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ABSTRACT This work aims to simplify the characterization process of coded-apertures for computational
imaging (CI) at microwave frequencies. A major benefit of the presented technique is the minimization of
the processing time needed to calculate the system sensing matrix for microwave Cl-based compressive
sensing applications. To achieve this, a deep learning-based approach which is capable of generating the
sensing matrix using features learned directly from the coded-aperture distribution is proposed. To avoid
the vanishing gradient problem, the proposed deep learning network contains skip connections. Using a
dataset of 1,000 testing samples, the average normalized mean-squared-error (NMSE) calculated between the
sensing matrix generated by the conventional method and that predicted by the proposed network is 0.0036.
Moreover, the average mean-squared-error (MSE) calculated between the images reconstructed using the
conventional and the predicted sensing matrix is 0.00297. In addition to providing high-fidelity estimations
with minimized error, we demonstrate that using the trained network, the prediction of the sensing matrix
can be achieved in 0.212 s, corresponding to a 65% reduction in the computation time needed to calculate
the sensing matrix. This has significant outcomes in achieving real-time operation of CI-based microwave
imaging systems.

INDEX TERMS Computational imaging, deep learning, image reconstruction, microwave imaging, sensing
matrix.

I. INTRODUCTION

Imaging using microwave frequencies has received signifi-
cant traction across a variety of applications, including secu-
rity screening [1], medical imaging [2] and nondestructive
testing [3]. One of the key advantages of microwave imaging
is its ability to penetrate optically opaque materials using
electromagnetic (EM) waves. Moreover, microwave radiation

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingchun Chen

is non-ionizing, making it safe for exposure to humans,
which is in contrast to X-ray imaging [4]. Conventional
microwave imaging approaches are often based on synthetic
aperture radar (SAR) techniques. SAR typically relies on
performing a raster scan [5], mechanically or electronically
scanning the radar transmitters and receivers to achieve a
point-by-point probing of the imaging scene information in a
sequential manner captured at the Nyquist interval [6]. While
these methods yield good-quality image reconstructions, such
techniques can exhibit several drawbacks because of the
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raster scan requirement, including a slow data acquisition
process and increased hardware complexity. An alternative
technique which can improve the data acquisition speed is
computational imaging (CI) enabled by means of coded-
apertures [7], [8], [9]. CI systems probe the scene under inves-
tigation using a set of spatially-incoherent radiation patterns
(or measurement modes) [10]. These modes can be generated
in different ways. One approach consists of employing
a frequency diverse antenna, i.e., a metasurface antenna
populated with randomly distributed radiating elements of
different sizes, such that their behaviour changes as a function
of radiation frequency [11]. As a consequence, the antenna
exhibits quasi-orthogonal radiation patterns. One of the issues
of this approach is that it requires the use of large frequency
bandwidths to acquire enough information from the imaging
scene. A different technique, which is the one considered
in this paper, relies on dynamically reconfigured coded-
apertures to generate the diverse measurement modes [12].
In this case, a metasurface antenna is populated with radiating
elements that can be tuned on and off dynamically, by means
of a switching element such as a pin diode [4], [10]. Then,
the quasi-orthogonal radiation patterns are generated by
changing the tuning states of the radiating elements. In this
case, each aperture configuration synthesized with a set of
corresponding on/off radiating elements is considered a mask.

The advantage of CI is that the number of data acquisi-
tion channels can be reduced significantly, decreasing the
hardware complexity [4]. The reason behind this is that the
coded-aperture-based antennas used in CI systems are able
to encode the scene information onto the measurement modes
that they radiate, achieving a physical-layer compression [4].
However, CI techniques may require a considerable amount
of computational power and time, particularly when the
aperture size is electrically large, and when electrically large
scene sizes are considered for imaging. In particular, one
of the main issues regarding the computational burden of
most CI systems is the calculation and storage of the sensing
matrix. For instance, in [13], the authors showed that for
imaging electrically-large scenes, such as those including
human-size targets, even constraining the imaging domain
to a reduced volume enclosing the target itself, the scene
can consist of a significant number of unknowns (or pixels).
This, in turn, makes the calculation of the sensing matrix
significantly time-consuming and hardware-intensive. The
calculations in [13] require more than 90 GB of memory
using single precision.

To achieve a higher efficiency in CI, some authors
proposed to generate new sensing matrices for compressive
sensing. For example, [14] proposed a sensing matrix
generation method where a Bernoulli sensing matrix with
more columns than the required size was generated. This
was followed by the removal of columns with minimal
contribution by implementing inner products and threshold
comparisons. Compared with directly generating a conven-
tional Bernoulli sensing matrix, the proposed method can
enhance the column orthogonality property of the produced
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Bernoulli sensing matrix. In [15], a variant of a deterministic
random sensing matrix was designed. Compared to conven-
tional sensing matrices, including Bernoulli and Gaussian
matrices, this proposed sensing matrix can provide more
accurate reconstructions. Other works also investigated and
compared the resolution of CI reconstructions with the help
of different types of sensing matrix [16]. The results of
these studies suggested that the Hadamard random matrix can
provide a higher peak signal-to-noise ratio (PSNR) than other
types of random matrices.

Recently, the use of deep convolutional neural networks
(CNNs) to solve electromagnetic imaging problems has
gained significant attention [17], [18], [19]. Moreover,
a significant number of studies have also explored the
use of machine learning and deep learning for microwave
imaging systems. Some of these works deal with image
reconstruction [20], [21], [22], classification [23], [24], [25],
feature recognition [26], [27], [28] and localization [29], [30],
[31]. Another area that recently received significant traction
is the solution of the non-linear inverse problem in radar
imaging through deep learning approaches [32], [33], [34].
Inspired by these works, we focus our attention on the sensing
matrix level of Cl-based imaging architectures.

There are some studies leveraging deep learning tech-
niques to design a sensing matrix in CI. In [35], a network
that contained a sampling sub-network and a reconstruc-
tion sub-network was designed. Original images and their
corresponding reconstructions were regarded as the input
and the output of the network, respectively. The sampling
sub-network was used to compress the input images into
compressed measurements, while the reconstruction sub-
network was for reconstructing images from the obtained
compressed measurements. Compared with the Gaussian
random matrix, it was shown that the sensing matrix designed
by the proposed network in [35] can provide higher PSNR on
image reconstructions. Reference [36] proposed a network
that consisted of cascaded fully connected and multistage
convolutional layers, where the input and the output of the
network were both images. The network presented an end-
to-end learning process. The model was trained to acquire
information on both the compressed measurements extracted
from the input image and the reconstruction process applied
to the respective compressed representations. Thus, the main
purpose of [36] was not only to reconstruct images from
the compressed measurements extracted from the input
image but also to design a sensing matrix that has less
average coherence with a given basis than a randomly
selected sensing matrix. Moreover, [36] presented further
comparisons showing that the designed sensing matrix from
the proposed network can provide reconstructed images with
higher PSNR than the reconstructed images generated by
other sensing matrices. In the fully connected neural network
in [36], the compressed measurements were the output
when the original scene information was provided as input.
Consequently, the weights of the fully connected layer in this
network were the corresponding sensing matrix. A similar
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approach was proposed in [37], where an auto-encoder
architecture was leveraged to simultaneously estimate the
sensing matrix and the restoration of the original sparse
signal. Specifically, the encoder component within the auto-
encoder architecture was configured to emulate the linear
measurement process, while the decoder was tasked with
approximating the sparse signal recovery from the under-
sampled linear measurements. The results showed that the
proposed network can achieve a significantly higher perfor-
mance in image reconstruction, as compared with methods
which did not apply deep learning techniques. However, it is
important to note that the methodology employed in our work
for learning the sensing matrix is fundamentally different
from previous studies. In prior works, the sensing matrix
is typically derived from the reconstructed image as the
input. Differing from the above-mentioned works, our work
is focused on calculating the sensing matrix using a neural
network, directly from the transmit and receive aperture fields
inherent to a CI system. Notably, the approaches proposed
in previous works necessitates the prior reconstruction of
the scene as a prerequisite for sensing matrix prediction,
which is a potentially challenging task. In contrast, our
method exclusively relies on the aperture fields, eliminating
the need for scene reconstruction. As evident from the
results provided in the manuscript (Section V), our approach
offers a significantly more efficient means of computing
the sensing matrix in a considerably reduced time frame
when compared to computing the sensing matrix using
conventional techniques [4], [13], [38].

As outlined earlier, calculating the sensing matrix of an
imaging system from the transmitter and receiver aperture
fields is a computationally complex task. This article
proposes to leverage deep learning techniques to generate
the sensing matrix of a CI system more efficiently. To the
best of our knowledge, this is the first time that the use
of deep learning techniques to build the sensing matrix is
explored for coded-aperture-based microwave CI systems.
With the help of the proposed network, the computation time
of generating the sensing matrix is reduced to less than half
of the time required by the conventional technique, which
will be explained in Section II. Results show that the sensing
matrix can be successfully learned, enabling the retrieval of
similar resolution images (comparable with those obtained
with the sensing matrix computed using the conventional,
computationally expensive methods).

The main contributions of this paper are:

o A novel CNN network is developed to predict the sens-
ing matrix of a CI system, given the transmit and receive
aperture fields. The calculation of the sensing matrix
from the aperture fields is a computationally expensive
task that requires the processing of large data volumes.
Prior literature has presented hardware parallelization
strategies aimed at accelerating the computation of these
matrices. In our research, we propose another approach
that eliminates the need for additional parallelization
methods to enhance the computational efficiency of the
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process. To the best of our knowledge, it is the first time
that the prediction of the sensing matrix within a coded-
aperture CI system is performed directly from the coded-
aperture fields, leveraging deep learning methodologies.

o The proposed network architecture designed for the
CI framework incorporates skip connections, inspired
by the residual network design. Additionally, in this
architecture, the batch normalization layer is strate-
gically positioned before the activation and convolu-
tional layers. This arrangement optimizes information
transmission from the input to the output, facilitating
effective training of the network. Notably, given the
complex-valued nature of the data, a transformation
is introduced in the architecture. This transformation
separates complex-valued data into two channels: real
and imaginary components, ensuring compatibility with
the chosen network architecture.

o The viability of the research lies in the evaluation
of the proposed network’s performance within real-
world conditions, with a specific focus on the system
noise. The paper includes an in-depth analysis of
the correlation between the model’s performance and
system noise levels. The proposed network not only
showcases a substantial reduction in computation time
but also shows a considerable performance across both
ideal and noisy scenarios. These findings demonstrate
the significance and merit of this work.

The article is organized as follows. Section II provides an
introduction to the CI paradigm and the image reconstruction
algorithms. Section III explains the proposed deep learning
architecture, which is based on a CNN architecture. The
achieved results are discussed in Section IV, where they are
also compared with those obtained with the conventional
technique. Finally, the main conclusions are drawn in
Section V.

Il. COMPRESSIVE RADAR IMAGING

A. MATHEMATICAL BACKGROUND FOR COMPUTATIONAL
IMAGING

Whereas the background of CI was introduced briefly in
Section I, in order to explain how the CI problem is addressed,
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FIGURE 2. The proposed network consists of 2 residual blocks and 2 convolutional layers with 1 x 1 x 1 filters. The structure of the residual
blocks is inspired from [39]. Each convolution layer is composed of a batch normalization operation, a non-linear activation function and a 3D
convolution operation. Moreover, two 1 x 1 x 1 filters convolution layers help to change the number of channels.

the mathematical framework of CI is given here. Following
the first Born approximation [11], [40], [41], the scattered
field, Eg.qr, contains the reflectivity information of each pixel
of the scene, p(r) [42]:

Escar = / P EipdV, (D

\%4

where r denotes the coordinates vector of each pixel of the
scene, and Ejy, is the incident field from the aperture.

The signal measured at the receiver, g, in matrix form,
is given by:

@

where H is the sensing matrix. We note that, in this work, the
bold font is used to denote vector-matrix notation. H is given
by the dot product of the fields radiated by the transmitter
and the receiver, respectively, propagated to the scene [43].
The transmitter and receiver apertures can be modelled using
a set of equivalent sources. In particular, each aperture is
discretized into Ny equivalent sources, and the radiated field
corresponding to the m-th measurement mode at a point r of
the scene is given by:

gZHp’

Ny

E(m,r) = Z

s=1

s e_j%nr;—ru’ 3)
llrg —rll

where «,, ; denotes the field value of the s-th equivalent
source for the m-th measurement mode and r), indicates its
position while f is the frequency, and c is the speed of light
in free-space.
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The measured signal, g, is a vector of size M x 1, where
M is the number of measurement modes, and the sensing
matrix has size M x N, where N is the number of pixels in
the imaging scene.

81 Hyi --- Hin o
g2 Hyp --- Hyn

= . ) : @
&M Hy1--- Hy N PN

As it can be observed, the sensing matrix is not necessarily
square, i.e., M # N. In order to estimate the reflectivity of
the scene, p,,., it is possible to resort to different techniques,
such as matched filtering [40]:

&)

where H' denotes the conjugate transpose of the sensing
matrix.

Prec = HTg7

B. IMAGING SETUP

In this paper, the imaging frequency is set to 15 GHz. The
imaging scene is located at a distance of 10A from the
aperture plane, where A denotes the free-space wavelength
at the imaging frequency, 15 GHz. The reason for selecting
the imaging distance as 10A is to position the imaging
scene within the Fresnel region of the transmit and receive
apertures [44]. The size of the imaging scene is 44 X 4A.
The imaging system consists of two dynamically tunable
apertures. These two apertures, separated by 0.2X, operate
in a bi-static setting, as depicted in Fig. 1. Each of the
apertures is identical and has a size of 84 x 8A. As previously
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TABLE 1. Parameters of the imaging system and the imaging scene.

Transmitting Aperture Size 8\ X 8\
Receiving Aperture Size 8\ X 8\
Number of Positions on each Aperture 256
The gap between Transmitter and Receiver 0.2
Imaging Distance 10X
Scene Size 4N X 4
Imaging Frequency 15 GHz
Number of Pixels on Scene 196

explained, each aperture is modelled using a set of equivalent
sources. In particular, the aperture is discretized in a
16 x 16 set of positions (i.e., 256 points), separated by
half a wavelength (1/2). Also, the same set of masks (i.e.,
measurement modes) are considered for both apertures.
We note that, whereas these parameters are chosen for our
simulations, without loss of generality and depending on
the requirements of the desired applications, these system
parameters can be scaled to other frequencies and varied to
study other scenarios. The main parameters of the imaging
setup in our work are summarized in Table 1.

Ill. DEEP LEARNING NETWORK

A. NETWORK ARCHITECTURE

Details about the deep learning network considered in this
work are provided in this section. The proposed network
employs residual networks [45], as depicted in Fig. 2. The
short skip connection, as shown in the figure, is the charac-
teristic of a residual network. This connection combines the
input data and the output data in multiple layers in order to
avoid the information loss resulting from multiple layers of
computation. In other words, it is able to enhance gradient
propagation.

As shown in Fig. 2, the proposed network is composed
of two residual blocks, two convolutional layers with
1 x 1 x 1 filters, and one max-pooling layer which
reduces the convolutional layer dimensions by half. Each
residual block in the proposed network contains seven
layers, where each layer consists of a batch normalization,
a three-dimensional (3D) convolutional operation and a leaky
rectified linear unit (ReLU) [46], [47]. In this work, a leaky
ReLU with a negative slope coefficient of 0.1 has been
considered. Generally, batch normalization is applied after
the convolution and activation operations. However, as shown
in Fig. 2, in the proposed network the batch normalization
layer is placed before the activation and convolution steps.
The reason is that with the help of such a sequence, in the
forward and back-propagation of the network, information
can be directly transmitted from one residual block to another
residual block. This mode of information transmission can
make the network better trained, as proved in [39], [48],
and [49]. Fig. 2 also shows the structure of the residual block.
The size of the filters in the 3D convolutional operation layers
in the residual blocks is the same, which is 3 x 3 x 1, and
the number of filters used are 8, 16, 32, 64, 64, 64, and 64,
respectively.
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FIGURE 3. Singular value spectra for the imaging system. It states that
the SNR of a reconstruction with 70 measurement modes is slightly
higher than 30 dB. It shows that the scene is undersampled, and also in
the presence of noise.

Two skip connections in each residual block are included to
avoid the vanishing gradient problem [50], [51]. As shown in
Fig. 2, the first skip connection links the input of the residual
block with the output of the convolutional layer I'V. In terms of
the architecture constructed by the former four convolutional
layers, the second skip connection links the input of the
convolutional layer V with the output of the residual block.

Moreover, in order to match the size of the input dataset
with the output, a max-pooling layer is used with a stride of
1 and a pool size of 3 x 3 x 1. The rationale behind keeping
the third-dimensional size of filters and pooling layers at
1 is based on the assumption that each aperture distribution
scenario is independent of the other and should not influence
or interfere with the others. The first 1 x 1 x 1 filter
convolutional layer has 64 filters, which helps to increase
the number of channels for subsequent skip connections.
Meanwhile, the second 1 x 1 x 1 filter convolutional layer
at the end of the proposed network has only two filters. This
selection helps with decreasing the number of channels.

B. DATA GENERATION

As previously discussed, the fields radiated by each aperture
are modelled by a set of equivalent sources. In particular,
each aperture is discretized into 256 points uniformly
distributed according to a 16 x 16 regular grid. As a
consequence, each measurement mode or mask is discretized
into 256 complex values (representing amplitude and phase).
The number of masks considered is 70, which was found to be
optimal by means of a Singular Value Decomposition (SVD)
analysis [52] as depicted in Fig. 3. The total number of masks,
M =170, is significantly smaller than the number of pixels in
the scene, N = 196. Hence, the scene is undersampled (M <
N). It should also be noted that in this work we leverage the
concept of Graphics Processing Unit (GPU)-parallelization,
and the size of the sensing matrix (M x N) cannot be further
increased due to GPU memory limitation during training.
However, we note that the size of the imaging problem can be
increased if a GPU with a larger memory is used without loss
of generality. Consequently, each input data sample consists
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of the 70 aperture field distributions corresponding to the
M = 70 masks (or measurement modes) considered to image
the scene. Thus, referring to Fig. 2, the input and the output of
the proposed network are the aperture fields and the sensing
matrix of the system, respectively. It should be noted that the
aperture fields and the sensing matrix are complex-valued.
Thus, the real and imaginary parts are separated into two
channels in the network. The size of the input data in each
channel is 16 x 16 x 70. The size of the output data is
70 x 196 x 2, which is equal to the number of masks times
the number of pixels of the scene times two (to account for
the real and imaginary parts). To avoid an additional reshape
layer in the network, which would entail additional training
time, the output size is formatted to 14 x 14 x 70 x 2 when
a square scene is considered.

C. TRAINING PROCESS OF THE NETWORK
The proposed network has been trained using 14,000
randomly selected training dataset pairs. The training and
the validation process are performed on a CUDA platform
with an NVIDIA Quadro RTX A5000 GPU with 16 GB
dedicated memory size. On the other hand, the testing process
is carried out on a 12 Generation Intel (R) Core (TM) i7-
1265U CPU. The reconstructions of the images obtained with
the conventional procedure and the proposed network were
both implemented on the MATLAB platform with the same
12" Generation Intel (R) Core (TM) i7-1265U CPU.

Before training, the entire dataset is standardized using
a normal standardization process. Standardizing the data
generally speeds up the learning process and leads to faster
convergence, since the post-processed data elements will
follow a normal distribution with a mean of zero and a
variance of one [53]. The standardization process is done as
follows:

Z = Xi — M’
o

where Uy indicates the number of samples under training
and U, denotes the number of elements in a sample. Z
denotes each post-processed element, u indicates the mean
value of all training dataset elements, and o indicates the
standard deviation value of all training dataset elements. x;
denotes the pre-processed elements. The training (14,000
samples), validation (1,000 samples) and testing (1,000
samples) dataset elements are standardized by the mean
and the standard deviation of the training dataset, and the
standardization is implemented on both the input and output
of both datasets.

The loss function during the training of the network is
important, as it optimizes the model performance [54]. In this
work, the mean square error (MSE) is considered to be the
loss function. The general form of MSE is given by:
S =i Fo(i) — Fp()

p , (N
where d indicates the number of elements of the matrix
F, which is the same for both ground truth and predicted

i=1,2,3...(Usx U) ©6)

MSE =
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FIGURE 4. Validation MSE loss (solid red curve) and training MSE loss
(blue dashed curve).

value. F(i) denotes the i-th ground-truth matrix, while Fp(7)
denotes the i-th prediction matrix.

The mini-batch size of 8 was chosen for the proposed
network architecture due to the limitation in GPU memory.
The weights in the network are initialized using the He
initialization technique [55]. It initializes the weights under
a normal distribution with a mean of zero and a variance of
2/t, where t is the total number of elements of the input.
The training of the network is optimized with the Adam
optimizer [56] using the following exponential decay learning
rate:

L = Los~, (®)

where the initial learning rate, Lo, is considered to be 1 x 1074,
the decay rate, B, is chosen to be 0.96 and k is the epoch
number. The epoch number is set to 10,000, but the model is
trained for only 100 epochs because the loss value is already
low and stable at the 100” epoch. This is a case of early
stopping, where the training process is stopped before the
maximum number of epochs is reached because the model
has already converged.

The learning curves for the 100 epochs (training and
validation) are presented in Fig. 4. Analyzing the behavior
of the training curves in the figure, an effective training
performance is observed. Fig. 4 shows that the training of the
proposed network architecture is successful, as the curve of
the validation MSE loss converges to the curve of the training
MSE loss. Although the loss value at the 100 epoch is low
enough, it is still possible to achieve a lower loss value by
training the network for longer epochs. However, it would
require much more computational time due to a significantly
larger size of the training dataset.

D. NETWORK PARAMETERS AND TRAINING
PERFORMANCE

One of the most important factors in the learning process
is the number of residual blocks used in the network
architecture. Increasing the number of residual blocks,
increases the training parameters in the network. Thus, the
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FIGURE 5. MSE curves for (a) training and (b) validation steps for several
networks considering a different number of residual blocks.

network can learn the underlying behavior in the dataset
and find the latent connection between the input data and
output data better [57]. However, a larger network requires
more training time. Hence, there is a trade-off between the
size of the proposed network architecture and the accuracy
of the results. Additionally, as explained in [58], more
complex networks may consider the noise in datasets as their
helpful features, resulting in failing to accurately represent
the genuine patterns of the datasets. The outcome of this
phenomenon is that the more complex networks may perform
extremely well on the training set, but the performance
with the unseen samples may not be improved further.
This phenomenon is usually referred to as over-fitting [59].
Hence, choosing the right number of residual blocks in
the network is a crucial step in the design of the network
architecture.

In order to compare the predicted (learned) sensing
matrix with the original sensing matrix the normalized MSE
(NMSE) is used [60]. The NMSE is given by:

SV S Mo, ) — HpG. )2

NMSE = -
= =N ..
S ST HoG, )12

©))
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TABLE 2. Comparison of metrics for different network architectures.

Number of

Residual Block ! 2 3 4
Number of 178,722 | 356,858 | 534994 | 713,130
Parameters

Training Time 4h 43min | 8h 14min | 11h 54min | 14h 09min

Average NMSE 0.414 0.0036 0.0070 0.0085

where Hp and Hp denote the original sensing matrix and
the learned sensing matrix. The implications of how many
residual blocks are considered in terms of the number
of parameters, training time, and accuracy of the model
outcomes can be observed in Table 2. In particular, networks
with one to four residual block(s) are compared, and the
accuracy of the network is measured using the NMSE
of the sensing matrix computed for 1,000 testing dataset
samples.

Table 2 shows that the average NMSE of the predicted
sensing matrices which are generated by the networks with
two or more residual blocks is much lower than the one
obtained 1 residual block. It is observed that with an increase
in the number of residual blocks in the network, the training
time increases significantly. However, a drastic change in
average NMSE is not observed with an increase in the number
of residual blocks. Fig. 5(a) shows the training process for
networks with different numbers of blocks. The training loss
curves of the networks with two or more residual blocks are in
a similar range, while the training loss curve of the 1 residual
block network shows a higher error. The same phenomenon is
also observed in the case of the validation curves, as shown in
Fig. 5(b). As previously discussed, the reason for a marginal
increase in the NMSE in the case of networks consisting of
two or more than two residual blocks is due to over-fitting.
In other words, the two residual blocks network not only
performs better than one residual block network but also
requires less training time than the three and four residual
blocks networks. Therefore, a two residual block architecture
has been selected for the network.

IV. LEARNING RESULT AND DISCUSSION

A. RECONSTRUCTION AND TRAINING RESULT

To provide an assessment of the quality of the reconstructed
images using the predicted (learned) sensing matrix and how
they compare to the images reconstructed directly from the
original (ground truth) sensing matrix, we study the imaging
of three sets of targets, each considering a different set of
transmit and receive aperture fields. The first and the second
targets are an array of reflective stripes oriented along the
x— and y—axes, respectively. The third target is a T-shaped
object. A comparison between the reconstructed images is
shown in Fig. 6. The images obtained with the predicted
sensing matrix using the proposed network are depicted in the
first row of Fig. 6 whereas those retrieved using the original
sensing matrix [40] are shown in the second row. Finally, the
imaged targets, i.e., the ground truth, can be observed in the
third row. It can be seen that the reconstructed images from
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FIGURE 6. Comparison of the reconstructed image quality when using the sensing matrix estimated by
the proposed network (a) and the conventional sensing matrix (b). Ground-truth targets are shown in
(c). Target (i) and target (i) consist of two reflective stripes oriented along the x—axis and y —axis of the

scene. Target (iii) is a T-shaped object.

the predicted sensing matrix are in close agreement with the
reconstructed images from the true sensing matrix. The MSE
between the images obtained with the true sensing matrix
and those retrieved with the predicted one are 1.1 x 1073,
6.2 x 1074, and 5.5 x 1074, for target (i), target (ii) and
target (iii) in Fig. 6, respectively. For a testing data size
of 1,000 samples, the average MSE of the reconstructed
images is calculated to be 0.00297. This observation confirms
that in addition to good qualitative agreement between the
reconstructed images retrieved using the predicted and the
original sensing matrix, quantitatively, the reconstructed
images are also in good agreement. In addition to the
good agreement between the reconstructed images, another
significant advantage of the proposed technique can be
appreciated by comparing the calculation times needed to
obtain the sensing matrix of the coded-apertures forming the
CI architecture. In view of this, a comparison between the
computation times for the true sensing matrix and predicted
sensing matrix has been performed with the testing dataset.
The process of generating the sensing matrix was conducted
10 times, so that the average time can be computed for each
scenario. The conventional calculation of the sensing matrix
with CPU takes an average of 0.595 s, whereas the prediction
of the sensing matrix using the proposed network with CPU
takes an average of 0.214 s. For the result presented in Fig. 6,
the reduction in computation time achieved for the target (i),
target (ii) and target (iii) is 0.380 s, 0.373 s and 0.398 s,
respectively. In other words, the time required to compute the
sensing matrix using the proposed network is reduced by up
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TABLE 3. The summary of numeric results of reconstructions.

Target [6) (i1) (iii)
Conventional Method 1 50 0.588s 0.61s
Computation Time
Proposed Network 0.214s 0.215s 0.212s
Computation Time
MSE 1.1x1073 | 62x107% [ 55 x 107

to 65% as compared to the conventional computation. The
numerical results are summarized in Table 3.

B. ANALYSIS OF THE NETWORK PERFORMANCE WITH
SYSTEM NOISE

To assess the practicality and robustness of the presented
approach, a noise analysis has also been performed wherein
the performance of the learning model in presence of noise is
studied. To this end, two types of noise studies were carried
out. For the first type, different levels of Gaussian white
noise were added to the aperture fields a. As previously
discussed, the radiated field, E(m, r), corresponding to the
m-th measurement mode at a point r of the scene depends on
o. Hence, the noisy aperture distribution is given by:

ay, =a+ Ny, (10

where N is the aperture distribution noise.

In addition, a second type of noise was also considered
to simulate noise in the imaging system. For this, different
levels of Gaussian white noise were also added into the
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FIGURE 7. Comparison of the reconstructed images under noise; (a) and
(b) show the reconstructed images using the predicted sensing matrix at
10 dB and 30 dB SNR levels added to the coded-aperture, (c) and

(d) show the reconstructed images using the original sensing matrix at
10 dB and 30 dB SNR levels added to the coded-aperture.

Columns (1) and (2) denote the reconstructions with 10 dB and 30 SNR
for the back-scattered measurements.

back-scattered measurements, g [61]. The back-scattered
measurement with noise is given by:

gv, =Hp + N>. (11)

Gaussian white noise is considered in both cases due to
the fact that it exhibits a close alignment with the statistical
attributes observed in various noise typologies encountered
within radar systems [10], [40], [62]. Figs. 7(a) and 7(b)
were generated by the proposed network, while 7(c) and 7(d)
were produced with the conventional method. Besides,
Figs. 7(a) and 7(c) indicate that the reconstructed images
are based on 10 dB signal-to-noise ratio (SNR) added to
the aperture fields, while Figs. 7(b) and 7(d) denote that the
reconstruction images are based on 30 dB SNR. As can be
seen, the reconstructed images with 10 dB SNR added to
the aperture fields are of worse quality in comparison to the
30 dB SNR case. This can be appreciated by analyzing the
SVD plots provided in Fig. 3. In Fig. 3, whereas the system
with 10 dB SNR provides fewer than 30 useful measurement
modes (i.e. the number of measurement modes that remain
above the SNR level), the 30 dB SNR case provides more than
60 useful measurement modes. Despite this, even with 10 dB

16852

SNR for the coded-aperture distribution, the outlines of the
imaged object can be distinguished whereas with 30 dB SNR,
the reconstructed images exhibit a good fidelity. Moreover,
in Fig. 7, the left column (labelled 1) and the right column
(labelled 2) indicate the 10 dB and 30 dB SNR during the
acquisition of the back-scattered measurement, respectively.
These results suggest that the proposed network can provide
similar results as the conventional method under a noisy
environment.

V. CONCLUSION

In this article, we developed a CNN with residual blocks to
improve the efficiency of back-propagation computations for
coded-aperture-based microwave CI systems. The proposed
network architecture contains two residual blocks, and each
block contains two skip connections to avoid gradient
descent. The developed network was trained using 14,000
pairs of training dataset and tested using 1,000 pairs of
testing dataset. The CNN successfully enabled the generation
of the system sensing matrix by learning the features of
the aperture distribution set. The achieved results clearly
show the potential of the proposed technique to predict
the sensing matrix of coded-apertures with good accuracy
while producing on par image reconstructions in comparison
to the images reconstructed using the original sensing
matrix. Quantitatively, the average MSE of reconstructed
images was shown to reach as low as 0.00297. We also
demonstrated that the developed CNN system can reduce
the computation time of the sensing matrix by 65% while
maintaining good accuracy. Finally, in the presence of noise,
the proposed network can still provide the sensing matrix that
produces high-fidelity reconstructed images. These results
offer a significant potential for CI-based microwave imaging
systems. In particular, the presented framework opens up
the possibility of obtaining the sensing matrix information
directly from in-situ measurements, eliminating the need
for an additional characterization process to measure the
coded-aperture radiated fields for imaging [63]. Moreover,
the achieved reduction in the calculation time of the sensing
matrix, while ensuring good accuracy, is crucial for real-time
operation capabilities for microwave CI systems.
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