding servo
control systems with a robust and better result compared
to the conventional control method. Tending to improve the
effectiveness of the FBLS-based adaptive PID control, many
researchers have proposed structural learning improvements
of FBLS that have led to better results. The studies in [21],
[22], and [23] proposed a recurrent FBLSmethod for adaptive
predictive PID control that gave a significant improvement
over the controller’s performance and robustness. This afore-
mentioned method, abbreviated as RFBLS-APPID in short,
has been done by feeding back the fuzzy subsystem output
back to the fuzzy rules. On the other hand, the studies in [24],
[25], [26], and [27] proposed another structural improvement
with output recurrent FBLS which has been done by feeding
back the FBLS system output back to the fuzzy rules and
back to each node in the enhancement layer. Such a method
was shown to give better controller adaptability over the
nonlinear system compared with the RFBLS-APPID con-
troller, yet both methods proved applicable and effective in
handling nonlinear processes. Prior to the previously men-
tioned studies, all mentioned control methods were applied
to the single-input single-output (SISO) control systems, and

they were much easier to be designed and synthesized by
comparing to multi-input multi-output (MIMO) systems.

Motivated by [24], [25], [26], and [27], the objectives
of this paper are to theoretically present a novel MIMO
ORFBLS-APPID controller by first constructing a MIMO
ORFBLS identifier to online learn the input-output dynamic
behavior generated by a class of nonlinear digital dynamic
systems, and then automatically tuning PID gain matrices
over time by employing the Jacobian transformations of the
MIMO ORFBLS identifier, and to validate the proposed
MIMO ORFBLS-APPID controller via three comparative
simulations and one experimental study on a real MIMO
extrusion barrel. By comparing to existing methods and
the state of the art, the main contributions of the paper
are summarized as follows. First, a stable adaptive MIMO
ORFBLS-APPID controller is theoretically presented by
using the discrete-time Lyapunov stability theory. Second,
sufficient conditions are found for ensuring proper usage and
successful applications of such a controller. Third, a real-time
adaptive control algorithm is proposed for software imple-
mentation of this type of controller.

Furthering the application of FBLS as a system compen-
sator and identifier for an adaptive predictive PID control in
the MIMO system is proposed in this study with the details
being explored in the following sections. Section II provides
ORFBLS system structures in detail, and Section III formu-
lates the multivariate identifier topology. Section IV covers
integrating this structure into MIMO PID gain projection.
Section V proceeds with the closed-loop stability analy-
sis of the overall control systems along with the real-time
control algorithm of the proposed MIMO ORFBLS-APPID.
Section VI carries out three numerical simulations to eval-
uate the controller performance while Section VII conducts
the experimental validation to an extrusion barrel in an
injection molding machine and compares the results from
this experimental study with the simulation result obtained
from Example 3. Lastly, Section VIII draws conclusions and
presents future work.

II. OUTPUT RECURRENT FUZZY BROAD LEARNING
SYSTEMS
The MIMO ORFBLS is a structural improvement of the
FBLS proposed in [14] and [28] to work under MIMO
conditions. From Fig. 1, it can be seen that compared to
the FBLS structure in [14] and [28], the new structure has
two improvements. The first improvement is an addition of
delayed recurrent feedback from the output layer to the fuzzy
rules and the second improvement is an addition of delayed
recurrent feedback from the output layer back to enhance-
ment nodes [29], [30].

In this paper, we aim to implement the MIMOORFBLS as
a lightweight controller compatible with the STM32-F746ZG
microcontroller, where in this simplified version, there is
only one group of enhancement layers with m number of
enhancement nodes [31]. Then, by looking at Fig. 1, the input
nodesM of input vector x in the input layer serve as external
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FIGURE 1. The architecture of the proposed ORFBLS.

data sources before normalizing it as fuzzy logic input, which
is mathematically written by

xs(k) = (xs1(k), xs2(k), · · · , xsM (k)) (1)

Then,M nodes of the input vector are normalized to be Ki
number of fuzzy sets described as follows;

zik = f ik (xs1, xs2, · · · , xsM ) , k = 1, 2, . . . ,Ki (2)

Incorporating the first-order Takagi-Sugeno fuzzy neural
systems with the addition of structural learning improve-
ments, the fuzzy rules are adapted as follows;

zisk = f ik (xs) =

∑M

t=1
αiktxst + p

(
ŷt (k − 1) aft

)
(3)

where the coefficient αikt value range at [0,1], Af =(
af 1, · · · , aft

)
∈ R1×

∑n
i=1 Ki is the weight of the system

estimate prior output ŷ(k − 1) and p denotes the compensator
with the value range of [0, 0.5] at sampling instants k . The ith
fuzzy subsystem’s kth fuzzy rule firing strength is delineated
by the following:

τ isk =

M∏
t=1

µi
kt (xst) (4)

then, the weighted fire strength that represents the applica-
bility degree of the fuzzy rule is described in the subsequent
expression:

λisk = τ isk

/∑Ki

k=1
τ isk (5)

The fuzzy logic membership value to model the fuzzy set
Aikt is detailed by

µi
kt (x) = exp

(
−

(
x − cikt

/
σ ikt

)2)
(6)

where σ ikt and cikt respectively denote the width and center
of the Gaussian function, thus forming the degree of fuzzy set
elements µi

kt at any x point.
The fuzzy subsystem intermediate output vector Zsi before

merging it and delivering it to the enhancement node and
defuzzification layer is expressed by:

Zsi =

(
λis1z

i
s1, λ

i
s2z

i
s2, . . . ., λ

i
sKiz

i
sKi

)
(7)

with (7), the i-th fuzzy subsystem output matrix is obtained
in the following:

Zi = (Z1i,Z2i, · · · ,ZNi)T ∈ RN×Ki , i = 1, 2, · · · , n (8)

Thus, the final output of the n number of the fuzzy neural
subsystem is written as follows;

Z = (Z1,Z2, · · · ,Zn) ∈ RN×(K1+K2+···+Kn) (9)

where the fuzzy subsystem outputZ is sent to combinewithm
number of enhancement nodes. Then, one rewrites the output
of the enhancement layer to be:

H = ξ
(
ZW e + βe + Ŷ (k − 1)Ae

)
∈ RN×m (10)

where We ∈ R
∑n

i=1 Ki×m and βe ∈ RN×m sequentially
represent the weighting parameter and bias of the matrix Z
connected to the corresponding enhancement nodes. Differ-
ent with (3),Ae =

(
ae1, · · · , aej

)
∈ R1×m is the weight of the

feedback output, Ŷ (k − 1), that achieves the output recurrent
at enhancement nodes.

For the training sample xs in the i-th fuzzy subsystem, the
output defuzzification is expressed by

Fsi =

M∑
t=1

zist
(
λis1, · · · , λisKi

) wi1
...

wiKi

 (11)

where the weighted parameter wik is introduced as the fuzzy
subsystem output clause of the k-th fuzzy rule. Hence, the
i-th fuzzy subsystem matrix output of the training data set
X = (x1, · · · ,xN )T ∈ RN×M is written as follows;

Fi = (F1i,F2i, · · · ,FNi)T ≜ D3iwi ∈ RN (12)

where 3i
=

 λi11 · · · λi1Ki
...

. . .
...

λiN1 · · · λiNKi

 ,wi =

 wi1
...

wiKi

 and D =

diag
{∑M

t=1 z
i
sk

}
.

Afterward, the output of the defuzzification layer that later
will be aggregated to the output layer is delineated as follows;

F =

n∑
i=1

Fi =

n∑
i=1

D3iwi = D
(
31, · · · , 3n

)w1

...

wn


≜ D3W f ∈ RN (13)

where the fuzzy firing strength matrix is denoted by 3 =(
31, · · · , 3n

)
∈ RNx(K1+K2+···+Kn) and the weighted fuzzy

rules are done by settingW f = wik ∈ R(K1+K2+···+Kn).
Now that the system output is obtained by combining pre-

viously obtained defuzzification output F and enhancement
node output H . Let Wh = wj ∈ Rmx1 be the weight matrix
that bridges the enhancement nodes and output layer, then the
FBLS output is computed in the following;

Ŷ = F+HWh (14)
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FIGURE 2. Block diagram of MIMO ORFBLS identifier.

III. MIMO ORFBLS IDENTIFIER
In this section, the MIMO ORFBLS identifier is derived to
identify and update all the weighted parameters of the ORF-
BLS by learning the dynamics of the input-output behavior
for a class of MIMO nonlinear digital discrete-time dynamic
time-delayed system. To design such a system identification,
the ORFBLS learning algorithm is incorporated into a non-
linear autoregressive moving-average (NARMA) model with
a known time delay d in the form:

y(k + 1) = f
(
y(k), · · · , y(k − ny),

u(k − d), · · · ,u(k − d − nu)) (15)

where f denotes the nonlinear function vector that defines the
system’s input-output mapping at each time step based on its
past inputs, u, and outputs, y. ny and nu are respectively the
maximum number of past output and past input that are being
integrated into the learning algorithm. After integrating (15)
into ORFBLS, the learning process starts and holds continu-
ously with the details presented in Fig. 2.

A. ORFBLS LEARNING ALGORITHM
This subsection is aimed to acquire the learning algorithm of
each parameter component inside the parameter vector P =[
W fWh W eβeAeAf

]T of the ORFBLS identifier. By follow-
ing [28], [32], [33], and [34], it is necessary to find the error
objective function E(k) which is established from the differ-
ence among the actual system response y and the estimated
system response ŷ obtained from (14) in the form:

E(k) =
1
2

∥∥ŷ(k) − y(k)
∥∥2
2 =

∥e∥22
2

=
eT (k)e(k)

2
(16)

The learning algorithms of the ORFBLS identifier
enable the parameter vector P to be recursively updated
by utilizing the deepest gradient descent approach in the
following:

P(k + 1) = P(k) − η(k)
∂E(k)
∂P(k)

(17)

where η(k) denotes the real and positive learning rate at
sampling instant k . For the sake of easier derivation, we write
the parameters P(k) in a partial differential equation with
respect to the error function E in the form:

∂E
∂P

=

(
∂E

∂W f
,

∂E
∂Wh

,
∂E

∂W e
,

∂E
∂βe

,
∂E
∂Ae

,
∂E
∂Af

)
(18)

In what follows, the deepest gradient descent optimization
approach is utilized to iteratively update the ORFBLS iden-
tifier’s parameters. To do so, the partial derivative of each
parameter is obtained by:

∂E(k)
∂W f

= ZT (k)
(
ŷ(k) − y(k)

)
(19)

∂E(k)
∂Wh

= HT (k)
(
ŷ(k) − y(k)

)
(20)

∂E(k)
∂W e

= ZT (k)
(
ŷ(k) − y(k)

)
WT

h (k)
(
1 − ∥H∥

2 (k)
)

(21)

∂E(k)
∂βe

=
(
ŷ(k) − y(k)

)
WT

h (k)
(
1 − ∥H∥

2 (k)
)

(22)

∂E(k)
∂Ae

=
(
ŷ(k) − y(k)

)T H(k) (23)

∂E(k)
∂Af

=
(
ŷ(k) − y(k)

)T Z(k) (24)

By following the iterative optimization (17), the parame-
ters updating formula of the used ORFBLS are respectively
provided by:

W f (k + 1) = W f (k) − η (k)
∂E(k)

∂W f (k)

Wh(k + 1) = Wh(k) − η (k)
∂E(k)

∂Wh(k)

W e(k + 1) = W e(k) − η (k)
∂E(k)

∂W e(k)

βe(k + 1) = βe(k) − η (k)
∂E(k)
∂βe(k)

Ae (k + 1) = Ae (k) − η (k)
∂E(k)
∂Ae(k)

Af (k + 1) = Af (k) − η (k)
∂E(k)
∂Af (k)

(25)

B. CONVERGENT ANALYSIS OF MIMO ORFBLS IDENTIFIER
The uniformly asymptotically convergence condition of the
MIMO-ORFBLS is established by assigning the value of
learning rate η according to the discrete-time Lyapunov func-
tion in Theorem 1 [28], [32], [35], [36], [37], [38].
Theorem 1: The developedORFBLS learning algorithm is

uniformly asymptotically convergent if the identifier learning
rate η(k) complies with the following inequality condition:

0 < η(k) < 2

/
λmax

(
∂ ŷ(k)
∂P

[
∂ ŷ(k)
∂P

]T)
(26)

where λmax(·) denotes the maximum eigenvalues of the

matrix ∂ ŷ(k)
∂P

[
∂ ŷ(k)
∂P

]T
.

Proof: Define the Lyapunov function in the form:

LM (k) =
1
2

∥∥ŷ(k) − y(k)
∥∥2
2 =

1
2

∥e(k)∥22 =
eT (k)e(k)

2
(27)

Notice that the form of the Lyapunov function between the
SISO [39] andMIMO terms is different where, in MIMO, the

VOLUME 12, 2024 19391



A. Rospawan et al.: ORFBLS for Adaptive MIMO PID Control: Theory, Simulations, and Application

induced quadratic form of the error vector is used. Thus, the
time difference or alteration in the Lyapunov function gives:

1LM (k) = LM (k + 1) − LM (k)

=
1
2

(
eT (k + 1)e(k + 1) − eT (k)e(k)

)
=

1
2

(
(1e(k))T (2e(k) + 1e(k))

)
(28)

where 1e (k) = e (k + 1) − e (k) and e(k) = ŷ(k) − y(k).
Furthermore, the tracking error 1e(k) is found as;

1e(k) ≈ 1P
[
∂e (k)
∂P

]T
= 1P

[
∂ ŷ (k)
∂P

]T
(29)

and considering the error objective function (16), the incre-
ments of the updating parameter vector P(k) are obtained
from

1P = −η (k)
∂E(k)
∂P

= −η (k)
∂E(k)
∂ ŷ (k)

·
∂ ŷ (k)
∂P

= −η (k)
(
ŷ (k) − y (k)

) ∂ ŷ (k)
∂P

(30)

Taking (30) as its base equation, one obtains (31) and (32).

1e(k) = 1P
[
∂ ŷ (k)
∂P

]T
= −η (k)

∂ ŷ (k)
∂P

[
∂ ŷ (k)
∂P

]T
e (k)

(31)

1eT (k) =

(
1P

[
∂ ŷ (k)
∂P

]T)T

= −η (k) eT
∂ ŷ (k)
∂P

[
∂ ŷ (k)
∂P

]T
(32)

Finally, by substituting (31) and (32) into (28), the incre-
mental form of the Lyapunov function 1LM (k) is computed
in the following:

1LM (k) = −
1
2
η(k)eT (k)

∂ ŷ(k)
∂P

[
∂ ŷ(k)
∂P

]T
×

(
2e(k) − η(k)e(k)

∂ ŷ(k)
∂P

[
∂ ŷ(k)
∂P

]T)

= −
1
2
η(k)eT (k)

∂ ŷ(k)
∂P

[
∂ ŷ(k)
∂P

]T
×

(
2I − η(k)

∂ ŷ(k)
∂P

[
∂ ŷ(k)
∂P

]T)
e(k) (33)

In (33), since A =
∂ ŷ(k)
∂P

[
∂ ŷ(k)
∂P

]T
be a real and symmetric

matrix, so any eigenvalues of matrix A should be nonnegative
and real. Next, we show that the following matrix expression
is positive definite if the sufficient condition (26) is held, i.e.,

A [2I − ηA] > 0 (34)

In doing so, let λi be one of the nonzero eigenvalues of A,
and vi be the corresponding nonzero eigenvector. Thus,

Avi = λivi, vi ̸= 0 (35)

Next, move to find the range of the learning rate η such that

vTi A [2I − ηA] vi > 0 (36)

The property of the eigenvalue and eigenvector implies
that,

vTi (2Avi − ηAAvi)

= vTi (2λivi − ηAλivi)

= vTi
(
2λivi − ηλ2i vi

)
= vTi vi

(
2λi − ηλ2i

)
> 0, i = 1, · · · , p (37)

for any i if the 2λi − ηλ2i must be positive, i.e.,

λi (2 − ηλi) > 0 (38)

Considering this case, one can draw the conclusion in the
form of 2−ηλi > 0 for any eigenvalue [39]. Hence, it follows
that

0 < η < 2
/
λmax(A)

⇒ 0 < η <
2

λmax

(
∂ ŷ(k)
∂P

[
∂ ŷ(k)
∂P

]T) (39)

In the end, by defining the Lyapunov function (27)
and finding its time difference form is negative definite,
i.e., 1Lm(k) < 0, this requires that λi(2 − ηλi) > 0 for any i
if the sufficient condition (26) is met. Accordingly, the proof
procedure of Theorem 1 is completed.

IV. MIMO ORFBLS-APPID CONTROLLER
This section details how the proposed MIMO ORFBLS-
APPID will be established to control uncertain nonlinear
MIMO dynamic systems. Fig. 3 shows the block diagram of
the proposed control system, in which the ORFBLS-APPID
is done by modifying the general closed-loop PID control
structure and then taking the controller output u(k) and sys-
tem output y(k) as the input to the ORFBLS identifier. Later,
we use the eORFBLS (k) to update the ORFBLS identifier and
finally update the PID gains parameter.

A. ADAPTIVE PREDICTIVE MIMO PID CONTROLLER
In this subsection, a new Jacobian transformation derived
from the ORFBLS identifier’s output to the PID gains will
be used for the parameter updating algorithm, so the MIMO
PID control law is expressed in the following velocity form

1u(k) = kp1e(k) + kie(k) + kd12e(k) (40)

where kp, ki and kd are respectively the proportional, integral,
and derivative gain matrices. Further, e(k) = r(k)−y(k) is the
vector system tracking error, and r(k) denotes the reference
command or setpoints.1e(k) = e(k)−e(k−1) and12e(k) =

e(k) − 2(e(k − 1) + e(k − 2).
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FIGURE 3. The proposed MIMO ORFBLS-APPID control system.

B. PARAMETER UPDATING ALGORITHM FOR
ORFBLS-APPID
The parameter updating algorithm for the MIMO ORFBLS-
APPID controller is designed to online adjust the PID gain
matrices of the MIMO PID controller. This adaptation is
based on the j-step-ahead predictive function performance
criterion that is expressed as follows;

J(k + j) =
1
2

Np∑
j=d

∥∥ê(k + j)
∥∥2

=
1
2

Np∑
j=d

êT (k + j)ê(k + j) (41)

where d is the system delay, ê(k + j) = r(k + j) − ŷ(k +

j), and NP is the number for the maximum predictive output
horizon. Let Pc(k) be the vector containing all the three-term
parameters.

Pc(k) =

 kp11 (k), · · · , kp1n (k), kpn1 (k), · · · , kpnn (k)
ki11(k), · · · , ki1n (k), kin1 (k), · · · , kinn (k)
kd11 (k), · · · , kd1n (k), kdn1 (k), · · · , kdnn (k)


∈ R3n

2
×1 (42)

The gain update algorithm with respect to (41) is tailored
to enable the vector Pc(k) to be recursively updated by using
the deepest descent gradient method in the following

Pc(k + 1) = Pc(k) + 1Pc(k) = Pc(k) − ηc
∂J(k)
∂Pc(k)

= P(k) − ηc

Np∑
j=d

1
2

∂ êT (k + j)ê(k + j)
∂Pc(k)

= Pc(k) + ηc

Np∑
j=d

(
∂ ŷ(k + j)
∂Pc(k)

)T
ê(k + j) (43)

then, for every updating time instant, the incremental form
1Pc(k) is obtained from

1Pc(k) = −ηc
∂J(k)
∂Pc(k)

= −ηc

Np∑
j=d

1
2

∂ êT (k + j)ê(k + j)
∂Pc(k)

= ηc

Np∑
j=d

(
∂ ŷ(k + j)
∂Pc(k)

)T
ê(k + j) (44)

where ηc is the real and positive control learning rate, and

∂J(k)
∂Pc(k)

=

(
∂J(k)
∂kp(k)

∂J(k)
∂ki(k)

∂J(k)
∂kd (k)

)T
(45)

thus, the incremental form of each component inside the
element 1Pc(k) is respectively expressed by:

1kp(k) = −ηc
∂J(k)

∂Kpij(k)
= ηc

Np∑
j=d

(
∂ ŷ(k + j)
∂kp(k)

)T
ê(k + j)

(46)

where ∂ ŷi(k+l)
∂kp(k)

=
∂ ŷi(k+l)
∂1u(k)

∂1u(k)
∂kp(k)

=
∂ ŷi(k+l)
∂1u(k) (1e (k)),

1ki(k) = −ηc
∂J(k)

∂Kiij(k)
= ηc

Np∑
j=d

(
∂ ŷ(k + j)
∂ki(k)

)T
ê(k + j)

(47)

where ∂ ŷi(k+l)
∂ki(k)

=
∂ ŷi(k+l)
∂1u(k)

∂1u(k)
∂ki(k)

=
∂ ŷi(k+l)
∂1u(k) (e(k)),

1kd (k) = −ηc
∂J(k)

∂Kdij(k)
= ηc

Np∑
j=d

(
∂ ŷ(k + j)
∂kd (k)

)T
ê(k + j)

(48)

where ∂ ŷi(k+l)
∂kd (k)

=
∂ ŷi(k+l)
∂1u(k)

∂1u(k)
∂kd (k)

=
∂ ŷi(k+l)
∂1u(k)

(
12e (k)

)
.

Finally, the PID gain parameters are updated by following

kp(k + 1) = 1kp(k) + kp(k) (49)

ki(k + 1) = 1ki(k) + ki(k) (50)

kd (k + 1) = 1kd (k) + kd (k) (51)

C. STABILITY ANALYSIS OF THE CONTROL SYSTEM
This subsectionwill target at the investigation of the sufficient
learning rate ηc for the raised MIMO ORFBLS-APPID con-
troller to be uniformly asymptotically stable. This goal can be
accomplished by defining an appropriate Lyapunov function
in the following manner

LC (k + j) =
1
2

∥∥r(k + j) − ŷ(k + j)
∥∥2
2 =

1
2

∥∥ê(k + j)
∥∥2
2

=

∥∥ê(k + j)
∥∥2
2

2
=
êT (k + j)ê(k + j)

2
(52)

Next, take the time difference or incremental form of the
Lyapunov function LC (k) to yield

1LC (k + j)

= LC (k + j+ 1) − LC (k + j)

=
1
2

NP∑
j=d

(
êT (k + j+ 1)ê(k + j+ 1) − êT (k + j)ê(k + j)

)

=
1
2

NP∑
j=d

((
1ê(k + j)

)T (2ê(k + j) + 1ê(k + j)
))

(53)
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Since ê(k+1) = 1ê(k)+ ê(k) or 1ê(k) = ê(k+1)− ê(k),
the future tracking error 1ê(k + j) is found by

1ê(k + j) ≈ 1PC (k + j)
[

∂ ê (k + j)
∂PC (k + j)

]T
= −1PC (k + j)

[
∂ ŷ (k + j)

∂PC (k + j)

]T
(54)

where the matrix elements that are required to be convergent
and not diverge to infinity are computed by the following

∂ ŷ (k + j)
∂Pc (k + j)

=

(
∂ ŷ (k + j)
∂kp(k + j)

,
∂ ŷ (k + j)
∂ki(k + j)

,
∂ ŷ (k + j)
∂kd (k + j)

)T
(55)

By considering the predictive cost function (41), the incre-
ment of the updating parameter vector 1PC (k + j) is
obtained from the following formula

1PC (k + j)

= −ηC (k)
∂E(k + j)

∂PC (k + j)

= −ηC (k)
∂E(k + j)
∂ ŷ (k + j)

·
∂ ŷ (k + j)

∂PC (k + j)

= ηC (k)
(
r (k + j) − ŷ (k + j)

) ∂ ŷ (k + j)
∂PC (k + j)

(56)

From (56), one obtains

1ê(k + j)

= 1PC (k + j)
[

∂ ŷ (k + j)
∂PC (k + j)

]T
= −ηC (k)

∂ ŷ (k + j)
∂PC (k + j)

[
∂ ŷ (k + j)

∂PC (k + j)

]T
ê (k + j) (57)

1êT (k + j)

=

(
1PC (k + j)

[
∂ ŷ (k + j)

∂PC (k + j)

]T)T

= −ηC (k) êT (k+j)
∂ ŷ (k + j)

∂PC (k + j)

[
∂ ŷ (k + j)

∂PC (k + j)

]T
(58)

Finally, 1LC (k + j) is then obtained by substituting (57)
and (58) into (53) and then one rewrites it to obtain

1LC (k + j)

=
1
2
1êT (k + j)

(
2ê(k + j) + 1ê(k + j)

)
≈

1
2

(
1PC (k + j)

[
∂ ŷ(k + j)

∂PC (k + j)

]T)T
(
2ê(k + j) + 1PC (k + j)

[
∂ ŷ(k + j)

∂PC (k + j)

]T)

= −
1
2
ηC (k)ê

T (k + j)
∂ ŷ(k + j)

∂PC (k + j)

[
∂ ŷ(k + j)

∂PC (k + j)

]T
(
2 − ηC (k)ê(k + j)

∂ ŷ(k + j)
∂PC (k + j)

[
∂ ŷ(k + j)

∂PC (k + j)

]T)

= −
1
2
ηC (k)ê

T (k + j)
∂ ŷ(k + j)

∂PC (k + j)

[
∂ ŷ(k + j)

∂PC (k + j)

]T
(
2I − ηC (k)

∂ ŷ(k + j)
∂PC (k + j)

[
∂ ŷ(k + j)

∂PC (k + j)

]T)
ê(k + j) (59)

According to the Lyapunov stability theorem, similar to
the previous arguments in Theorem 1, by denoting B =

∂ ŷ(k+j)
∂PC (k+j)

[
∂ ŷ(k+j)

∂PC (k+j)

]T
, the asymptotically stability of the pro-

posed controller is guaranteed if 2 − ηλi > 0 holds for any
eigenvalues. Hence, we obtain:

0 < η < 2
/
λmax(B) ⇒

0 < ηC < 2

/
λmax

(
∂ ŷ(k + j)

∂PC (k + j)

[
∂ ŷ(k + j)

∂PC (k + j)

]T)
(60)

which proves that the system is uniformly asymptotically
stable. Theorem 2 summarizes the main result.
Theorem 2: The MIMO ORFBLS-APPID controller is

uniformly asymptotically stable in line with the con-
troller learning rate ηc meets with the following sufficient
conditions:

0 < ηc <
2

λmax

(
∂ ŷ(k+j)

∂PC (k+j)

[
∂ ŷ(k+j)

∂PC (k+j)

]T) (61)

V. CLOSED-LOOP STABILITY ANALYSIS OF OVERALL
CONTROL SYSTEMS
In designing of the offered adaptive control system, the
previous MIMO ORFBLS identifier and ORFBLS-APPID
controller must be integrated together and then closely incor-
porated with an adaptive control algorithm. In doing so, this
section will advance a real-time ORFBLS-based approach for
system identification and adaptation. Specifically, since the
theory of the MIMO ORFBLS identifier has been presented
in detail along with its learning algorithm and convergence
analysis, so the identifier asymptotically convergence will be
maintained over time, and no single parameters (25) diverge.
After realizing this system identifier, the MIMO adaptive
predictive control algorithm is then executed by applying
Jacobian transformations as a bridge between the MIMO
ORFBLS identifier and adaptive predictive PID controller,
where the gains matrices of PID are updated online over
time [22], [27], [39]. The detailed procedures are elaborated
in the following eight steps:

Step 1: Analyze and retain the vector of u(k) and y(k).
Step 2: Find d, nu and ny drawn from the system model.
Step 3: Define K and η to be positive and real num-

bers, and initialize kp, ki and kd , and parameter vector P =[
W fWh W eβeAeAf

]T using small random numbers.
Step 4: Estimate ŷ(k) from the ORFBLS identifier (14).
Step 5: Compute u(k) = 1u(k) + u(k − 1) using (40).
Step 6: Adjust the ORFBLS identifier by following (25)

and (26) to confirm the ORFBLS identifier learning rate η.
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FIGURE 4. Comparative setpoint tracking for y1 in Example 1.

FIGURE 5. Comparative setpoint tracking for y1 in Example 1 (explosive
chart).

FIGURE 6. Comparative setpoint tracking results for y2 in Example 1.

FIGURE 7. Comparative setpoint tracking for y2 in Example 1 (explosive
chart).

Step 7: Tune the gain matrices of the ORFBLS-APPID
controller by following (49) - (51) and (61) to confirm the
controller learning rate ηc.

Step 8: Repeat steps 4 through 7.
Thus, the main result of this algorithm is delineated in

Theorem 3.
Theorem 3: Assume that the MIMO ORFBLS identifica-

tion satisfies Theorem 1 and the adaptive predictive MIMO
ORFBLS-PID controller obeys Theorem 2. Then the overall
closed-loop system implemented by the real-time identifica-
tion and control algorithm is uniformly asymptotically stable.
Proof of Theorem 3:
To show the uniformly asymptotical stability of the over-

all closed-loop system incorporated in the real-time system
identification and control algorithm, one defines the d-step-
ahead tracking error e(k + d) = r(k + d) − y(k + d),
which is rewritten by e(k + j) =

(
r(k + j) − ŷ(k + j)

)
−(

ŷ(k + j) − y(k + j)
)
. Obviously, the subsequent inequalities

always hold, i.e., ∥e(k + d)∥2 ≤
∥∥r(k + j) − ŷ(k + j)

∥∥
2 +∥∥ŷ(k + j) − y(k + j)

∥∥
2 and ∥e(k + d)∥22 ≤ 2

(∥∥r(k + j) −

ŷ(k + j)
∥∥2
2 +

∥∥ŷ(k + j) − y(k + j)
∥∥2
2

)
. Following the proof

procedures previously outlined in Sections III and IV, one
chooses that L(k) = 2 (LM (k) + LC (k)) and then obtains
that 1L(k) = 2 (1LM (k) + 1LC (k)). Therefore, 1L (k) is
shown to be negative definite if the uniformly asymptoti-
cally convergent condition (26) of the ORFBLS identifier
and uniformly asymptotically stable condition (61) of the
ORFBLS-APPID controller are held simultaneously.
Remark 1: In adopting Theorem 3, there are five rules for

choosing the main parameters before conducting any numer-
ical simulations or experiments. First, the system inputs with
order nu and system output order ny are configured to match
or exceed the controller output u and plant output y. Second,
the predictive output horizon NP should be configured to
match or exceed the delay time d . In the presence of high
uncertainties, the time delay d configured to be not more than
NP. Third, the rule expansion coefficientK value is defined as
a small number to lessen the load of the numerical computa-
tion. Fourth, in order to satisfy the inequality condition (26),
the identifier learning rate is reduced in the time of deploying
numerical analysis and experimental study. Fifth, the control
learning rate ηc obligated to comply with the inequality (61).
In real applications, ηc is configured as small as possible.

VI. COMPARATIVE SIMULATIONS AND DISCUSSION
A. PERFORMANCE EVALUATION INDEXES
To accurately assess the effectiveness of the proposed MIMO
adaptive control method, this section applies the performance
evaluation indexes similar to [3], [16], [26], and [40], and
provides their detailed formulas as follows;

Max Error = max ∥r(k) − y(k)∥2 (62)

RMSE =

√√√√ S∑
k=1

∥r(k) − y(k)∥22

/
S (63)

ISE =

S∑
k=1

∥r(k) − y(k)∥22 (64)
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IAE =

∫ 1000T

0
∥e(t)∥dt ∼= T

S∑
k=1

∥r(k) − y(k)∥2 (65)

ITAE =

S∑
k=1

∥r(k) − y(k)∥2T · k (66)

where the vector r(k) represents the designated setpoint,
and y(k) stands for the real system output at the sampling
instances k . The variable T signifies the sampling period and
S means the total number of samples taken.

B. EXAMPLE 1
The first evaluative example deploys the two-by-two MIMO
system model characterized by time-varying dynamics,
uncertainty, and exhibiting strong nonlinearity and coupling,
akin to the model described in [41] and [42]. The complex
model is written by the following;

y1(k) =


a1(k)y1(k − 1) + u1(k − 1 − d)

1 + y21(k − 1)

+
0.5 ∗ u2(k − 1 − d)

1 + u22(k − 1 − d)
+ ε(k) + v(k)

y2(k) =


a2(k)y2(k − 1) + u2(k − 1 − d)

1 + y22(k − 1)

+
0.2 ∗ u1(k − 1 − d)

1 + u21(k − 1 − d)
+ ε(k) + v(k)

(67)

where the slowly time-varying factors a1 (k) = 1.2
(
1 −

0.8e−0.5k
)
and a2 (k) = 1.2

(
1 − 0.8e−0.1k

)
evolve the

dynamics of the system over time. The system time delay d is
configured to 0. Additionally, ε(k) represents the presence of
Gaussian white noise, while v(k) characterizes the load dis-
turbances that influence the system behavior. In this example,
v(k) is set as follows:

v(k) =


0, 0 < k ≤ 250
0.05, 250 < k ≤ 750
0.1, 750 < k ≤ 1000

(68)

Afterward, the setpoint vector r(k), including two distinct
setpoints r1(k) and r2(k) designed uniquely for the outputs of
each system are described as follows;

r1(k) =


0, 0 < k ≤ d
0.3, d < k ≤ 500
0.5, 500 < k ≤ T

,

r2(k) =


0, 0 < k ≤ d
0.2, d < k ≤ 250
0.6, 250 < k ≤ 500
0.8, 500 < k ≤ T

(69)

Employing the ORFBLS algorithm for system identifica-
tion, the simulation utilizes the identifier adaptation learning
rate η = 0.7, the maximum predictive horizon Np = 7 and
the controller adaptation learning rate ηc = 1. Additionally,

TABLE 1. Comparative performance indexes of different controllers in
Example 1.

FIGURE 8. Time evolutions of kp gains in Example 1.

FIGURE 9. Time evolutions of ki gains in Example 1.

FIGURE 10. Time evolutions of kd gains in Example 1.

the key architecture specifications of the ORFBLS identi-
fier are designed to work with criteria in the following;
we set the fuzzy rules governing identifier K = 4, fuzzy
membership function m = 4, the system identifier input
MORFBLS−APPID = 5, enhancement node number L = 4 to
boost the generalization ability, and lastly the total sampling
number T = 1000. Then, the settings of the two-by-two PID
gain matrices tailored explicitly for both independent PID
control loops are initialized as follows;

kp =

[
0.3 0.1
0.1 0.3

]
, ki =

[
0.1 0.01
0.1 0.1

]
, kd =

[
0.2 0.1
0.01 0.01

]
(70)
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FIGURE 11. Comparative setpoint tracking for y1 in Example 2.

FIGURE 12. Comparative setpoint tracking for y1 in Example 2 (explosive
chart).

FIGURE 13. Comparative setpoint tracking for y2 in Example 2.

FIGURE 14. Comparative the setpoint tracking for y2 in Example 2
(explosive chart).

The setpoint tracking capabilities and disturbance rejection
performance are analyzed across controllers by inspecting the

output responses in Fig. 4 and Fig. 6, respectively. Evidently,
the MIMO ORFBLS-APPID controller achieves superior
control performance and robustness properties compared to
the conventional fixed-gain MIMO PID and MIMO RFBLS-
APPID methods, especially in response to setpoint changes.

Further investigation of the explosive setpoint tracking
results inFig. 5 andFig. 7 quantitatively verifies the enhanced
adaptation of the proposed controller architecture where the
load disturbance rejection ability slowly converges the error
to zero with less overshoots and less oscillations. Moreover,
as shown in Figs. 8 – 10, the time evolutions of the PID gains
demonstrate how the MIMO ORFBLS-APPID approach
automatically tunes parameters over time in response to inter-
nal model updates and external errors.

Finally, after carrying out numerical comparative simu-
lations of Example 1, the tabulated performance metrics
in Table 1 numerically confirm the benefits of the MIMO
ORFBLS-APPID controller for enhancing multi-variable
processes through online learning and adaptive control. Com-
pared to traditional PID and RFBLS-APPID techniques, the
offered controller significantly showcases superior transient
performance, rise time, peak errors, and disturbance rejection
capabilities. This first example thus validates the proposed
control method as an effective methodology.

C. EXAMPLE 2
Expanding on the preliminary simulations, another challeng-
ing test system adapted from [41] and [42] is taken as the
second multivariate simulation example, in order to exem-
plify augmented complexity through a customized nonlinear
time-varying dynamics system model exhibiting exacerbated
coupling effects. This modified system model is described by

y1(k + 1) =
y1(k)

1 + y21(k)
+ u1(k − d) + ε(k) + v(k)

y2(k + 1) =
y1(k)y2(k)

1 + y22(k)
+ u2(k − d) + ε(k) + v(k) (71)

with d is configured to 1 and the uphold load disturbance v(k)
is set as in (68) for Example 1.

Mirroring the dual setpoint trajectory structure imposed in
Example 1, two independent reference inputs r1(k) and r2(k)
dictate the desired responses over the simulation run-time
for the multivariate process, and they are mathematically
constructed as

r1(k) =


0, 0 < k ≤ d
0.25, d < k ≤ 250
0.5, 250 < k ≤ 500
0.7, 500 < k ≤ 1000,

r2(k) =


0, 0 < k ≤ d
0.6, d < k ≤ 500
0.2, 500 < k ≤ 1000

(72)

Eventually, mirroring the parameters stated in precedent
Example 1, comparative simulations in Example 2 continue to
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leverage the ORFBLS for adaptive control. However, the key
identifier and controller learning rates η and ηc are attenuated
to 0.6 and 0.1 respectively. Moreover, the initial two-by-two
PID gain matrices are set in the following

kp =

[
0.5 0.1
0.5 0.1

]
, ki =

[
0.07 0.01
0.2 0.3

]
, kd =

[
0.02 0.01
0.01 0.01

]
(73)

Eventually, examining the output response plots in Fig. 11
and Fig. 13 verifies the superior setpoint tracking and
attenuated oscillations from the MIMO ORFBLS-APPID
architecture in comparison with the baseline MIMO PID and
RFBLS-APPID controllers. Moreover, by looking into the
explosive setpoint tracking charts in Fig. 12 and Fig. 14,
the proposed controller further exhibits faster rise times and
reduced overshoot with better noise cancellation. Notably,
this enhanced performance emerges despite more aggressive
setpoint changes and exacerbated nonlinear plant effects in
Example 2. Overall, the simulation results reveal the true
adaptivity of theMIMOORFBLS-APPID controller in which
these PID gains in Figs. 15 - 17 are continually tuned online
to adapt to the complex dynamics of the system model.

Finally, after carrying out comparative simulations for
Example 2, the comparative performance indexes presented
in Table 2 statistically reinforce the advantages of the pro-
posed control scheme. Comparing MIMO ORFBLS-APPID
against traditional methodologies numerically proves signif-
icant improvements in responsiveness, steady-state accuracy,
and disturbance rejection capabilities. Therefore, the com-
parative simulation results in Examples 1 and 2 collectively
validate the presented adaptive ORFBLS learning configura-
tion as an impactful advancement for multivariable processes
through the exploitation of output recurrent knowledge.

D. EXAMPLE 3: MIMO TEMPERATURE CONTROL OF AN
EXTRUSION BARREL IN A PLASTIC INJECTION
MOLDING MACHINE
The third example is aimed to investigate the effectiveness
and merits of the proposed control approach by using a model
of an experimental setup which is an industrial extrusion
barrel in an injection molding machine. Such a system model
is established by the following:

y(k + 1) = Ay(k) + B0u(k − d) + B1u(k − d − 1) + ε (k)

(74)

where the time delay d is 6 and following [24] and [43], two
coupling effect matrices, diag {0.001, 0.001, 0.001, 0.001}
and diag {0.0005, 0.0005, 0.0005, 0.0005} are attained to
both matrices B0 and B1, respectively. Also, considering
insignificant inter-zone thermal coupling observed across
zones, the matrix A can justifiably be reduced to a diagonal
matrix diag {1, 1, 1, 1}.

Similar to Examples 1 and 2, comparative simulations for
Example 3 employ the previously aligned ORFBLS param-
eters, but with a few exceptions. These exceptions include

FIGURE 15. Time evolutions of kp gains in Example 2.

FIGURE 16. Time evolutions of ki gains in Example 2.

FIGURE 17. Time evolutions of kd gains in Example 2.

that the identifier learning rate is renewed as η = 0.5, the
controller learning rate ηC = 0.1, and the total sampling
number T = 2000. Next, by following the zone configuration
in Fig. 30, the two-level setpoint vector for all the zones in the
heating barrel is set as follows;

r =

{ [
130◦C, 120◦C, 110◦C, 100◦C

]
0 < k ≤ 1000[

200◦C, 190◦C, 180◦C, 170◦C
]
1000 < k ≤ 2000

(75)

Assessing the controller performance to follow the desired
system response (75), the initial PID gains parameters are
configured in the sequel:

kp = diag
(
32.10 25.11 20.50 16.71

)
ki = diag

(
0.010 0.010 0.010 0.010

)
kd = diag

(
180.0 200.0 200.0 200.0

)
(76)

Analyzing the extensive output trajectories for each control
zone in Figs. 18 - 25 verifies precise setpoint tracking done
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TABLE 2. Comparative performance indexes of different controllers in
Example 2.

FIGURE 18. Comparative setpoint tracking for y1 in Example 3.

FIGURE 19. Comparative setpoint tracking for y1 in Example 3 (explosive
chart).

FIGURE 20. Comparative setpoint tracking for y2 in Example 3.

FIGURE 21. Comparative setpoint tracking for y2 in Example 3 (explosive
chart).

by the MIMO ORFBLS-APPID architecture amid the inter-
acting multivariable temperature dynamics. As can be seen
in Figs. 18 - 25, minimal overshoot and rapid stabilization

FIGURE 22. Comparative setpoint tracking for y3 in Example 3.

FIGURE 23. Comparative setpoint tracking for y3 in Example 3 (explosive
chart).

FIGURE 24. Comparative setpoint tracking for y4 in Example 3.

FIGURE 25. Comparative setpoint tracking for y4 in Example 3 (explosive
chart).

FIGURE 26. Time evolutions of kp, ki and kd of zone 1 in Example 3.

further showcase the adaptive capabilities of the developed
controller, even under long and nonlinear transients.
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FIGURE 27. Time evolutions of kp, ki and kd of zone 2 in Example 3.

Interestingly, while the PID gains evolve continuously in
Figs. 26 – 29, to account for complex heating interactions,
the proposed method automatically identifies the appropri-
ate control direction by successfully tuning the parameters
of each zone without the fragility of manual tuning. The
self-tuning results from this approach elucidate the resilience
to sensor noise, the superior noise cancellation capabili-
ties to load disturbances, and the adaptability to parameter
changes evidenced across these highly accurate response
plots.

In conclusion, the tabulated metrics presented in Table 3
serve as quantitative measures to illustrate the effectiveness
of the proposed MIMO ORFBLS-APPID controller in reg-
ulating the controller to achieve better system responses.
These remarkable results numerically confirm the advan-
tages of the MIMO ORFBLS-APPID framework across a
range of multivariable coupling and nonlinearity scenar-
ios. By embedding adaptive ORFBLS logics and recursive
learning capabilities directly into the feedback structure,
the adaptivity property enables the MIMO ORFBLS-APPID
controller to outperform conventional MIMO fixed gains
PID controller and RFBLS-based adaptive PID controller.
The proposed control scheme thus pushes performance
improvements in setpoint tracking, disturbance rejection,
rise times, overshoot, and long-term accuracy. Statistically
and dynamically, these simulations comprehensively validate
the strengths of proposed adaptive learning control sys-
tems in balancing regulation across complex interdependent
processes.

VII. APPLICATION TO MIMO TEMPERATURE CONTROL
OF THE EXTRUSION BARREL: EXPERIMENTAL RESULTS
AND DISCUSSION
In this section, an experimental validation on a labora-
tory injection molding extruder is conducted to provide
key real-world qualifications of the suggested multivariable
controller prior to industrial deployment. The customized
extrusion barrel features four decoupled heating zones, repli-
cating target polymeric melt systems where multiple inputs,
sensors, and complex thermal behaviors necessitate advanced
control techniques like the integration of the proposed
ORFBLS-APPID approach.

As depicted in Fig. 30, the heating elements f1 to f4
correspond to zones 1 to 4 respectively, enabling either

TABLE 3. Comparative performance indexes of different controllers in
Example 3.

FIGURE 28. Time evolutions of kp, ki and kd of zone 3 in Example 3.

FIGURE 29. Time evolutions of kp, ki and kd of zone 4 in Example 3.

independent SISO or coupled MIMO control architectures.
On the other hand, by following Fig. 31, outside the main
controller, three independent blocks with different functions
and system objectives are assembled and systemized. To con-
vert the three-phase 220 VAC energy from the power source,
four solid state relays (SSRs) are used with the control sig-
nal received from the main controller unit in the form of
a duty cycle in a Pulse Width Modulation (PWM) signal
at 1 Hz of frequency. SPI communication allows the K-type
thermocouples with MAX6675 signal processors to transmit
zone temperature readings for feedback comparisons against
shifting setpoints [44], [45].

The actual view of the laboratory-built experimental setup
is depicted in Fig. 32. The extrusion barrel (pile cylinder-like
round metal) was constructed with four heating elements in
two forms of size, three larger heating elements f2, f3, and f4
were equally installed in the barrel and one smaller heating
element f1 was installed at the tip of the extrusion barrel.
In this real application, the polymer material enters from the
left side of the figure and is forced out to the right side using
one or two screws. The four SSRs (FOTEKSSR-25DA)were
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FIGURE 30. Physical model of extrusion barrel.

FIGURE 31. Schematic diagram of temperature control for the extrusion
barrel in an injection molding machine.

FIGURE 32. Actual view of the laboratory-built experimental setup.

FIGURE 33. Comparative setpoint tracking results of Example 3 and
experimental result.

placed just below the barrel extruder and the main controller
(STM32-F746ZG) was placed on the left side between the
barrel and SSRs [46], [47].

FIGURE 34. Comparative controller output of Example 3 and
experimental result.

FIGURE 35. Comparison of the PID gains evolutions of Example 3 and
experimental results in Zone 1.

FIGURE 36. Comparison of the PID gains evolutions of Example 3 and
experimental results in Zone 2.

FIGURE 37. Comparison of the PID gains evolutions of Example 3 and
experimental results in Zone 3.

Aligning the comparative simulations for Example 3, this
experiment utilized identical control parameters and settings
to allow direct benchmarking between simulation and phys-
ical systems. Later figures visually show the comparisons,
highlighting some deviations between the simulation and
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FIGURE 38. Comparison of the PID gains evolutions of Example 3 and
experimental results in Zone 4.

FIGURE 39. Comparison of the ORFBLS predictive outputs of Example
3 and experimental results.

experimentation both in setpoint tracking perFig. 33 and con-
trol output in Fig. 34. Discrepancies likely originate from the
simplified digital model struggling to fully replicate extruder
dynamics like couplings. Specifically, up-down deviations in
zones 2 and 3 indicate unmodeled interactions induce some
physical response lags absent in simulations. Still, strong
overall correlation and tracking validate the practical appli-
cability, with minor gaps informing refinements to tighten
predictions moving forward.

Figs. 35 - 38 compare PID gain evolutions between com-
parative simulations in Example 3 and experimental results
across all four zones. Visually, the data series followed similar
trajectories, evolving responsively to follow the changing
of the desired system responses. This adaptive correla-
tion despite real-world variations reinforces accuracy in the
modeling and identification powering self-tuning activities.
Additionally, Fig. 39 compares the ORFBLS predictive out-
puts between the simulation result obtained in Example 3
and the result obtained by the experimental study, show-
ing almost consistency of the simulation and experimental
results.

Finally, realizing the result from the experimental study
depicted in Fig. 33 to Fig. 39, we can conclude that in such
a windy environment, the outcomes reveal that the system
maximum overshoots are less than 3◦Cwhile the steady-state
errors remained within 1◦C. Aside from that, even though
the comparison results show some differences, it can still
be concluded that this experimental study result has suc-
cessfully proven that the developed MIMOORFBLS-APPID
controller is applicable and practicable, and its controlled

system response can be effectively adapted to the changing
setpoints and dynamic environments.

VIII. CONCLUSION AND FUTURE WORK
For a class of MIMO systems, this paper has presented a
novel control approach using an output recurrent fuzzy broad
learning system (ORFBLS) for developing an adaptive pre-
dictive PID controller. The developed controller has been
constructed by leveraging the MIMO ORFBLS identifier for
online system and parameter identification, and the adaptive
MIMO ORFBLS-APPID controller to dynamically update
matrix gain parameters (kp, ki and kd ) to ensure precise
setpoint tracking and disturbance rejection. Three theorems
have been established to find the sufficient conditions of the
learning rates both for the MIMO ORFBLS identifier and
overall MIMO ORFBLS-APPID controller. Through three
comparative simulations on two illustrative MIMO control
processes and one physical model of an extrusion barrel in an
injection molding machine, the developed ORFBLS-APPID
method has been testified effective and superior by comparing
to the conventional fixed-gain MIMO PID controller and
MIMO RFBLS-APPID controller. One experimental valida-
tion on a laboratory-built extrusion barrel has affirmed the
practicality and adaptability of the proposed controller to
real-world scenarios.

In future work, the extended version of the proposed con-
troller combined with a deep learning algorithm such as
LSTM [44] and reinforcement learning would deserve further
investigation, and its application to advanced semiconductor
packaging equipment would show the applicability of such a
new controller.
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