
Received 4 December 2023, accepted 25 January 2024, date of publication 29 January 2024, date of current version 5 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3359417

Optimal Reusable Rocket Landing Guidance:
A Cutting-Edge Approach Integrating
Scientific Machine Learning and
Enhanced Neural Networks
UGURCAN ÇELIK 1 AND MUSTAFA UMUT DEMIREZEN 2, (Senior Member, IEEE)
1Centre for Cyberphysical and Autonomous Systems, Cranfield University, MK43 0AL Bedford, U.K.
2Data Products Department, UDemy Inc., San Francisco, CA 94107, USA

Corresponding author: Mustafa Umut Demirezen (umut@demirezen.tech)

ABSTRACT This study presents an innovative approach that utilizes scientific machine learning and two
types of enhanced neural networks for modeling a parametric guidance algorithm within the framework of
ordinary differential equations to optimize the landing phase of reusable rockets. Our approach addresses
various challenges, such as reducing prediction uncertainty, minimizing the need for extensive training data,
improving convergence speed, decreasing computational complexity, and enhancing prediction accuracy
for unseen data. We developed two distinct enhanced neural network architectures to achieve these
objectives: Adaptive (AQResNet) and Rowdy Adaptive (RAQResNet) Quadratic Residual Neural Networks.
These architectures exhibited outstanding performance in our simulations. Notably, the RAQResNet model
achieved a validation loss approximately 300 times lower than the standard architecture with an equal number
of trainable parameters and 50 times lower than the standard architecture with twice the number of trainable
parameters. Furthermore, these models require significantly less computational power, enabling real-time
computation on modern flight hardware. The inference times of our proposed models were measured
in approximately microseconds on a single-board computer. Additionally, we conducted an extensive
Monte Carlo analysis that considers a wide range of factors, extending beyond aerodynamic uncertainty,
to assess the robustness of our models. The results demonstrate the impressive adaptability of our proposed
guidance policy to new conditions and distributions outside the training domain. Overall, this study makes
a substantial contribution to the field of reusable rocket landing guidance and establishes a foundation for
future advancements.

INDEX TERMS Adaptive activation functions, guidance, navigation, optimal control, scientific machine
learning, quadratic residual neural networks.

I. INTRODUCTION
The development of reusable vertical take-off and vertical-
landing (VTVL) technology has long been a hot topic
in the aerospace industry. Recent interest in the space
industry has centered on the capability of rockets to perform
autonomously accurate vertical landings, allowing them to be
reused for future missions [1]. This is due to a significant

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

reduction in mission launching costs and an improvement in
mission responsiveness. Launching a rocket is an expensive
and risky endeavor, and there is a growing interest in how
to make it more cost-effective. Constructing VTVL rockets
is an efficient approach to reducing expenses and generating
corporate value. The achievement of triumphant retrieval
of the reusable stage requires the creation of a guidance
command in real-time, which reduces the usage of propellant
while adhering to numerous limitations imposed during sev-
eral stages of the flight, ranging from reentry to landing [2].

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 16805

https://orcid.org/0009-0004-7013-8803
https://orcid.org/0000-0002-9045-4238
https://orcid.org/0000-0002-5196-8148

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

The application of traditional nonlinear optimization tech-
niques is deemed inappropriate for real-time trajectory
optimization of a reusable launch vehicle owing to its
susceptibility to initial guesses and prolonged convergence
time. The possibility of utilizing real-time, online trajec-
tory optimization for reusable launch vehicle guidance is
increasing owing to advancements in onboard computing
power and optimization methods that are more efficient.
Convex optimization is a frequently employed optimization
technique in the aerospace engineering domain owing to its
superior computational efficiency, as evidenced by multiple
studies [3].

Guidance planning exhibits variability across distinct
phases of the return mission, owing to the diverse objectives
and dynamics encountered in each phase. The rocket recovery
mission is often separated into four flying phases: the
attitude management stage, the power reduction stage, the
aerodynamic slowing stage, and the vertical landing stage so
that the rocket falls gently and vertically at the designated
site. The objective of the landing guidance system during
the landing phase is to direct the booster towards the
intended landing location, which may either be the launch
site or a barge, contingent upon the reentry scenario and
ensure a precise landing [2]. The guidance system must
effectively manage the rapid changes during the return stage,
especially when performing the powered landing stage, and
must exhibit resilience in the face of uncertainties related
to the vehicle and environment, such as wind conditions.
The instructions necessitate the production of a reference
trajectory and attitude directives that the control system
will follow. Typically, the system operates in a closed-loop
configuration, albeit at a low frequency, to separate it from
the closed-loop dynamics of the control system [2]. The
recovery process is hampered by obstacles such as vast swaths
of the airspace and velocity domain, substantial changes in
the flying environment, complicated flight limitations, and
powerful perturbations and uncertainties, all of which may
result in errors. The cumulative errors caused by the prior
stagesmust be addressed during the final stage of the recovery
operation, namely the vertical landing stage [4]. This delicate
process must be completed with high performance and
precision over a short period of time. Thus, highly stringent
restrictions are imposed on the speed and precision of the
guide during this phase. For a rocket to be successfully
recovered, research on rapid and precise guiding methods
during the vertical landing phase is essential.

A. LITERATURE REVIEW
In studies [5], [6], authors utilized the traditional guidance
approaches. The thrust profiles of the booster during
landing are estimated using time-dependent polynomials,
the coefficients of which are determined in order to fulfill
the endpoint restrictions. However, these classical guidance
algorithms often make unrealistic assumptions, such as
neglecting aerodynamic models when designing guidance

commands. Furthermore, these approaches lack an optimality
criterion or an objective function. In real-world applications,
fuel optimality is essential for reducing operational costs.
By contrast, optimal guidance/control algorithms enable the
definition of an objective function. Optimal control problems
can be solved to generate fuel-optimal trajectories. However,
the computational complexity of solving Optimal Control
Problems (OCPs) makes on-board (online) implementation
impractical [7], [8]. To overcome this challenge, extensive
research has been conducted in the field of the convexification
of OCPs, which allows on-board computations. In the second
category, direct methods(optimal control approaches), [1],
[9], [10], [11] have proposed the convexification of the
optimal control problem (OCP) associated with vertical
landing. The goal was to minimize the amount of fuel
consumed during the mission. However, a robustness anal-
ysis, which includes the impacts of existing delays, sensor
noise, and disturbances that might be encountered during
landing, was not considered in these studies. Furthermore,
while simplified low-fidelity real-time generation of opti-
mal trajectories is feasible, achieving high-fidelity optimal
trajectories remains a challenge [12]. Even in studies such
as [13], where successive convexification of a 6-degree-of-
freedom model for Mars landing was achieved, simplified
model assumptions were made, such as using a constant
inertia matrix during landing, which is unrealistic during fuel
consumption. To address these computational limitations,
[8] discussed the use of low-frequency guidance com-
mand generation with a high-fidelity 6-degree-of-freedom
model. The authors employed a successive convexification
methodology at the beginning of the powered landing phase
and used a reference tracking controller to follow the
trajectory throughout the landing. However, this approach
was sensitive to disturbances encountered during the landing.
Re-computing the optimal trajectory at each guidance loop
is necessary to provide robustness to off-nominal flight
conditions [12].

Recent research has indicated that in addition to the
success achieved through the application of optimization
theory-based guidance and control methods, there have been
efforts to investigate the potential utilization of AI-based
approaches in relation to the optimal guidance and opera-
tion of space/aerospace vehicle systems. The fundamental
concept of this particular approach is to create an efficient
guidance and control system using deep learning (DL)
techniques [14]. In recent years, the rapid advancement of
artificial intelligence research has enabled the achievement of
optimum guidance and control in real-time [15]. The decrease
in the computing complexity of network training and the
new construction of NN models, in particular, has garnered a
great deal of academic interest. The superior approximation
and relational mapping capabilities of Deep Neural networks
(DNNs) have spawned novel approaches for addressing
guidance issues that compensate for the inaccuracy and lack
of convergence of standard numerical techniques [16]. The
utilization of DNN and recurrent neural networks (RNN) has

16806 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

been observed in the context of addressing reusable rocket
landings and planetary landing problems. In [8], the authors
proposed a real-time guidance policy called Deep Classifi-
cation and Regression Network-based Guidance (DCRNG),
which employs two DNNs to establish a nonlinear mapping
between the ideal state and control pairings. This was
achieved by fitting the optimal trajectory data generated by
solving OCPs. Similarly, in previous studies [17], [18], [19],
[20], DNNs were utilized to generate real-time guidance
commands for mars powered descend landing problems. The
authors of [21] proposed a guidancemethodology for asteroid
landing that utilizes DNNs to address the challenges related
to convergence and real-time performance of solving optimal
control problems with shooting methods. This approach aims
to employ DNNs to provide an excellent initial estimate
(solution) for the state and co-state trajectories to accelerate
the convergence of the shooting method. As seen from recent
literature, Deep learning (DL) may typically be implemented
in guiding applications in two ways: direct and indirect
methods. In the former approach, DNNs are trained to
develop a nonlinear mapping between the optimal state and
control pairings. Therefore, the trained NNs may steer a
flight in real-time based on the observed/measured vehicle
states [22]. In the latter approach, however, NN models
often act as a supporting system to give ‘‘hot-start’’ initial
values with the aim of accelerating real-time trajectory
optimization methods. The authors opted for larger models
in both approaches, employing deep learning techniques
to fit discrete data precisely. This choice led to favorable
performance metrics during training, and the trained para-
metric policies often accomplished the mission. However,
the absence of robustness analysis against uncertainties poses
a limitation. The model’s performance degrades for cases
beyond the distribution it was trained on. Given training in the
discrete-time domain, minor errors originating from policy
actions accumulate over time in continuous time, resulting in
substantial errors at the final time.

Another AI-based approach is Reinforcement Learning
(RL). This can be defined as a formalized approach to
learning through trial and error. The fundamental premise of
RL is that a machine can independently learn the optimal
behavior or policy required to perform a specific task within
a given environment. This is achieved by maximizing or
minimizing the cumulative reward or cost. In [23] and [24],
Reinforcement Learning based methods were proposed as a
solution for the powered landing of reusable rockets. In RL,
an agent can solve trajectory issues by learning a control
strategy that maximizes the predicted reward. However, as the
complexity of the task increases, the state space examined
by the agent expands rapidly. Deep Reinforcement Learning
(DRL) combines the concepts of DL and RL, representing an
advanced form of RL that integrates deep neural networks.
Hence, the most difficult aspect of DRL-based approaches
is the search for global optimum solutions, such as fuel-
optimal trajectories, and their training takes so much
time.

B. MOTIVATION AND CONTRIBUTIONS
Recent research on classical and learning-based optimum
guiding algorithms has yielded encouraging findings. How-
ever, there are still challenges to overcome in the Reusable
VTVL rocket landing problem. The primary motivation
behind our study is to address the challenges encountered
during the powered descent stage of recoverable rocket
retrieval, aiming to achieve accurate and effective landings.
The pragmatic viewpoint assumes significance in this par-
ticular context, given that the reutilization of rockets carries
substantial significance with respect to curbing mission
expenses, enhancing mission agility, and augmenting overall
economic advantages. This research endeavors to devise a
comprehensive guidance strategy that effectively addresses
the aforementioned challenges and the gaps in the current
literature and enhances the accuracy and dependability
of landings of reusable rockets. The impetus behind our
study is primarily rooted in the pragmatic necessity to
attain accurate, streamlined, and dependable touchdown
procedures for reusable rockets. By integrating optimal
control and learning-based approaches to harness their indi-
vidual strengths to overcome the limitations of non-learning
and non-optimal methods and implementing cutting-edge
methodologies, such as scientific machine learning and
adaptive neural networks, we endeavored to overcome the
obstacles faced by the aerospace sector, thereby facilitating
its practical progress.

In this study, the use of scientific machine learning
and adaptive quadratic neural networks with the universal
ordinary differential equations framework is suggested as an
innovative approach for the boosted landing phase of reusable
rockets to overcome the problems and deficiencies mentioned
in the literature. In this context, our contributions to the
literature are summarized as follows:

1) To handle uncertainties, improve the generalization
capability of NNs, and increase the out-of-domain
performance of NN models, we propose the use of
the universal ordinary differential equations (UODE)
[25] approach in scientific machine learning [26], [27].
NNs can be trained not only on data but also on
several physics laws using UDOE, combining data-
driven machine-learning techniques with knowledge
of physical principles and scientific models. Conse-
quently, NN models can learn from data and physical
laws to reduce uncertainty and improve extrapolation
and out-of-domain prediction capabilities.

2) In general, optimal control problems require state-
space models. From a machine-learning perspective,
this is a regression task. NNs are universal function
approximators with a certain degree of error. How-
ever, navigation and guidance algorithms must have
precise outputs in order to control an aircraft. To use
machine learning algorithms such as NNs, XGBoost,
and Support Vector Regressors for navigation and
guidance, the output predictions must be extremely
accurate, easy to understand, and have little uncertainty.

VOLUME 12, 2024 16807

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

The learning capacity of an NNs is directly related
to the number of layers and neurons in these layers.
Adding more of these hyper-parameters also requires
more computing power, which limits the models that
can be used in modern flight hardware. To improve the
neural network capacity and prediction performance
without increasing the network parameters, we pro-
pose two new types of neural networks based on
Quadratic Residual Neural Networks (QResNet) [28]
called Adaptive Quadratic Residual Neural Networks
(AQResNet) and Rowdy Adaptive Quadratic Residual
Neural Networks (RAQResNet) to speed up train-
ing, improve convergence, increase prediction accu-
racy [29], reduce spectral bias [30], [31], and reduce
the size of the network parameters. We accomplished
this by integrating adaptive activation functions [32],
[33] into QResNet so that the NN could benefit
from additional trainable parameters and provide it
with a greater degree of freedom. We also suggested
another type of QResNet called Rowdy Adaptive
QResNet (RAQResNET), which uses special trigono-
metric functions [34] in the activation functions with
particular arithmetic operations to smooth the training
loss surface and prevent falling into local optima during
network training.

3) We considered physics-informed neural networks [35]
and constructed custom loss functions to train
AQResNet and RAQResNet using the universal
ordinary differential equations mathematical frame-
work. We accomplish this by adding optimization
constraints from the OCP to the loss function and using
automatic differentiation to determine the gradients
for all trainable network parameters. We trained these
novel neural networks using computed gradients with
gradient descent-based optimization methods.

4) Finally, we also tested our proposed models on a
limited-resource single-board computer. Test results
demonstrated inference times at the level of several
microseconds, indicating no additional computational
load on the guidance hardware system. The models’
efficiency and improved learning capacity allow for
better prediction accuracies with fewer layers and
neurons. Rigorous testing confirmed that each guid-
ance step could be executed within microseconds,
underscoring the practicality and viability of real-time
implementation.

Our study makes significant contributions from a prag-
matic perspective and introduces a new approach to scientific
machine learning in the aerospace industry by utilizing adap-
tive activation-based quadratic residual neural networks and
integrating regression-based tasks into the universal ordinary
differential equations framework. This approach improves
the learning ability of the NNs, the rate of convergence,
and the precision of predictions while taking into account
the underlying physical principles and scientific models.
In addition, our experimental results, which incorporate

Monte Carlo analysis, demonstrate the resilience of our
trained network models when confronted with disruptions
and unpredictability. The models exhibited a notable capabil-
ity to generalize effectively to unfamiliar conditions, thereby
underscoring their practicality in real-world scenarios and
their efficacy in acquiring knowledge of the underlying
physical principles. This study underscores the practical
implications of the research by emphasizing its potential
applications. For instance, this approach can be implemented
in high-fidelity simulations using realistic subsystemmodels.
This highlights the adaptability of this research in the real
world and its broader practical significance.

To the best of our knowledge, there has been no previous
investigation within the aviation research field on the utiliza-
tion of scientificmachine learning in conjunctionwith univer-
sal ordinary differential equations (UODE) to solve reusable
rocket landing problems. This study proposes and exten-
sively experiments with such a groundbreaking guidance
approach from an artificial intelligence perspective. Further-
more, this study introduces novel adaptive activation-based
quadratic residual neural networks and provides comprehen-
sive insights into leveraging regression-based tasks to address
the challenges of highly nonlinear and complex function
approximations. Integrating these newly proposed enhanced
neural networks with UODE within the scientific machine
learning framework is particularly notable, representing a
significant contribution to the field. This exploration of
integration advances research in this domain, paving the way
for improved solutions and further improvements in rocket
landing guidance.

The remainder of this paper is organized as follows: In
Section II, the problem definition for the reusable rocket land-
ing problem is introduced. In Section III, the methodology
followed and the mathematical preliminaries are explained
in detail, including the motion model derivation for rocket
landing, optimal control problem definition, classical and
scientific machine learning approaches in conjunction with
the mathematical preliminaries, and formulations performed.
Section IV introduces the simulations and shares the results
for different scenarios, including out-of-domain trajectory
performance, the robustness of uncertainty, and Monte Carlo
analysis for six different conditions. Finally, in Sections V
and VI, a summary of the outcomes of this study is presented.

II. PROBLEM DEFINITION
The problem addressed in this study is the development of a
parametric guidance command generator for reusable rocket
recovery missions, which enables real-time computation.
In the proposed approach, the developed policy directly maps
the system states to the guidance commands for the controller
loops. Considering the aforementioned challenges of the
powered descent phase of the rocket engine in detail, it is
necessary to achieve zero velocity at exactly zero altitudes
with the upright attitude position to prevent the booster from
tipping over; otherwise, the mission fails, and in fact, it might
result in a catastrophic situation. Therefore, the developed

16808 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

guidance policy must bring the booster to the desired landing
location with high precision. The second challenge concerns
the uncertainties encountered during the landing phase or
even before the flight. Environmental uncertainties, such
as unexpectedly strong winds and gusts during landings,
fall under the first category. Significant uncertainties at
the system level can also arise in the second category.
For instance, uncertainties in the aerodynamic coefficients,
the position of the center of gravity, thrust magnitude
level, actuator misalignment, and actuator bandwidth can
be considered in this category. Finally, fuel efficiency is
of considerable importance in the powered descent phase.
The trajectories followed should be fuel-optimal trajectories.
Otherwise, the booster can crash when running out of fuel
before touching it down. That is, the second attempt can only
be tried with additional fuel on board, which is rare in most
situations [9].

Hence, the developed guidance algorithm in this study
is expected to steer the booster to the desired landing
location without any constraint violation. Simultaneously,
it must address all challenging scenarios. In other words,
robust, high-precision guidance that steers the booster in a
fuel-optimal trajectory must be achieved.

U∗(X (t)) = π (X , p) = argmin
π
mfuel (1)

As described in Equation 1, a parametric guidance policy is
adopted to map the system states X (t) to the feed-forward
control inputs U (t), π : X (t) −→ U (t). The main objective of
the policy is to minimize fuel usage throughout the landing
phase. In simple terms, the optimized policy should decide
the action to take, based on the current states, to minimize fuel
usage and satisfy the mission requirements. In our proposed
approach, the developed policy maps the system states to
the control inputs, which can be regarded as feed-forward
guidance commands for the controller loops.

III. MATERIALS AND METHODS
This study investigated the guidance policy development
process using two approaches. The first approach concerns
classical, fully data-driven machine-learning techniques. The
second approach is the scientific machine learning technique,
which can be regarded as a partially data-driven and physics-
informed machine learning technique. The flowchart in
Figure 1 summarizes the common steps followed by both
approaches.

In the first step of the policy development process,
we formulated the Optimal Control Problem (OCP), which
included system dynamics, constraints, and boundary condi-
tions for the booster landing mission, to obtain the train-test
data needed for both aforementioned approaches. Then, the
formulatedOCPs are solved using RSOPT, an optimal control
problem solver [36]. Subsequently, we stored the generated
trajectories in the trajectory database for model training.
In the model training part, several methods are employed
for classical and scientific machine learning approaches
to train a guidance policy. For classical machine learning,

FIGURE 1. General policy development flowchart.

methods such as linear regression, XGBoost (a state-of-
the-art gradient boosting decision tree algorithm) [37],
and vanilla neural network architecture have been applied.
On the other hand, the adaptive neural network architectures
AQResNet and RAQResNet that we proposed are utilized for
both classical and scientific machine learning approaches.

In the last step of the policy development framework,
the performance of the optimized guidance policy was
assessed through simulations. The evaluations were based
on the mission requirements, including the touchdown
location, velocity, attitude angle, fuel consumption metric,
interpolation capabilities, and out-of-sample (extrapolation)
dataset performances measured to understand the uncertainty
reduction performance.

In this study, we made several assumptions for theoretical
calculations:

1) The earth’s surface is assumed to be flat and non-
rotating.

2) The aerodynamic moment contributions were consid-
ered negligible compared with the moment produced
by the thrust vector control.

3) The aerodynamic coefficients are only functions of the
angle of attack, CD ≈ CD(α) and CL ≈ CL(α).

4) The drag coefficient was assumed to be a quadratic
function of the angle of attack, whereas the lift
coefficient had a linear relationship with the angle of
attack.

5) The inner-control subfunction was not addressed in
this work, and only the guidance subfunction was
focused on.

All the proposed approaches and their mathematical founda-
tions are given in the following sections:

A. FLIGHT MECHANICS MODEL
In this section, a flight mechanics model for vertical landing
vehicles is introduced. Because the time required for the
boost landing phase is short, the Earth’s surface is assumed
to be flat and nonrotating. In addition to these assumptions,
Having a 3-degree-of-freedom flight mechanics model was

VOLUME 12, 2024 16809

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

considered sufficient, including two transnational dynamics
and one rotational dynamic.

1) REFERENCE FRAMES
The first reference frame is the landing location inertial
reference frame (LLIF), as shown in Figure 2. In this
reference frame, the origin O is attached to the predefined
landing location, the OY axis is perpendicular to the plane,
and the OZ axis points downward. OX axis follows the
right-hand rule and points to the right. The second reference
frame is the body-fixed reference frame attached to the
booster’s center of gravity. As shown in Figure 2, the y-axis
of the body-fixed coordinate system is perpendicular to the
plane, and the positive x-axis of the body-fixed coordinate
system is towards the booster’s nose. When pitch angle θ
is defined as the angle between the x-axis of the body-fixed
coordinate system and the x-axis of the LLIF,

FIGURE 2. Landing reference frame and body-fixed frame.

In this study, the angle of attack of the landing vehicle is
redefined as the effective angle of attack, which is the angle
between the negative body x-axis and the velocity vector.
Based on this definition, the aerodynamic forces acting on the
landing vehicle are applied to the vehicle in the aerodynamic
reference frame. The x-axis of this reference frame was
alignedwith the velocity vector, whereas the positive axis was
aligned on the opposite side. The z-axis is perpendicular and
positive in the downward direction. This reference frame is
shown in the top-right corner of Figure 2.

2) DYNAMICS AND CONSTRAINTS
With the reference frame definitions given above, the
equations of motion for the landing vehicle derived relative
to the LLIF and resolved in the body-fixed coordinate system
are given in Equation 2:

ẋ = u cos θ + w sin θ,

ż = −u sin θ + w cos θ

u̇ = −qw+
D cosα − L sinα

m
+
T cos ϵ
m
− g sin θ

ẇ = qu−
D sinα + L cosα

m
−
T sin ϵ
m
+ g cos θ

θ̇ = q

q̇ = −
T sin ϵxcg

Iyy

ṁ =
−T
g0Isp

(2)

In Equation 2, x and z are the positions relative to the
landing location, and u and w are the velocity components
of the vehicle in the body-fixed coordinate systems x and
z axes, respectively. The θ and q are the pitch angle and
the pitch angle rate, respectively. T represents the thrust
magnitude of the booster and ϵ is the thrust vector angle.
The aerodynamic drag and lift forces are the D and L,
respectively. Iyy and xcg denote the moment of inertia of the
booster and the booster’s center of gravity position measured
from the bottom of the booster(moment arm). g0 represents
the standard gravity and Isp is the thrust specific impulse.
In this study, the aerodynamic moment contributions were
considered negligible compared to the moment produced by
the thrust vector control.

During the booster landing phase, constraints exist on
the thrust magnitude and vector angle and are given in
Equations 3 and 4:

Tmin ≤ T ≤ Tmax (3)

ϵmin ≤ ϵ ≤ ϵmax (4)

In Equations 3 and 4, Tmin and Tmax correspond to the
minimum andmaximum applicable thrust magnitude, respec-
tively. In addition, owing to the system requirements, ϵmin and
ϵmax represent the minimum and maximum allowable thrust
vector angles, respectively. The aerodynamic forces acting on
the booster were calculated as follows:

D =
1
2
ρ|V |2Sref CD (5)

L =
1
2
ρ|V |2Sref CL (6)

In Equations 5 and 6, The D and T are the aerodynamic
drag and thrust forces, respectively, ρ is the air density; |V |
represents the velocity magnitude of the landing vehicle. Sref
represents the reference area for the vehicle. CD and CL
denote aerodynamic drag and lift coefficients, respectively.
This study considers that the aerodynamic coefficients are
only functions of the angle of attack: CD ≈ CD(α) and CL ≈
CL(α). The drag coefficient is assumed to be a quadratic
function of the angle of attack,CD = b0+b1α+b2α2, whereas
the lift coefficient is linearly related to the angle of attack,
CL = a0 + a1α.
In this research, in addition to the upper and lower limit

constraints on the vehicle, rate limits are added to the system
states and control variables to be consistent with real-world
applications (given in Equations 7, 8 and 9).

qmin ≤ q ≤ qmax (7)

ϵ̇min ≤ ϵ̇ ≤ ϵ̇max (8)

Ṫmin ≤ Ṫ ≤ Ṫmax (9)

16810 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

TABLE 1. Initial and terminal time boundary conditions.

in Equations 7, 8 and 9, q is the pitch angle rate, ϵ is the thrust
vector angle, and Ṫmax , Ṫmin, qmin, qmax , ϵ̇min, ϵ̇max show
the minimum-maximum thrust magnitude rate, minimum-
maximum pitch rates, andminimum-maximum thrust-vector-
angle rates respectively. The boundary conditions, including
the initial and final conditions of the system states and control
parameters, are detailed in Table 1.

3) PERFORMANCE INDEX
The formulation of an optimal control problem requires a
performance index. In this study, the performance index
was chosen to ensure the booster achieves soft touch-down
conditions using the minimum possible fuel. This is ensured
bymaximizing the finalmass, though efforts aremade tomin-
imize the negative impact of the final mass. A mathematical
definition of the performance index is shown in Equation 10.

J = −m(tf) (10)

4) OPTIMAL CONTROL PROBLEM FORMULATION
Given the system dynamics, state and control constraints,
path constraints, and boundary conditions, the free final time
optimal control problem associated with the minimum fuel
vertical rocket landing is outlined in Equation 11:

min
x,u,tf

J = mfuel

s.t. Equations(2)− (9)

tf = Free (11)

5) DATASET GENERATION STRATEGY
After defining an optimal control problem (OCP) as in
Equation 11, we solved it using the RSOPT solver [36], which
employs an adaptive pseudo-spectral collocation method to
transcribe the continuous-time optimal control problem into
discrete optimization problems and then solve the associated
problem using a nonlinear programming problem solver.

In order to create a trajectory database corresponding to
the dataset that will be used in the training loops of the
machine learning methods, we split each initial condition
interval listed in Table 1 into eight evenly-spaced samples.
Therefore, 512 different initial condition combinations are
attained. Then, each of the corresponding separate optimal
control problems are solved and stored. Since the OCP

solver RSOPT is an adaptive solver with a mesh refinement
algorithm, an individual optimal trajectory rollout consists of
a variable number of discrete time points (In general, it is
around 100-150 discrete time points). At each discrete time
point, we have an optimal value for states and control
inputs described in Equation 2. If we think that the states
are the features (6 states) and control inputs (2 control
inputs) are the labels, in each optimal trajectory rollout,
we have m rows of feature vector, m × nx , and m rows
of label vector, m × nu, where nx ,nu are the number
of states and number of control inputs respectively, m is
the number of resultant discrete time points. Now, if we
consider the whole training trajectory database including
512 distinct trajectories, we have (

∑512
i=1mi) rows of feature

vector, (
∑512

i=1mi)× nx , and (
∑512

i=1mi) rows of label vector,
(
∑512

i=1mi)× nu, where mi is the resultant number of discrete
time points in trajectory i. A representative optimal trajectory
rollout is provided for the initial condition combination
corresponding to the first grid point in the initial condition
grid, as presented in Equations 12 and 13, as shown at
the bottom of the next page. Here, X and Y denote the
feature vector rollout and label vector rollout, respectively.
t0, t1, t2 . . . tm indicates the discrete time points resulting
from the optimal control problem solution. Throughout the
remainder of this study, when reference is made to the
initial condition being sampled from the trajectory database,
it implies that the associated rollout will be utilized as data
for training purposes.

Similarly, in addition to the training trajectories, we sam-
pled 64 distinct initial condition combinations from the
intervals specified in Table 1. Subsequently, fuel-optimal
trajectories corresponding to these conditions were generated
and stored in the trajectory database for validation. Figure 3
illustrates the state and control trajectories optimizing fuel
consumption, which are stored in the trajectory database.

B. SOLUTION OF THE PROBLEM WITH CLASSICAL
MACHINE LEARNING ALGORITHMS
This section briefly reviews the use and employment of
classical machine learning approaches in our problem.
In classical machine learning approaches, a model is trained
to predict a target variable using data attributes. These
attributes are referred to as features. That is, the role of the
trained model is to map a given feature vector ofX to a target
vector of Y .

In this study, as described above, the problem is to find
a parametric guidance policy that maps the system states to
control inputs π : X −→ U to enable the booster to land
a pre-determined desired location in a fuel-optimal manner.
Hence, we investigated whether using classical machine
learning approaches to determine a parametric policy would
be an appropriate choice, as given in Equation 14.

U∗(t) =
[
|T |(t)
ϵ(t)

]
= π (X (t), p) (14)

VOLUME 12, 2024 16811

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

FIGURE 3. Fuel optimal state trajectories generated from OCP solver.

In Equation 14, U∗(t) is the system’s time-varying optimal
control input vector that tried to be solved, T is thrust
magnitude, ϵ is thrust vector angle, π is the parametric
guidance policy, X (t) ∈ R6 is the system’s state vector at the
corresponding time step,([x(t), z(t), u(t),w(t), q(t), θ(t)]),
and p is the parameters of the policy. The flow diagram in
Figure 4 summarizes the utilized pipeline for the classical
machine learning methods used in this study. We used data
from the preliminary trajectory database obtained by solving
the problem using an OCP solver to train a policy model,
including various trajectories for training. Each consists of
a discrete number of optimal state-action pairs along with
time. These pairs can be regarded as data in the format of

(X − Y) pairs. Hence, we contemplated that developing a
fully data-driven model using optimal state-action pairs with
classical machine learning methods could result in a policy
that attempts to map the system states to actions in an optimal
manner. In the first step of the training process, the data
stored in the database were preprocessed by normalization
and standardization to eliminate unwanted gradient behaviors
and outliers in the data. For this purpose, we used min-max
scaling to scale the raw data as follows:

Xsc
=

Xraw
− Xraw

min

Xraw
max − Xraw

min
(15)

X (1)(t)∗ =

x∗,m z∗,m u∗, ms w∗, ms θ∗,◦ q∗,
◦

s

t0 −2400 −4000 −220 0 140 0
t1 −2394.8 −3995.7 −219.9 −0.22 140 0.029
t2 −2382.9 −3985.7 −219.9 −0.79 140.01 0.423
...

...
...

...
...

...
...

tm 0 0 0 0 90 0

(12)

Y (1)(t)∗ =

|T |∗,N ϵ∗,◦

t0 288883.86 0
t1 288877.38 −0.12
t2 288876.82 −0.40
...

...
...

tm 961586.12 0

(13)

16812 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

FIGURE 4. Policy development flow diagram for data-driven machine
learning methods.

where Xsc, Xraw represent the scaled and raw data vectors,
including features and labels, respectively, and Xraw

min, Xraw
max

denote the minimum and maximum values that exist in the
raw data for both the feature and label vectors. The data were
then split into test and training data using the data-twinning
algorithm developed to prevent data distribution shifts [38].
Subsequently, classical machine learning methods were
employed for training. Before the last step, the trained
policy was evaluated using the unseen test data to measure
the generalization performance of the algorithms. For all
the algorithms in this study, we implemented extensive
hyper-parameter search and optimization methods to enhance
the policymapping performance further [39]. The final policy
is implemented in a simulation environment to investigate
its performance and whether the mission requirements were
satisfied.

The preliminaries of the approaches and models used in
this study are described briefly in the following subsections.

C. MULTILAYER PERCEPTRON FEED FORWARD NEURAL
NETWORKS
Deep neural networks can be utilized as universal approx-
imators for any nonlinear continuous function by using a
sufficient number of neurons [40], [41]. Hence, we employed
a DNNmodel to describe the nonlinear mapping between the
state and actions of the guidance policy.

Figure 5 shows the general layout of a DNN, which
consists of an input layer with an arbitrary number of
features, hidden layers stacked together, and an output
layer. The input-output mapping is achieved with sequential
mathematical operations followed by nonlinear activation
functions using a finite number of free parameters called
weights and biases. The optimal combinations of these
parameters were obtained using gradient-based optimization
methods.

Considering xl as an input vector for a specific layer l, the
mathematical calculation can be expressed as follows:

fl = σl(ω.xl + bl) (16)

FIGURE 5. General deep neural network architecture.

In Equation 16, ωl ∈ RNl×Nl+1 are the weight matrices,
and the Nl,Nl+1 account for the number of neurons used in
layers l and l + 1 respectively. The bl ∈ RNl+1 denotes bias
vector. Finally, the σl corresponds to the nonlinear activation
function used in the layer. Different types of activation
functions can be used in DNNmodels to provide nonlinearity.
The most common choices are Linear , Tanh, Relu, Gelu, and
Sigmoid . After defining the formulations for a specific layer,
the final prediction of the DNN model can be constructed,
as given in Equation 17.

ŷ(x) = (fl ◦ fl−1 · · · f2 ◦ f1)(x) (17)

In Equation 17, ◦ denotes the composition operator, fl is
the l.th NN layer. As mentioned previously, the learnable
parameters Wl and bl are trained using backpropagation
algorithms [42]. However, to implement the backpropagation
algorithm, it is necessary to define a performance index.
For instance, the first thing that comes to mind, as well
as the common choice for regression-related tasks, is to
utilize the Mean Squared Error (MSE) as a loss function.
Using the definition of a loss function, the networks are
trained to determine the best combinations of weights and
biases. It is possible to use different variants of optimiza-
tion algorithms during backpropagation, such as stochastic
gradient-descent, Momentum, ADAM, and NADAM [43],
according to the nature of the problem.

D. ADAPTIVE ACTIVATION FUNCTIONS FOR NEURAL
NETWORKS
The nonlinear activation function used in the layers of
the DNN model transforms the input data in a nonlinear
manner, enabling it to learn more complex tasks. Saturated,
unsaturated, and adaptive activation functions are the three
categories of activation functions used in neural network
architectures [44]. The idea of adaptive activation functions
(AAF) was first proposed by [45], and the parametric ReLU
activation function, which consists of three piecewise linear

VOLUME 12, 2024 16813

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

functions with four learnable parameters, is described. The
authors in [33] formalized the concept of adaptive activation
functions and used them to accelerate the convergence of
physics-informed neural networks by modifying the loss
landscape of the neural network, particularly in the early
training phase.

The principal idea of adaptive activation functions is to
make them trainable to capture more nonlinear behavior.
Therefore, they facilitate the learning of complex tasks
and accelerate the convergence speed. When an activation
function σ (x) is considered, we can include a trainable
parameter α as σ (αx), which provides additional degrees of
freedom and adjusts the slope of the function. It has been
claimed that adding a non-trainable scaling factor n into
the equation as σ (nαx) also contributes to the convergence
speed [33]. These activation functions can be utilized in
two distinct ways: layer-wise or neuron-wise. The former
implements the same AAF throughout the layer so that only
one trainable parameter exists. The latter enables the training
of AAFs independently across the neurons of the layer, which
results in an equal number of trainable parameters to the
number of neurons used in the layer. Consequently, examples
of the tanh and ReLU adaptive activation functions are shown
in Equation 18.

Adaptive Tanh :=
enαx − e−nαx

enαx + e−nαx

Adaptive ReLU := max(0, nαx) (18)

In addition to these AAFs, another has been proposed as
a new class of AF called rowdy [34]. The rowdy activation
function allows NNs to exploit various properties of distinct
AAFs and combine them into a single function by summing
them, σ (x) =

∑N
k=1 σk (αx). The authors suggested using

a baseline classic activation function and including extra
trigonometric activation functions with trainable parameters
as additional terms [34]. The formulation is given by
Equation 19:

σ (x) = σbase(x)+
N∑
k=1

βk sin(βk (k − 1)x) (19)

In Equation 19, σbase represents the baseline activation func-
tion. The βk is the trainable parameter for the trigonometric
AAF. For illustration purposes, one can observe the behaviors
of the AAFs and rowdy activation function in Figure 6.
Illustrations are given for the case where σbase() is the
adaptive tanh function with various trainable parameters α.
The parameters used for the rowdy activation function are
K = 2, β1 = β2 = 0.1, w1 = 10, and w2 = 20. As shown in
Figure 6, changing the trainable parameters of the adaptive
tanh activation function changes the slope of the function.
However, the rowdy function provides flexible behavior with
oscillatory movements in the saturation regions of the tanh
function. We selected the tanh activation function as a base
activation function for our work. The main reason for this
selection is that saturated activation functions do not cause

FIGURE 6. Adaptive Tanh and Rowdy adaptive Tanh activation functions.

an increase in gradients. The gradient is close to zero when
activation functions like sigmoid or tanh saturate. Based on
the mathematical properties of the tanh activation function,
given in Equation 18, it is less likely to suffer from the
exploding gradient problem because of its bounded output.

E. QUADRATIC RESIDUAL NEURAL NETWORKS
The Quadratic Residual Network (QResNet) architecture was
presented in [28], which aims to enhance the model’s expres-
sive power, enabling it to capture high-frequency responses
using fewer parameters than conventional ANNs. At each
network layer, QResNet delivers quadratic nonlinearity prior
to the application of activation functions. The formulation of
a quadratic neuron is given by Equation 20:

φl = σl(ωl1.xl ◦ ω
l
2.xl + ω

l
1.xl + b

l) (20)

In Equation 20, φl is the output of layer l, xl ∈ RN
l is the

input vector for layer l, ωl1 ∈ RNl×Nl+1 and ωl2 ∈ RNl×Nl+1

are the weight matrices at layer numbers l and l + 1. The
Nl,Nl+1 account for the number of neurons used in layers l
and l + 1 respectively, and ◦ denotes the Hadamard product.
The term (ωl1.xl ◦ω

l
2.xl) is the quadratic residual term and the

bl ∈ RNl+1 is the bias vector. Finally, the σl corresponds to
the nonlinear activation function used in the layer.

8̂(x) = (φ(l) ◦ φ(l−1) · · ·φ(2) ◦ φ(1))(x) (21)

In Equation 21, 8̂ is the output of the QResNet, ◦ denotes
the composition operator, φ(l) is the output of the lth
QResNet layer, x is the input vector for the first layer.
As mentioned previously, the learnable parameters ωl1, ω

l
2,

and bl can be trained with the backpropagation algorithm
using gradient-based optimization methods.

F. QUADRATIC RESIDUAL NEURAL NETWORKS WITH
ADAPTIVE ADAPTIVE ACTIVATION FUNCTIONS
We developed two new types of QResNet called Adaptive
Quadratic Residual Neural Networks (AQResNet) to speed
up the training process, improve convergence, increase
prediction accuracy by increasing NN capacity, learn higher

16814 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

FIGURE 7. Adaptive quadratic residual neural networks (a) adaptive QResNet layer block
diagram (b) quadratic residual neural networks with adaptive activation function block diagram.

frequencies in regression problems, and reduce the size of the
network’s parameters. We accomplished this by presenting
adaptive activation functions [32], [33] to QResNet so that the
NN could benefit from additional trainable parameters and
provide it with a greater degree of freedom.We also suggested
another type of QResNet called Rowdy Adaptive Quadratic
Residual Neural Networks (RAQResNet), which uses special
trigonometric functions [34] in the activation functions with
particular arithmetic operations to smooth the training loss
surface, provide parameter efficiency and prevent falling into
local optima during network training. In Figure 7, the general
framework of the adaptive QResNet layer and multilayer
adaptive quadratic neural network architecture is shown.

In this framework, we can define feed-forward architecture
by using a QResNet layer and an adaptive activation function
as given in Equations 22 and 23:

φ1l = σ
1
l (ωl1.xl ◦ ω

l
2.xl + ω

l
1.xl + b

l) (22)

In Equation 22, φ1l is the output of layer l, xl ∈ RN
l is the

input vector for layer l, ωl1 ∈ RNl×Nl+1 and ωl2 ∈ RNl×Nl+1

are the weight matrices at layers l and l + 1. The Nl,Nl+1
account for the number of neurons used in layers l and l +
1 respectively, ◦ denotes the Hadamard product, and the bl ∈
RNl+1 is the bias vector. Finally, the σ1l corresponds to the
nonlinear adaptive activation function used in the layer l.

8̂1L (x) = (φ1l ◦ φ
1
l−1 · · ·φ

1
2 ◦ φ

1
1)(x) (23)

In Equation 23, 8̂1L (x) is the output of the adaptive QResNet,
◦ denotes the composition operator, φ1l is the lth adaptive
QResNet layer, x is the input vector for the first layer.

For the first type of AQResNet, the tanh adaptive activation
function is given by Equation 24:

σ1l (x) =
enlαlx − e−nlαlx

enlαlx + e−nlαlx
(24)

In Equation 24, σ1l is the adaptive activation function at
layer l, αl is a trainable parameter that provides an additional
degree of freedom and adjusts the slope of the function at
layer l. It is claimed that adding a non-trainable scaling factor
n into the equation as (nα) also contributes to the convergence
speed [33]. Therefore, we retained this term as a separate
hyper-parameter.

In the original work [34] of the rowdy activation function,
the authors proposed that the selection of σbase may be

one of the Tanh, ReLU , Elu, Sigmoid , Gelu, and Swish
activation functions and then added extra trigonometric terms
(as given in Equation 19) to form a rowdy activation function.
In this definition, only the βl parameters are trainable and
can be learned from the data during NN training. However,
in our study, we have made some changes to define a fully
adaptive rowdy activation function. First, we replaced the
base activation part with Equation 24 so that the σ1base,l part of
the equation can be adaptive and learned from the data as well
(it can be replaced by any adaptive version of the classical
activation functions). Second, we introduced an additional
training parameter for the trigonometric part of Equation 19
with �l . Consequently, the frequency of the trigonometric
part of the rowdy activation function is also adaptive and
learnable from the data during training. Thus, all parts of the
σ1l (x) become adaptable and trainable.
More specifically, as a second type of AAF, we propose

RAQResNet and its mathematical expression is given in
Equations 25 and 26.

σ1l (x) = σ1base,l(x)+
N∑
k=1

ψ1l,k (xl) (25)

ψ1l,k (x) = βl sin((k − 1)�lxl) (26)

In Equations 25 and 26, σ1base,l represents the baseline
activation function at layer l, and ψ1k,l is the trigonometric
part of the AAF in layer l. The βl and �l are the
trainable parameters for the trigonometric part of the AAF
in layer l, and k = 1, · · · ,K ;K ∈ N is the frequency
adjusting/involving parameter for the trigonometric function
terms.
In summary, we can train a quadratic neural network using

Equations 22 and 23, by defining the activation function
σ1l as in Equation 24 for AQResNet and by defining the
activation function σ1l in Equation 25 for RAQResNet. Train-
ing can be performed using the standard backpropagation
algorithm with first and second-order optimization methods
such as ADAM, RMSProb, and L-BFGS.. etc. The final form
of RAQResNet for the adaptive− tanh activation function is
given by Equation 27:

σ1l (x) =
enlαlx − e−nlαlx

enlαlx + e−nlαlx
+

N∑
k=1

βl sin((k − 1)�lx) (27)

VOLUME 12, 2024 16815

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

As stated earlier, the learnable parameters ωl1, ω
l
2, and

bl can be trained with the backpropagation algorithm using
gradient-based optimization methods. In addition, in our
framework, new trainable parameters for adaptive activation
must be included in the training. The resulting optimization
problem entails minimizing the loss function by optimizing
both the newly introduced parameters and the NN weights
and biases. The training parameters for AQResNet and
RAQResNet are given in Equations 28 and 29, respectively:

ϒAQResNet =
{
ωl1, ω

l
2, b

l, αl
}L−1
l=1

(28)

ϒARQResNet =
{
ωl1, ω

l
2, b

l, αl, β l, �l
}L−1
l=1

(29)

In Equations 28 and 29, ωl1 and ω
l
2 are the weight matrices

of layer l, bl is the bias vector of layer l, αl , β l , and �l

are the trainable parameters of layer l for adaptive activation
functions.

Now, our optimization problem can be defined for
additional parameters to train an AQResNet and can be given
by Equation 30. Then, we can update the αl parameter using
the loss function and its gradients by using the gradient
descent step with Equation 31.

α∗AQResNetl = argmin
αl∈R+

(L(α)) (30)

αlm+1 = α
l
m − ηl∇αlLm(ϒAQResNet) (31)

In Equations 30 and, 31, α∗AQResNetl is the optimal value
of α at layer l, L is the loss function, Lm is the loss value
at the iteration step m, ηl is the learning rate, and m is the
number of iterations. αlm, is the trainable parameter value at
the iteration step m in the layer l. ∇αl is the gradient operator
for the Loss function with respect to α parameter at layer l,
and l = 1, · · · ,L;L ∈ N is the layer number.

Similarly, we can define an optimization problem for the
additional parameters to train RAQResNet, which is given
by Equation 32. Again, we can update the αl , β l , and �l

parameters using the loss function and its gradients using the
gradient descent step with Equation 33.

α∗RAQResNetl = argmin
αl∈R+

(L(ω1, ω2, b, α, β,�))

β∗RAQResNetl = argmin
βl∈R+

(L(ω1, ω2, b, α, β,�))

�∗RAQResNetl = argmin
�l∈R+

(L(ω1, ω2, b, α, β,�)) (32)

αlm+1 = α
l
m − ηl∇αlLm(ϒRAQResNet)

β lm+1 = β
l
m − ηl∇β lLm(ϒRAQResNet)

�l
m+1 = �

l
m − ηl∇�lLm(ϒRAQResNet) (33)

In Equations 32 and 33, α∗RAQResNetl , β
∗
RAQResNetl ,�

∗
RAQResNetl

are the optimal values of α, β and � trainable parameters at
layer l, L is the loss function, Lm is the loss value at iteration
step m, ηl is the learning rate, and m is the iteration number,
αlm, β

l
m, and �

l
m are the trainable parameter values at the

iteration step m in the layer l. ∇αl , ∇β l , ∇�l are the gradient

operators for the loss function with respect to α, β and �
parameters at layer l, and l = 1, · · · ,L;L ∈ N is the layer
number.

G. MODELING OF THE PROBLEM WITH SCIENTIFIC
MACHINE LEARNING
The scientific machine learning concept was defined in [25]
to tackle the generalization problem of fully data-driven
models in physical applications by incorporating physics
phenomena governing the data into the training processes.
To determine an appropriate policy, the booster landing
problem is re-formulated as a scientific model discovery
problem similar to that described in [25]. To achieve this
goal, a guidance policy can be treated as a learnable
unknown dynamical model that functions as the system
states. Considering this, the mechanistic motion model given
in Equation 2 can be decomposed into known-unknown
dynamics and represented as universal ordinary differential
equations (UODE). The unknown part is modeled with a
universal approximator which is chosen as an artificial neural
network parameterized with θNN , which includes the network
weights and biases.

π (X (t), p) =
[
|T |(t)
ϵ(t)

]
≈ NN (X (t), θNN) (34)

In Equation 34, X (t) ∈ R6 denotes the current state vector at
the corresponding time step,([x(t), z(t), u(t),w(t), q(t), θ(t)]).
Hence, the mechanistic motion model given in Equation 2 is
rewritten as follows;

ẋ = u cos θ + w sin θ

ż = −u sin θ + w cos θ

u̇ = −qw+
D cosα − L sinα

m
− g sin θ

+
NN (1)(X (t), θNN) cos (NN (2)(x(t), θNN))

m

ẇ = qu−
D sinα + L cosα

m
+ g cos θ

−
NN (1)(X (t), θNN) sin (NN (2)(X (t), θNN))

m
θ̇ = q

q̇ = −
NN (1)(X (t), θNN) sin (NN (2)(X (t), θNN))xcg

Iyy

ṁ =
−NN (1)(X (t), θNN)

g0Isp
(35)

where, In NN (∗)(), ‘‘*’’ shows the ∗th output of the neural
network.

H. PERFORMANCE INDEX AS LOSS FUNCTIONS
With this proposed UODE, learning the unknown policy
corresponds to training the parameterized artificial neural
network, NN : R6

−→ R2. To do so, we define a
performance index that enforces the fuel optimality condition
in conjunction with the path and boundary constraints.

16816 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

Therefore, it is considered to have a cost function as a
performance index that consists of the following three parts:

Ltotal = λf Lfuel + λpLPC + λBCLBC (36)

In Equation 36, Lfuel is the cost that considers the distance
from the optimal value to fuel consumption. LPC deals
with path constraints to prevent trajectories from evolving
into infeasible directions. LBC ensures that the boundary
conditions are satisfied. λf ,λp,λbc are the corresponding
cost coefficients used to scale the importance levels of the
cost contributors in the optimization loop.

In this study, we considered handling fuel consumption
criteria and path constraints by adding a continuous cost
term that minimizes the L2 norm of the distance between the
system states and the corresponding optimal values obtained
from the solution of the OCP. By reducing this distance, the
policy optimization process is expected to converge to the fuel
optimal trajectories because optimal trajectories are obtained
by minimizing fuel consumption.

Lfuel = λf
∣∣∣∣X (t)opt − X (t)NN ∣∣∣∣ (37)

In Equation 37, X (t)opt ∈ R6 represents the
optimal state vector at the corresponding time step,
([x(t), z(t), u(t),w(t), q(t), θ(t)]), and X (t)NN ∈ R6 shows
the current state vector under a neural network driven policy.

The continuous angle of the attack path constraint should
be applied to avoid diverging trajectories in the policy
optimization loop. We employed this condition using ReLU
functions, which only add cost when the minimum-maximum
limits are violated, and the final mathematical form of this
approach is given in Equation 38:

LPC = λp(||ReLU (α(t)− αmax)+ ReLU (−α(t)− αmin)||)

(38)

Although minimizing the L2 norm between system states
and optimal states contains information about boundary
conditions, we consider defining additional quadratic costs
for enforcing the booster to satisfy the soft landing conditions
with high accuracy. These conditions are given in Equation 39
as a loss function form.

LBC = λBC1 ((x(tf)− xBC)
2
+ (z(tf)− zBC)2)

+ λBC2 ((u(tf)− uBC)
2
+ (w(tf)− wBC)2)

+ λBC3 (θ (tf)− θBC)
2 (39)

where λBC1 ,λBC2 ,λBC3 are the position, velocity, and
attitude cost coefficients, respectively, which are used to scale
the importance level of each contributor term.

I. SIMULATION AND SCIML OPTIMIZATION LOOP
The UODE implementation and the resulting policy opti-
mization loop were performed using the Julia programming
language [46]. We used highly sophisticated and advanced
native implementations for ODE solvers, in addition to
ad-joint methods for automatic differentiation algorithms
using this programming language.

In this study, the ODE solutions were obtained using a
combination of solvers Tsit5 and Rosenbrock23, which are
native Julia implementations of the Tsitouras 5/4 Runge-
Kutta and L-Stable Rosenbrock-W methods. The algorithm
determines which method to use in specific parts of the
ODE according to the stiffness of the problem. The training
policy approximator neural network was performed using
Julia library called DiffEqFlux.jl [25]. We developed several
simulation loops to obtain gradient information with auto-
matic differentiation for ODE systems fused with parametric
models such as neural networks.

The training loop given in the SciML flowchart in Figure 8
can be briefly explained as follows: The initial conditions’
training grid is given as input to the algorithm, accompanied
by the associated fuel-optimal trajectory solutions from
the trajectory database. The first step of the algorithm
involves initializing neural network weights. After successful
initialization, mini-batches are randomly formed from the
initial condition grid. This implies that the mini-batches
contain various trajectories corresponding to distinct initial
conditions. Then, a simulation is run for each initial condition
in the mini-batches, which results in the calculation of the
Ltotal given in Equation 36 alongwith the policy gradient with
respect to Ltotal . After completing all the initial conditions
in a mini-batch, the average loss and gradient calculations
are performed. This makes conducting gradient descent
over the policy network possible. Well-known ADAM
optimizer [47] was selected for this study. After updating
the network weights for all mini-batches, a new epoch starts.
At the beginning of a new epoch, mini-batches are created
randomly. The same steps are followed until convergence is
achieved. Convergence can be evaluated based on the user
preferences.

In this study, a fixed epoch size was used as the stopping
condition. Finally, when convergence was achieved, the
network policy was evaluated with unseen initial conditions
in the test trajectories to determine whether any over-fitting
conditions existed. Otherwise, the final policy is obtained.
If not, a hyper-parameter tuning process was performed for
the parametric model.

Algorithm 1 summarizes the policy optimization process
with the SciML approach by using UDOE.

The constant inputs of the optimization algorithm are
the training grid of the initial conditions defined in
Table 1, the mini-batch size M , which corresponds to
the number of trajectories evaluated in one step of
the optimization algorithm, and the number of epochs
N , where the optimization algorithm is maintained. The
data used in the optimization algorithm were retrieved
from the trajectory database obtained from the solu-
tion of the associated optimal control problem defined
in Section III-A4.
The first step of the algorithm is the initialization of the

neural network model, which is the guidance policy mapping
the current system states to the control actions that can
be observed in Equation 35. After successful initialization

VOLUME 12, 2024 16817

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

FIGURE 8. Policy development flowchart for scientific machine learning methodology.

Algorithm 1 SciML Minibatch Training Algorithm
1 Input: ODE Solver(ODE, IC’s), Epoch Size: N, Mini-

Batch Size: M
2 Data: Pre-Generated Optimal Trajectories
3 Initialization:Initilization of Network Weights, θNN
4 Optimization Variable:, θNN
5 for epoch = 1, 2, . . . ,N do
6 Generate Minibatches
7 forMinibatch = 1, 2, . . . do
8 for Trajectories inMinibatch do
9 x(t)i, u(t)i←− Run the simulation(ICi, θNN)
10 Compute Loss, Li←− x(t)i
11 Compute Gradient,

(
dLi
dθNN

)
i

←−

Li, x(t)i, u(t)i, θNN
12 end for
13 Compute Mean Loss, Lmean = 1

M6
M
i=1Li

14 Compute Mean Gradient :
15

(
dL
dθNN

)
mean
=

1
M6

M
i=1

(
dLi
dθNN

)
i

16 Gradient Descent with Adam Optimizer :
17 θupdated ← Lmean,

(
dL
dθNN

)
mean

18 Update Network Weights, θNN ←− θupdated
19 end for
20 end for

of the neural network weights θNN corresponding to the
optimization variable, based on the user preference input
value of the mini-batch size M , the mini-batches are formed
randomly from the initial condition grid. In other words,
mini-batches incorporate various trajectories corresponding
to distinct initial conditions.

Subsequently, a numerical simulation was conducted for
each initial condition in the mini-batches, corresponding to
the time integration of the universal ordinary differential
equations given in Equation 35. At the end of each simulation,
the algorithm computes the value of the loss function
Ltotal as defined in Equation 36. The policy gradient with
respect to the total loss (dLtotaldθNN

) was then computed using
automatic differentiation facilitated by the Julia library
DiffEqFlux.jl [25]. The average loss and gradient calculations
were performed after completing all initial conditions in a
mini-batch. In addition, the algorithm employed gradient
descent with an ADAM optimizer [47] to update the policy
network weights. A new epoch begins after updating the
network weights for all mini-batches. At the start of each
epoch, mini-batches were randomly created. These steps are
repeated until the algorithm reaches the user-specified epoch
value, N .

Finally, once convergence was achieved, the network
performance was evaluated using the unseen initial con-
ditions from the test trajectories stored in the trajectory
database to assess the presence of overfitting. If no overfitting
conditions are detected, the final optimized policy is obtained.
Consequently, the algorithm outputs the optimized neural
network weights θ∗NN . Therefore, the final form of the
guidance policy, with optimized neural network weights θ∗NN ,
is: [

|T |∗(t)
ϵ∗(t)

]
= NN (X (t), θ∗NN) (40)

In Equation 40, X (t) ∈ R6 represents the current state
vector at the corresponding time step, [x(t), z(t), u(t),w(t),
q(t), θ(t)].

16818 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

IV. SIMULATIONS AND RESULTS
This section briefly explains the simulations conducted for
the policy performance evaluations and model comparisons.
After optimizing each policy and implementing it into the
simulations, evaluations and comparisons were carried out
based on the soft landing requirements and fuel consumption
metrics. Our simulations consisted of several case studies,
including nominal training trajectories, validation trajecto-
ries, out-of-domain trajectories, and Monte Carlo analyses.
The performances of the policies in all the cases are first
investigated on nominal trajectories, and comparisons are
conducted; then, out-of-domain performance and uncertainty
analysis are performed to assess the robustness of the policies.
To the best of our knowledge, this is the most extensive
analysis in this domain that uses the SciML approach.
We used policy or policies terms to identify trained neural
networkmodels for SciML, ClassicalML, and theNNmodels
with adaptive activation functions for the remaining sections.
Our experiments were performed on a Macbook Pro (2017)
equipped with a 2.3 GHz dual-core Intel Core i5 processor
and 8 GB of 2133MHz LPDDR3RAM.We briefly explained
all the steps for the simulations in the following sections:

A. PARAMETERS FOR SIMULATIONS
Considering the mechanistic motion model given in Equa-
tion 2, we obtained and used similar system parameters,
rocket aerodynamics, and the parameters utilized in flight
dynamics as in [36] for the experiments. This study considers
that the aerodynamic coefficients are only functions of the
angle of attack: CD ≈ CD(α) and CL ≈ CL(α). The drag
coefficient is assumed to be a quadratic function of the angle
of attack,CD = b0 + b1α+ b2α2, whereas the lift coefficient
is linearly related to the angle of attack, CL = a0 + a1α.
In this work, on top of upper and lower limit constraints on
the vehicle, it is also considered to add rate limits to system
states and control variables to be consistent with real-world
applications (given in Equations 7, 8 and 9). The nominal,
minimum, and maximum values stated in the constraint
equations were employed in the simulations/experiments,
as listed in Table 2.
We used the training and testing trajectories stored in the

database. As previously described in detail in Section III-A5,
it consists of optimal trajectories originating from the
initial conditions grid. We formed these initial condition
combinations by splitting each interval listed in Table 1
into eight evenly-spaced samples. Thus, 512 distinct fuel
optimal trajectories were acquired by solving the resultant
optimal control problems using the RSOPT solver [36] and
stored in the trajectory database. Moreover, 64 different
initial condition combinations were sampled randomly from
the intervals listed in Table 1, and the corresponding fuel
optimal trajectories were generated by solving optimal
control problems with RSOPT and stored in the trajectory
database for testing purposes.

TABLE 2. Constant parameters and bounds for variables in simulation.

B. MODEL ARCHITECTURES FOR NEURAL NETWORKS
In this study, we implemented three different NN architec-
tures for a performance comparison between the vanilla neu-
ral network and our proposed NN-based novel architectures.
To create a fair benchmark, we fixed the layer size and
total number of parameters used; thus, the neurons in the
layers were selected accordingly. All the NN models and
their architectural details are listed in Table 3. In Table 3,
ni represents the number of neurons used in layer i, and the
LA andNA abbreviations account for layer-wise adaptive and
neuron-wise adaptive, respectively. From Table 3, it can be
seen that we have scaling and re-scaling operations before
the first hidden layer and after the last hidden layer to
avoid unwanted gradient behaviors through the layers during
gradient-based optimization, such as vanishing-exploding
gradients. Scaling operations were performed using the
min-max scaling method, as given in Equation 15. Using
the Tanh function before the last layer makes it possible
to bind the output variables between [−1, 1], and then
the re-scaling operation is performed such that the interval
[−1, 1] is mapped to [ymin, ymax], which enables the policy
not to produce control outputs that violate the minimum and
maximum bounds of the system. The mapping formula is
given by Equation 41.

ym = yl3
ymax − ymin

2
+
ymax + ymin

2
(41)

where ym is the mapped(re-scaled) output, and yl3 represents
the variable vector resulting from layer-3 for all architectures.
It is essential to note that although we used layer-wise
adaptive activation functions through the inner layers,
we used neuron-wise adaptive activation functions in the
last layer of our proposed architectures. The nature of the
output variables |T | and ϵ and their dynamical behaviors are
completely different, which can be observed from the optimal
control problem solutions given in Figure 3. Therefore, using
neuron-wise adaptive activation functions is considered to
contribute to achieving higher accuracy levels by adapting
independently themselves to particular dynamics.

VOLUME 12, 2024 16819

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

TABLE 3. Neural network architectures for SciML.

C. HYPER-PARAMETERS
For the scientific machine learning optimization loop, hyper-
parameter selections, including loss coefficients λs, mini-
batch-size M , were performed based on a grid search. After
executing a grid search to find the optimal hyper-parameters,
the loss coefficients discovered to have the best performance
were λf = 0.1, λp = 1, λBC1 = 5, λBC2 = 1 and λBC3 =

1. Learning rate annealing was used in this study to boost
training performance and reduce training time. As mentioned
previously, a fixed number of epochs was employed to stop
the optimization loop, which was epochmax = 3000. Hence,
the initial learning rate η0 was set to 0.001. Subsequently,
the learning rate schedule was applied such that the learning
rate was halved every 500 epochs, which resulted in
ηfinal = 3.125 ∗ 10−5.
The optimization pseudo code given in Algorithm 1

includes the hyper-parameter of the mini-batch size, M .
Our simulations showed that the optimized policy (trained
NN models) performs much better when utilizing stochastic
gradient descent (SGD) over trajectories for this particular
problem, such as havingmoreminor training errors and better
generalization abilities. This means that in a single epoch
consisting of 512 training trajectories, for each trajectory,
gradient descent optimization was applied as presented in
Algorithm 1. Hence, we used a mini-batch size of 1, M = 1,
and all the results were obtained accordingly.

D. MODEL TRAINING RESULTS
During the model training process, the initial conditions
were sampled from the database, and a tolerance value of
10−6 was used for both absolute and relative errors in the
simulations. The objective of the training was to minimize the
loss function defined in Equation 36. As mentioned before,
all models were trained with a fixed number of epochs in
the SciML optimization loop, which was epochmax = 3000.
Accordingly, the initial learning rate η0 was set to 0.001. Sub-
sequently, the learning rate schedule was applied such that the
learning rate was halved every 500 epochs, which resulted in
ηfinal = 3.125 ∗ 10−5. We found that the execution time of
our policy optimization loop was approximately 12-13 hours.
The average training and validation error histories over (loss
values) epochs, including 512 distinct training trajectories
and 64 different validation trajectories, are shown in Figure 9
for the policy architectures given in Table 3. In Figure 9,
in addition to the proposed architectures, we presented two
NN models with feed-forward architectures named Vanilla

FIGURE 9. Training and validation loss histories for SciML models.

NN-1 and Vanilla NN-2 results. The Vanilla NN-1 model
had the same number of total parameters as our proposed
models; in contrast, the Vanilla NN-2 had twice the total
number of parameters. From Figure 9, the learned policies
with our proposed architectures AQResNet and RAQResNet
in which only 16 neurons were used in the hidden layers
(equivalent to 772 and 780 total parameters respectively)
quickly converged to smaller training and validation error
values compared with the vanilla-NN architectures. The
RAQResNet policy achieved the smallest training error of
≈ 4.0. The AQResNet policy reached an error value of
≈ 10.0 while the Vanilla NN-2 policy stayed around 250.0,
and the Vanilla NN-1 model could not achieve a training
loss of less than 1000. These results show that our proposed
NN architectures can capture nonlinear, complex system
behaviors with much better accuracy (roughly 50-300 times
better) and have a better learning capacity than Vanilla-NNs.
It can also be inferred that RAQResNet has more promising
learning/training performance (almost 2.5 times better) than
AQResNet.

The final adaptive activation function states in the layers
of the AQResNet and RAQResNet models after training
are shown in Figure 10. In Figure 10, Layer(i) denotes the
resulting optimized adaptive activation function in ith layer.
Layer 3(1) and Layer 3(2) represent the trained neuron-wise
adaptive tanh function in Layer3 for the first control
variable, |T | and the second control variable, ϵ respectively.
Considering the trained neuron-wise adaptive activation
functions, we contemplated that our assumption regarding the
use of neuron-wise adaptive activation functions in the last
layer to better capture the different natures of outputs was

16820 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

FIGURE 10. Final activation functions.

a wise choice. The figure shows that the trained neuron-wise
adaptive activation function in the last layer of the AQResNet
architecture for thrust vector angle ϵ exhibits almost linear
behavior within the depicted range. In contrast, the resulting
optimized neuron-wise adaptive activation function for thrust
magnitude |T | behaves like a hard tanh function, which is
quite different from linear behavior. Therefore, it can be
concluded that using a distinct adaptive activation function
for neurons in the last layer of the architectures worked as
intended. On the other hand, it can be observed from the
figure that RAQResNets’ trained adaptive activation function
at Layer1 is highly oscillatory because of the trigonometric
functions utilized in the adaptive rowdy activation function.

E. CLASSIC MACHINE LEARNING AND SCIML METHODS
PERFORMANCE COMPARISON RESULTS
We evaluated the performance of the learned policies
(NNmodels) by implementing them in simulations. We com-
pared their efficiency and accuracy by investigating how
well they achieved soft and precise landing conditions, along
with the fuel optimality criteria. For this part, we also
trained an additional gradient boosting algorithm (XGBoost)
to compare the NNs’ prediction capability with another type
of machine learning algorithm. Table 4 lists the error statistics
for the simulated training and validation trajectories in the
database for the optimized policies(trained models) attained
by the scientific and classical machine learning approaches.

Table 4 lists the statistics of the error values of the
touch-down conditions (TD), landing location error 1x,
landing velocity magnitude error 1|V |, and landing attitude
angle error 1θ , along with the fuel consumption statistics
1mfuel . Moreover, it contains information on the worst-case
scenarios. In this table, µ, σ , and γ represent the mean,
standard deviation, andworst-case values, respectively.When
the table is investigated, it can be easily observed that all the
policies derived from the classical machine learning approach
with different methods failed to fulfill the soft-precise landing
conditions in the training trajectories because they have
significant error residuals for every condition except the

fuel usage value. However, there is no point in using less
fuel when mission requirements can not be satisfied. Even
though these policies were trained with optimal state-action
pairs and achieved good training metrics during training, they
failed to perform well when implemented in simulations,
even in training trajectories. This is because the data obtained
from the OCP have a discrete number of points, while the
simulation works in continuous time. Consequently, models
face a considerable amount of unseen data or unseen data
distribution regions, which are prone to produce action
values with errors. Even though the generated action values
have a minor error at a specific time step, they exhibit
incremental growth when integration continues, resulting in
large errors at the final time. However, the policies trained
by the scientific machine learning approach performed
particularly well, except for the vanilla neural network
architectures, which is an expected situation because of
the training error history given in Figure 9. This implies
that our proposed architectures have much more expressive
power than the vanilla architecture, even if more trainable
parameters are introduced. Although the vanilla neural
network policy succeeded at a certain level of performance,
more is required. However, the policies with our proposed
architectures AQResNet and RAQResNet accomplished a
remarkable triumph. The policies trained with the scientific
machine learning approach differ from those trained with the
classical machine learning method because the policies learn
not only the data but also the physics law governing the data.
Therefore, even if some error occurs at specific time steps,
the policies learn how to reduce the error while proceeding
with the time steps because of the learning underlying physics
information.

When the error statistics are considered for our proposed
policies(NN models), the soft-precision landing conditions
are satisfied with minor error residuals for both the training
and validation trajectories that are not seen during training.
Hence, it can be said that both our proposed policies have
satisfactory generalization performance on unseen data and
trajectories.

When the performance of both policies (trained models)
is considered, Table 4 concludes that the RAQResNet policy
achieved better performance for both simulated trajectory
sets. For instance, trajectories driven by the AQResNet policy
have the mean landing position error of 0.36 and 0.42 in
training and validation trajectories. On the other hand, the
mean landing position error values of 0.18 and 0.2 for
the training and validation trajectories are driven by the
RAQResNet policy. Moreover, the RAQResNet policy is
superior to the AQResNet policy in terms of touch-down
velocity magnitude errors. The mean velocity magnitude
errors for the RAQResNet policy are equal to 0.35 and 0.37 in
training and validation trajectories, respectively, while the
mean errors for the AQResNet policy are 0.94 and 0.99,
respectively. Although the performance of the RAQResNet
policy is superior, that of AQResNet is also acceptable
because the error residuals lie in the acceptable regions.

VOLUME 12, 2024 16821

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

TABLE 4. Model performance comparison.

Regarding the worst-case conditions, from the table, the
maximum position error for the AQResNet policy is seen
at the training trajectories, which is equal to 1.5. For the
RAQResNet policy, the maximum position error is 0.52.
Both the values were considered acceptable. The worst
velocitymagnitude errors are 1.62 and 1.11 for theAQResNet
and RAQResNet, respectively. We regard these values as
reasonable because an additional velocity controller can
tackle them in the last few seconds of the landing. Finally, the
worst touch-down angle errors were 1.68◦ and 0.4◦, which are
again considered acceptable because the help of the landing
legs can compensate for these attitude errors.

To evaluate the generalization performance of the proposed
policies further, we conducted an out-of-domain simulation.
However, the policies trained according to the initial position
range of [−2400,−2000] given in Table 1 and the trained
policies were tested with the initial positions that lie
entirely outside of this interval. To do so, the left and
right-hand sides of the given range were extended by delta
amount δ, and the initial conditions were sampled only
from this extended domain, x0 ∈ [−δ − 2400,−2400] ∪
[−2000,−2000 + δ]. Figure 11 illustrates the in-domain
and out-of-domain trajectories driven by the AQResNet and
RAQResNet policies.

Table 5 summarizes the error statistics for the touch-down
conditions (TD) and fuel consumption statistics for the out-
of-domain simulations controlled by the AQResNet and
RAQResNet policies.

From Table 5, it can be observed that both trained policies
achieved good performance, even in the out-of-domain
trajectories. However, it should be noted that the AQResNet
policy could only tolerate the±50m domain extension. After

TABLE 5. Out of domain statistics.

these values, our experiments showed that failing trajectories
started to appear. In contrast, the RAQResNet policy showed
the ability to tolerate ±150,m domain extension with great
accuracy. Hence, it can be inferred that the policies trained
by the scientific machine learning approach have a good
generalization capability even in out-of-distribution cases.
In the following section, we discuss the fuel optimality
performance by comparing the fuel consumption statistics
with optimal control solutions.

F. THE OPTIMAL CONTROL PERFORMANCE COMPARISON
FOR THE MODELS WITH ADAPTIVE ACTIVATION
FUNCTIONS
The results presented in the previous section proved that
the scientific machine learning approach is superior to the
classical machine approach for generating a guidance policy
for the booster landing problem. Hence, in this section and the
next section, the results will only be shared for the policies
obtained with the AQResNet and RAQResNet architectures
trained using scientific machine learning.

16822 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

FIGURE 11. Trajectories driven by (R)AQResNet neural network models.

FIGURE 12. Fuel consumption histograms for AQResNet.

The fuel consumption histograms resulting from the
training and validation trajectory simulations driven by the
AQResNet policy are shown in Figure 12. This figure also
contains information on the fuel consumption values of
the corresponding trajectories contained in the trajectory
database obtained from the optimal control problem solution.

Similarly, Figure 13 shows the fuel consumption his-
tograms of the training and validation trajectories under the
control of the RAQResNet policy and the corresponding
optimal fuel usage histograms.

Table 6 summarizes the fuel consumption statistics shared
in Figures 12-13 resulting from simulations implementing
the policies with our proposed architectures, along with the
optimal fuel consumption values attained from the OCP
solutions stored in the trajectory database.

From Figures 12-13 and Table 6, it can be concluded
that the policies have near-optimal fuel consumption perfor-
mance. Indeed, it appears that the mean fuel consumption

FIGURE 13. Fuel consumption histograms for RAQResNet.

values of the trajectories implemented in our proposed poli-
cies are lower than the optimal values. However, the reason
for this is that our proposed policies bring the booster to
the landing location with minor velocity magnitude residuals.
Consequently, this causes slightly less fuel consumption than
the optimal ones because the fuel required for decelerating to
zero velocity is not used, unlike the optimal control solution
in which the landing velocities are exactly equal to zero.

Three trajectories were sampled from the validation set
in the trajectory database. Figures 14 and 15 illustrate the
evolution of the system states and control actions produced
by AQResNet and RAQResNet, respectively, for the same
trajectories.

Figures 14 and 15 show that the optimized policies with
the AQResNet and RAQResNet architectures learned how
to control the booster in a fuel-optimal manner because
the system states evolved over time about the same as the
optimal solutions. However, the optimal actions taken by

VOLUME 12, 2024 16823

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

TABLE 6. Fuel consumption comparison with optimum values.

FIGURE 14. Trained network state trajectories for validation set - AQResNet.

the optimized policies differ slightly from each other and
from the optimal solutions. Although the general thrust
profiles appear similar, the optimized policies have more
bang-bang type control, unlike the optimal solutions. On the
other hand, when we consider the thrust vector angle
profiles and the actions taken by the AQResNet policy are
smoother than those taken by RAQResNet and the optimal
solution. This situation also resulted in slightly different pitch
rate evaluations. However, the overall performance of the
optimized policies can be regarded as near optimal. Even
if the actions taken by the policies vary from the optimal
solutions at some time steps, they re-arranged the actions
in the future to fulfill the mission while being on the fuel-
optimal trajectory.

Considering the real-time computation ability of our
proposed models, since we could not find a chance to imple-
ment our proposed algorithm on an actual flight computer,
we embedded our trained networks on a single-board com-
puter named Raspberry Pi 4 using the Armadillo library [48]
to assess the real-time implementation applicability. Through
rigorous testing, we measured the inference times of our
models, revealing that they could execute each guidance

TABLE 7. Inference times of guidance neural networks.

step within microseconds. The results are presented in
Table 7. These findings prove that the proposed NNs do not
impose an additional computational burden on the guidance
hardware system. Hence, this emphasizes the feasibility and
practicality of real-time implementation.

G. RESULTS OF THE MONTE CARLO ANALYSIS
We conducted Monte Carlo simulations to assess the perfor-
mance and evaluate the robustness of our proposed guidance
approaches against uncertainties and disturbances, including
NN models with AQResNet and RAQResNet architectures
trained with scientific machine learning. We implemented
different scenarios with the 3 degrees of freedom flight model
for the uncertainty and disturbance analysis. We performed
1000 Monte Carlo simulations for all cases presented below.

Case 1: The minimum and maximum values of the initial
conditions listed in Table 1 are assumed to be uniformly

16824 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

FIGURE 15. Trained network state trajectories for validation set - RAQResNet.

distributed between these values. The initial conditions were
sampled randomly from this distribution.

X0 ∼ U(x0min , x0max) (42)

where X0 is the initial condition vector comprising the state
variables and U(min,max) denotes the uniform distribution
over the minimum bound min and maximum bound max.
Case 2: In addition to the Case-1 scenario, multiplicative
±10% uncertainty was given to the drag coefficient, whereas
the lift coefficient was taken as nominal.

CD = CDnom ∗ U(0.9, 1.1) (43)

where CDnom shows the nominal value of the drag coefficient.
Case 3: Unlike the Case-2 scenario, this time ±10%

uncertainty is given to the lift coefficient while the drag
coefficient is taken as nominal.

CL = CLnom ∗ U(0.9, 1.1) (44)

where CLnom shows the nominal value of the lift coefficient.
Case 4: On top of the Case-1 scenario, ±10% uncertainty

is given to both the drag and lift coefficients.
Case 5: Together with the uncertainties existing in

Case-4, measurement noise was added to the state variables
as follows:

S = S + |S| ×N (0, 0.01) (45)

where S denotes the state variables and N (µ, σ) represents
the normal distribution with mean µ and standard devia-
tion σ . It should be noted that noise magnitudes are restricted

to the upper and lower limits owing to the assumption of using
filters to eliminate noise before the guidance and control loop.
The noise on the position states is limited to ±1m. Noise on
velocity components is limited ±0.5ms , noise on pitch angle
θ measurement is bounded by ±0.5◦ and the noise on the
pitch angle rate q is limited to the ±0.5

◦

s . Ispnom represents
the nominal value of the thrust-specific impulse.

Case 6: In addition to the Case-5 scenario, ±5% thrust
specific impulse Isp uncertainty was added to account for the
unmodeled thrust dynamics.

Isp = Ispnom ∗ U(0.95, 1.05) (46)

TheMonte Carlo analysis results for the optimized policies
AQResNet and RAQResNet, which were trained only for the
nominal conditions, are tabulated in Table 8 for each case
described above. This table summarizes the touch-down error
and fuel consumption statistics for the worst-case scenarios.

In Table 8,µ, σ and γ denote the mean, standard deviation,
and worst case values, respectively. From Table 8, both
the proposed policies achieved outstanding performance
in Case-1 to Case-4. The uncertainties introduced in the
simulation did not affect the touch-down metrics or the
fuel consumption values, except for the worst-case values
for the touch-down velocities. However, when we evaluate
the worst touch-down velocity magnitudes, it can be seen
that they are lower than 5 m

s , which is indeed compensated
magnitudes with additional controllers that can be employed
simultaneously with our policies. On the other hand, when
measurement noises are added to the system variables, the
touch-down performance metrics start to degrade but not

VOLUME 12, 2024 16825

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

TABLE 8. Monte carlo study results for proposed approach.

catastrophically. The position errors were still within the
acceptable range. Nevertheless, our Monte-Carlo analysis
showed that the touch-down velocities increased with the
addition of measurement noise. This is attributed to the
bang-bang nature of the policies since the additional noise
affects the switching times at some points of the simulations,
which causes these unwanted increases in landing velocities.
However, when the magnitudes are considered, we assume
that they can be tackled with extra effort in the last few
seconds of the landing.

V. DISCUSSION
In our study, we effectively integrated optimal control
and learning control approaches, harnessing their individ-
ual strengths to overcome the limitations of non-learning
and non-optimal methods. Our real-time guidance policy
was formulated using neural networks, which possess an
enhanced learning capacity. These networks were trained
to obtain the optimal control solution, specifically targeting
the minimization of fuel consumption. Consequently, our
approach offers distinct advantages over classical guidance
algorithms, effectively reducing operational costs. Moreover,
unlike non-learning guidance algorithms, particularly con-
vexification approaches, our method leverages the power of
parametric modeling. This enables the execution of guidance
commands in each step, allowing for the re-computation
of optimal actions without resorting to oversimplifications
or compromises on the original problem. This adaptability
and flexibility provide robustness in handling off-nominal
conditions, a significant advantage of the proposed approach.
The simulation results presented in this study provide
empirical evidence to support our claims. They unequivocally

demonstrated that our optimized policy achieves robust
performance, effectively addressing the uncertainties encoun-
tered during vehicle steering along a fuel-optimal trajectory.
Finally, to assess the real-time implementation applicability
of our optimized models, we embedded them in a single-
board computer. Through rigorous testing, we measured
the inference times of our models, revealing that they
could execute each guidance step within microseconds.
This measurement further emphasizes the feasibility and
practicality of real-time implementation.

In a recent study [8], the authors proposed a real-time
guidance policy named DCRNG (Deep Classification and
Regression Network-based Guidance), which employs two
DNNs to establish a nonlinear mapping between the ideal
state and control pairings for a 3-degree-of-freedom motion
model similar to the framework used in our study. (While they
utilized three translational kinematic equations, we opted for
two translational kinematic equations combined with one
rotational dynamic equation.) One DNN was responsible
for the problem classification, whereas the other was
employed for regression to generate guidance commands.
Upon examining their results, it is apparent that the
authors employed DNNs with significantly larger network
architectures than those in our approach. Specifically, they
used networks with 10 hidden layers, each consisting of
256 neurons, for both networks. This results in a total
parameter count that is 2000 times higher than that of
our best-performing models. The computational complexity
and potential overfitting challenges that arise in such
high-dimensional networks are worth noting. In addition,
our models are more suitable for real-time computations
and real-world implementations owing to their lightweight

16826 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

memory requirements. Furthermore, the authors presented
Monte Carlo analysis results considering uncertainties in the
drag force ranging from 1% to 5%. Their findings indicated
a correlated increase in the mean position and velocity
errors as the uncertainty level increased. The generalization
capability of their trained networks may be limited as they
struggle to adapt appropriately to novel scenarios (Out-of-
distribution, OOD). However, we conducted an extensive
Monte Carlo analysis in our study, which encompasses a
broader range of factors beyond aerodynamic uncertainty.
The results demonstrate that the proposed guidance policy
exhibits remarkable adaptability to novel conditions and out-
of-domain distributions. This highlights the robustness and
generalization capabilities of our approach compared to the
limitations of the DCRNG method.

In [23], the authors integrated imitation learning with
deep reinforcement learning techniques to formulate a
guidance policy for the reusable rocket landing problem
within a 3-degree-of-freedom motion model, similar to our
study. In the imitation learning phase, the authors initially
trained a guidance policy network using data obtained
from optimal control problem solutions. Subsequently, they
applied proximal policy optimization within the reinforce-
ment learning framework to improve the performance of
their guidance policy. Initially, only the critic (state value)
network was updated, and after a certain number of epochs,
the actor (guidance) network was also updated. Through
this combined training methodology, the authors achieved
a mean of 6 % higher fuel consumption compared to
fuel-optimal trajectories obtained fromGPOPS software over
100 trajectory samples. In contrast, our proposed approach
produced trajectories that are nearly optimal in terms of fuel
efficiency. Additionally, our Monte Carlo analysis illustrates
the exceptional robustness of our models, maintaining high
accuracy under various disturbances–a characteristic not
distinctly emphasized in the comparative study.

Regarding the stability analysis, in our proof-of-concept
study, we assumed that aerodynamic moments could be
neglected compared to the moments stemming from thrust
control. Consequently, examining the stability of a system
with rigorous proof is challenging. To better understand
the effect of the guidance system on the overall control
regime and vehicle stability, we performed extensive Monte
Carlo analysis. Monte Carlo analysis involved simulating
multiple scenarios with varying parameters, disturbances,
and uncertainties to test the effect of the proposed guidance
system on its stability and robustness. Our proposed approach
has no negative effect on the system’s stability, as our
guidance command generator utilizes system dynamics and
physical limitations. However, since the booster system is
unstable in the open loop, feedback control is required
for stabilization. In our study, we did not implement any
stabilizing controllers in our simulations, which resulted in
oscillations in the system’s responses. Nevertheless, oscil-
latory responses can be observed depending on the degree
of instability, even with feedback control. An analogous

example is the Pole-cart problem in control engineering,
which shares dynamic similarities with an aerodynamically
unstable rocket [49]. The transient responses of the angular
position and angular acceleration of the pendulum exhibit
oscillatory behavior before reaching a steady state despite
being controlled by feedback laws.

A few suggestions are considered for further research.
We will consider applying the scientific machine learn-
ing method with our proposed neural network models
to high-fidelity simulations like the 6-degree-of-freedom
motion model with more realistic subsystems such as
the aerodynamic and actuator models. However, when
realistic subsystem models are considered, they may be
non-differentiable. In this case, owing to the learning out-
comes gained from this proof-of-concept work, we consider
using data-driven surrogate models, which enable it to be
differentiable, making it feasible to employ the proposed
methodology. Moreover, as discussed in our study, we did
not implement a reference tracker or stabilizing controller
in our simulations. In future work, we plan to implement an
inner loop controller in our guidance policy optimization loop
to better assess the system’s overall stability and guidance
and control loop interactions. Finally, to further boost the
performance, we will consider implementing the outstanding
self-adaptive loss weights concept to our hand-crafted loss
function, which was initially proposed for physics-informed
neural networks [50]. Hence, by eliminating the grid-search
approach for the hyper-parameter of the loss weights,
obtaining a more promising training performance might be
possible.

VI. CONCLUSION
In this pivotal study, we have advanced reusable rocket
landing guidance by integrating scientific machine learn-
ing with novel neural network architectures, specifically
Adaptive Quadratic Residual Neural Networks (AQResNet)
and Rowdy Adaptive Quadratic Residual Neural Networks
(RAQResNet). The application of universal ordinary differ-
ential equations within this framework has proven instru-
mental in reducing prediction uncertainty and the amount
of training data required, while also enhancing convergence
speed and accuracy, particularly in challenging out-of-
domain scenarios.

The simulation results show that our proposed approach
with two novel NN models can learn from scarce data
and physical laws simultaneously. As a result, an enormous
performance boost was observed, as it reduced uncertainty
and improved extrapolation and out-of-domain prediction
capabilities. Indeed, Monte Carlo analysis showed that
our trained network’s performance was unaffected by the
disturbances and uncertainties. This reveals how the trained
policy models generalize well to novel conditions that are not
experienced during optimization by learning the governing
physics. In addition, experiments demonstrated that our
proposed architectures have much more expressive power
than the vanilla neural network architectures. To illustrate, the

VOLUME 12, 2024 16827

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

RAQResNet model achieved approximately 300 times lower
validation loss than the vanilla architecture with the same
number of trainable parameters. This quantifiable improve-
ment highlights the transformative impact of our approach in
dealing with complex neural network architectures.

Moreover, when real-world implementation is considered,
the computational loads of our offline-trained network mod-
els are so low that they only include three low-level matrix
multiplications. Moreover, the practical applicability of these
models has been underscored by real-world implementation
tests. Our models demonstrated impressive performance on
a Raspberry Pi 4, with inference times recorded in the
range of several microseconds, showcasing their potential
for real-time computations in modern flight hardware. This
efficiency in computational speed is critical for aerospace
applications, where rapid and reliable decision-making is
paramount.

In summary, our research significantly contributes to the
field of aerospace engineering by enhancing the accuracy and
reliability of guidance systems for reusable rocket landings.
The methodologies and findings presented not only provide
a robust framework for future aerospace applications but also
lay the groundwork for further exploration in more complex
simulations and control systems, leveraging the strengths
of scientific machine learning and advanced neural network
architectures.

REFERENCES
[1] M. Szmuk, B. Acikmese, and A. W. Berning, ‘‘Successive convexification

for fuel-optimal powered landing with aerodynamic drag and non-
convex constraints,’’ in Proc. AIAA Guid., Navigat., Control Conf., 2016,
pp. 378–394.

[2] A. Botelho, M. Martinez, C. Recupero, A. Fabrizi, and G. De Zaiacomo,
‘‘Design of the landing guidance for the retro-propulsive vertical landing
of a reusable rocket stage,’’ CEAS Space J., vol. 14, no. 3, pp. 551–564,
Jul. 2022.

[3] J. Hwang and J. Ahn, ‘‘Integrated optimal guidance for reentry and landing
of a rocket using multi-phase pseudo-spectral convex optimization,’’ Int.
J. Aeronaut. Space Sci., vol. 23, no. 4, pp. 766–774, Sep. 2022.

[4] Z. Song, C. Wang, S. Theil, D. Seelbinder, M. Sagliano, X. Liu,
and Z. Shao, ‘‘Survey of autonomous guidance methods for powered
planetary landing,’’ Frontiers Inf. Technol. Electron. Eng., vol. 21, no. 5,
pp. 652–674, 2020.

[5] M. Gallaher, D. Coughlin, and D. Krupp, ‘‘A guidance and control
assessment of three vertical landing options for RLV,’’ in Proc. Guid.,
Navigat., Control Conf., 1995, p. 3702.

[6] Y. Ishijima, S. Matsumoto, and K. Hayashi, ‘‘Re-entry and terminal
guidance for vertical-landing tsto (two-stage to orbit),’’ in Proc. Guid.,
Navigat., Control Conf. Exhibit, 2012, pp. 192–200.

[7] M. Sagliano, ‘‘Generalized hp pseudospectral-convex programming for
powered descent and landing,’’ J. Guid., Control, Dyn., vol. 42, no. 7,
pp. 1562–1570, Jul. 2019.

[8] J. Wang, H. Ma, H. Li, and H. Chen, ‘‘Real-time guidance for powered
landing of reusable rockets via deep learning,’’ Neural Comput. Appl.,
vol. 35, no. 9, pp. 6383–6404, Mar. 2023.

[9] L. Blackmore, ‘‘Autonomous precision landing of space rockets,’’ in Proc.
Frontiers Eng., Rep. Lead.-Edge Eng. Symp., Washington, DC, USA,
vol. 46, 2016, pp. 15–20.

[10] M. Sagliano, T. Tsukamoto, J. A. M. Hernández, D. Seelbinder,
S. Ishimoto, and E. Dumont, ‘‘Guidance and control strategy for the
CALLISTO flight experiment,’’ in Proc. 8th EUCASS Conf. Aeronaut.
Aerosp. Sci., 2019, pp. 1–13.

[11] P. Simplício, A.Marcos, and S. Bennani, ‘‘Guidance of reusable launchers:
Improving descent and landing performance,’’ J. Guid., Control, Dyn.,

vol. 42, no. 10, pp. 2206–2219, Oct. 2019.
[12] B. Gaudet and R. Furfaro, ‘‘A comparison of partially and fully integrated

guidance and flight control optimized with reinforcement meta-learning,’’
in Proc. AIAA SCITECH Forum, 2023, p. 1628.

[13] M. Szmuk and B. Acikmese, ‘‘Successive convexification for 6-DoF
Mars rocket powered landing with free-final-time,’’ in Proc. AIAA Guid.,
Navigat., Control Conf., 2018, p. 0617.

[14] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. Philip Chen,
‘‘Review of advanced guidance and control algorithms for space/aerospace
vehicles,’’ Prog. Aerosp. Sci., vol. 122, Apr. 2021, Art. no. 100696.

[15] T.M.A.Habib, ‘‘Artificial intelligence for spacecraft guidance, navigation,
and control: A state-of-the-art,’’ Aerosp. Syst., vol. 5, no. 4, pp. 503–521,
Dec. 2022.

[16] D. Izzo, M. Märtens, and B. Pan, ‘‘A survey on artificial intelligence trends
in spacecraft guidance dynamics and control,’’Astrodynamics, vol. 3, no. 4,
pp. 287–299, Dec. 2019.

[17] L. Cheng, Z. Wang, Y. Song, and F. Jiang, ‘‘Real-time optimal control
for irregular asteroid landings using deep neural networks,’’ Acta
Astronautica, vol. 170, pp. 66–79, May 2020.

[18] Y. Song, X.Miao, L. Cheng, and S. Gong, ‘‘The feasibility criterion of fuel-
optimal planetary landing using neural networks,’’ Aerosp. Sci. Technol.,
vol. 116, Sep. 2021, Art. no. 106860.

[19] C. Sánchez-Sánchez and D. Izzo, ‘‘Real-time optimal control via deep
neural networks: Study on landing problems,’’ J. Guid., Control, Dyn.,
vol. 41, no. 5, pp. 1122–1135, May 2018.

[20] R. Furfaro, I. Bloise, M. Orlandelli, P. Di Lizia, F. Topputo, and R. Linares,
‘‘Deep learning for autonomous lunar landing,’’ Adv. Astron. Sci., vol. 167,
pp. 3285–3306, Mar. 2018.

[21] L. Cheng, Z.Wang, F. Jiang, and J. Li, ‘‘Fast generation of optimal asteroid
landing trajectories using deep neural networks,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 56, no. 4, pp. 2642–2655, Aug. 2020.

[22] W. Li, Y. Song, L. Cheng, and S. Gong, ‘‘Closed-loop deep neural
network optimal control algorithm and error analysis for powered
landing under uncertainties,’’ Astrodynamics, vol. 7, no. 2, pp. 211–228,
Jun. 2023.

[23] L. Su, J. Wang, Z. Ma, and H. Chen, ‘‘Real-time guidance for powered
landing of reusable rockets via deep reinforcement learning,’’ in Proc.
IEEE Int. Conf. Unmanned Syst. (ICUS), Oct. 2022, pp. 214–219.

[24] L. Nugroho, R. Andiarti, R. Akmeliawati, A. T. Kutay, D. K. Larasati, and
S. K. Wijaya, ‘‘Optimization of reward shaping function based on genetic
algorithm applied to a cross validated deep deterministic policy gradient in
a powered landing guidance problem,’’ Eng. Appl. Artif. Intell., vol. 120,
Apr. 2023, Art. no. 105798.

[25] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar,
D. Skinner, A. Ramadhan, and A. Edelman, ‘‘Universal differential
equations for scientific machine learning,’’ 2020, arXiv:2001.04385.

[26] L. Huang, D. Vrinceanu, Y. Wang, N. Kulathunga, and N. R. Ranasinghe,
‘‘Discovering nonlinear dynamics through scientific machine learning,’’
in Intelligent Systems and Applications. Switzerland: Springer, 2022,
pp. 261–279.

[27] S. Beregi, D. A. W. Barton, D. Rezgui, and S. Neild, ‘‘Using scientific
machine learning for experimental bifurcation analysis of dynamic sys-
tems,’’Mech. Syst. Signal Process., vol. 184, Feb. 2023, Art. no. 109649.

[28] J. Bu andA. Karpatne, ‘‘Quadratic residual networks: A new class of neural
networks for solving forward and inverse problems in physics involving
PDEs,’’ in Proc. SIAM Int. Conf. Data Mining (SDM), Philadelphia, PA,
USA: SIAM, 2021, pp. 675–683.

[29] M. U. Demirezen, ‘‘Quadratic residual multiplicative filter neural networks
for efficient approximation of complex sensor signals,’’ IEEE Access,
vol. 11, pp. 75236–75268, 2023.

[30] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht,
Y. Bengio, and A. Courville, ‘‘On the spectral bias of neural networks,’’
in Proc. Int. Conf. Mach. Learn., 2019, pp. 5301–5310.

[31] S. Fridovich-Keil, R. G. Lopes, and R. Roelofs, ‘‘Spectral bias in practice:
The role of function frequency in generalization,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 35, 2022, pp. 7368–7382.

[32] A. D. Jagtap, K. Kawaguchi, and G. Em Karniadakis, ‘‘Locally adaptive
activation functions with slope recovery for deep and physics-informed
neural networks,’’ Proc. Roy. Soc. A, vol. 476, no. 2239, 2020,
Art. no. 20200334.

[33] A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis, ‘‘Adaptive activation
functions accelerate convergence in deep and physics-informed neural
networks,’’ J. Comput. Phys., vol. 404, Mar. 2020, Art. no. 109136.

16828 VOLUME 12, 2024

U. Çelik, M. U. Demirezen: Optimal Reusable Rocket Landing Guidance

[34] A. D. Jagtap, Y. Shin, K. Kawaguchi, and G. E. Karniadakis, ‘‘Deep
Kronecker neural networks: A general framework for neural networks with
adaptive activation functions,’’ Neurocomputing, vol. 468, pp. 165–180,
Jan. 2022.

[35] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[36] U. Çelik, ‘‘Robust booster landing guidance/control,’’ M.S. thesis, Optim.
Syst. Theory, KTH, 2020.

[37] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
New York, NY, USA, 2016, pp. 785–794.

[38] A. Vakayil and V. R. Joseph, ‘‘Data twinning,’’ Stat. Anal. Data Mining:
ASA Data Sci. J., vol. 15, no. 5, pp. 598–610, 2022.

[39] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, ‘‘Optuna: A next-
generation hyperparameter optimization framework,’’ in Proc. 25th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Min., 2019, pp. 2623–2631.

[40] K. Hornik, M. Stinchcombe, and H. White, ‘‘Multilayer feedforward
networks are universal approximators,’’ Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[41] T. Chen and H. Chen, ‘‘Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to
dynamical systems,’’ IEEE Trans. Neural Netw., vol. 6, no. 4, pp. 911–917,
Jul. 1995.

[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning rep-
resentations by back-propagating errors,’’ Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[43] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
2016, arXiv:1609.04747.

[44] M. M. Lau and K. H. Lim, ‘‘Review of adaptive activation function in deep
neural network,’’ in Proc. IEEE-EMBS Conf. Biomed. Eng. Sci. (IECBES),
Dec. 2018, pp. 686–690.

[45] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, ‘‘Deep learning with
S-shaped rectified linear activation units,’’ in Proc. 13th AAAI Conf. Artif.
Intell., 2016, pp. 1737–1743.

[46] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, ‘‘Julia: A fresh
approach to numerical computing,’’ SIAM Rev., vol. 59, no. 1, pp. 65–98,
Jan. 2017.

[47] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. Int. Conf. Learn. Represent., Dec. 2014, pp. 1–15.

[48] C. Sanderson and R. Curtin, ‘‘Armadillo: A template-based C++ library for
linear algebra,’’ J. Open Source Softw., vol. 1, no. 2, p. 26, Jun. 2016.

[49] J. Pei and P. Rothhaar, ‘‘Demonstration of the space launch system
augmenting adaptive control algorithm on pole-cart platform,’’ in Proc.
AIAA Guid., Navigat., Control Conf., 2018, p. 0608.

[50] L. D. McClenny and U. M. Braga-Neto, ‘‘Self-adaptive physics-informed
neural networks,’’ J. Comput. Phys., vol. 474, Feb. 2023, Art. no. 111722.

UGURCAN ÇELIK received the Graduate degree
from the Aerospace Engineering Department,
Middle East Technical University, one of Turkey’s
leading universities, in 2017, and the master’s
degree from the KTH Royal Institute of Tech-
nology, Sweden. He is currently pursuing the
Ph.D. degree with Cranfield University under the
supervision of Prof. Gokhan Inalhan. Following
his graduation, he began working as a System
Design Engineer with ROKETSAN Missiles Inc.,

a prominent company in the defense industry. After a year of employment,
he embarked on a journey to further his education. During the master’s
degree, he gained valuable experience in the field of artificial intelligence.
Upon completing his education, he returned to Turkey and continued to
advance his career in the realm of artificial intelligence.

MUSTAFA UMUT DEMIREZEN (Senior Mem-
ber, IEEE) received the B.S., M.Sc., and Ph.D.
degrees in electrical and electronics engineering
from Gazi University, in 2000, 2002, and 2015,
respectively. From 2000 to 2013, he was an
Engineer Officer with the Turkish Naval Forces,
from 2000 to 2013. After resigning from the
Turkish naval forces, he worked for several
defense companies, such as STM Defence Inc.
and ROKETSAN Missiles Inc. as a Researcher

and then a Group Manager for research and development projects in
artificial intelligence, from 2013 to 2021. He was with the Huawei Research
and Development Center as a Research and Innovation Manager. Since
2023, he has been with UDemy Inc. as a Senior Manager in machine
learning engineering with the Data Products Department. He is the author
of five artificial intelligence subjected books and more than 20 scientific
articles. His research interests include artificial intelligence, deep learning,
neuromorphic computing, spiking neural networks, scientific machine
learning, and physics-informed neural networks. He is an Associate Editor
of the journal of Mesasurement and Control. He was a recipient of the
AIAA/IEEE Digital Avionics Systems Conference (DASC) Best Session
Paper Award, in 2021, and IEEE UBMK-2022, International Conference
On Computer Science and Engineering, Best Paper (Third place) Award,
in 2022.

VOLUME 12, 2024 16829

