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ABSTRACT Atmospheric Cherenkov telescopes have enabled recent breakthroughs in gamma-ray astron-
omy, enabling the study of high-energy gamma particles in over 90 galactic and extragalactic regions. The
significance of this work arises from the complexity of the data captured by the telescope. Traditional
methods may struggle to effectively distinguish between gamma (signal) and hadron (background) events,
due to intricate temporal relationships inherent in the data. The dataset used for this research, sourced
from the UCI ML repository, simulates the registration of gamma particles. The challenge is to develop a
classification model that accurately identifies these gamma events while handling inherent data complexities
and normalizing skewed distributions. To address this challenge, a classification model is developed using
ten features from the MAGIC gamma telescope dataset. This research introduces the innovative application
of deep learning techniques, specifically Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
and Bidirectional LSTM (Bi-LSTM), to the field of gamma-ray astronomy to classify high-energy gamma
particles detected by the Atmospheric Cherenkov telescopes. Furthermore, the research introduces the
application of square root transformation as a method to address skewness and kurtosis in the dataset. This
preprocessing technique aids in normalizing data distributions, which is crucial for accurate model training
and classification. By leveraging the power of deep learning and innovative data transformations, the best
accuracy of 88.71% is achieved by the LSTM+ReLUmodel with three layers for gamma and hadron particle
classification. These findings offer insights into fundamental astrophysical processes and contribute to the
advancement of gamma-ray astronomy.

INDEX TERMS Deep learning, gamma-rays, gamma-ray telescopes, LSTM, signal classification.

I. INTRODUCTION
Ground-based very high energy (VHE) gamma ray astron-
omy is one of the youngest entries among the numerous
branches of astronomy. This field was pioneered by the
Whipple group, who detected the first TeV gamma rays
from the Crab Nebula in 1989 [1]. Gamma-ray observation
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utilising the imaging atmospheric Cherenkov technique
(IACT) from 100 GeV to 10 TeV has grown rapidly in recent
years. Besides the charged particles of cosmic radiation,
cosmic gamma-ray photons are not affected by magnetic
fields. As a result, studying gamma rays enables us to under-
stand the characteristics of the sources and the acceleration
mechanisms of cosmic rays [2]. Since the gamma rays are
uncharged, they can travel in a straight line and hence carry
a signature of the astrophysical source’s original path. This
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feature of gamma rays makes them among the most valuable
tools for studying not only the source location but also for
understanding and thereby unravelling the physical mecha-
nisms at work inside the astrophysical laboratory. Gamma ray
investigations can also provide information regarding dark
matter annihilation [3]. Leptonic and hadronic particles can
both generate gamma rays.

Because gamma rays are absorbed in the atmosphere,
studying the universe using gamma rays from Earth is
extremely difficult [4]. Prior to the successful adoption
of ground-based detection of gamma rays, satellites were
the only means of exploring the high energy universe [5].
The most significant constraint on the lower sensitivity of
satellite-based investigations is their confined effective area.
As long as there was no significant improvement in the
effective area, there was very little hope of efficiently probing
the VHE universe. This goal was achieved through the suc-
cessful operation of ground-based telescopes detecting and
identifying atmospheric Cherenkov radiation [6]. Ground-
based telescopes have an effective area of ∼105 m2 as
compared to ∼1 m2 for satellite-based telescopes. Despite
the fact that the gamma ray to hadron event ratio is ∼10−3,
gamma-hadron classification is a major issue. Furthermore,
adopting a stereoscopic system with two or more telescopes
enhances the rejection of hadronic events by a factor of 100
[7]. As high-energy cosmic rays pass through the atmosphere,
they produce secondary particles, resulting in widespread air
showers. These particles travel at relativistic speeds, resulting
in Cherenkov radiation in the atmosphere. This radiation
is detected using ground-based detectors. The IACT-based
telescopes gather the Cherenkov photons that fall on these
telescopes. These telescopes have a camera that collects
Cherenkov photons that are reflected from the mirror. The
camera is made up of photomultiplier tubes that are linked
by rapid electronics that digitize and observe the Cherenkov
photon pulse [8].

Deep learning methods [9], [10], [11], [12] provide better
solutions for multivariate problems. Deep Learning is effec-
tive due to its superior accuracy when handling large amounts
of data. They are very good at processing visual, speech, and
text data [13], [14], [15], [16].
RNN (Recurrent Neural Network) is well suited for

sequential data analysis tasks, such as time series or language
data. In the context of the MAGIC gamma telescope dataset
classification, RNN has been used to take into account the
temporal relationship between the features. The sequence of
features extracted from the telescope camera for each event
can be considered as a sequence of input vectors. By using
RNN, the information from the previous time steps can be
retained and used to help classify the current input. This is
particularly useful in scenarios where the sequence of fea-
tures is important for making accurate predictions, and where
traditional machine learning algorithms may not be able to
capture this information. Therefore, by using RNNs, the
model has been taken into account the sequence of features
and improve the accuracy of classification.

The main objective of this research study is to develop
a deep learning-based classification model by adopting the
MAGIC gamma telescope dataset from the UCI machine
learning (ML) repository. Multidimensional datasets are
extremely challenging to manage using traditional methods.
The standard for signal characterization in ground-based
atmospheric Cherenkov devices comprises multidimensional
data. In this article, a classification model based on deep
learning have been employed to sort gamma and hadron
signals from MAGIC gamma telescope data.

II. RELATED WORKS
Zhang et al. [17] made an effective method for extracting
parameters from gamma-ray emissions of special nuclear
materials (SNM) and identifying SNM classes using a back-
propagation neural network (BPNN) and template matching
approach.

For a ground-based atmospheric Cherenkov telescope,
Mradul et al. [18] looked into gamma-hadron separation in
great detail. They employed Monte Carlo event simulation
to evaluate and compare various supervised ML techniques.
These included the Random Forest (RF) method, Artifi-
cial Neural Networks (ANN), Linear Discriminant analysis,
Naive Bayes (NB) Classifiers, Support Vector Machines
(SVM), and the conventional dynamic supercut technique.
For gamma-hadron segregation, the Random Forest approach
has proved to be the most effective ML method.

A case study that compares multivariate classification
approaches was presented by Bock et al. [19]. The input
for the imaging gamma-ray Cherenkov telescope consists
of Monte Carlo data, which has been generated and pre-
processed. Both incoming gamma rays and hadronic showers
contribute to this information, which is then separated into
its respective categories. The data is well-suited for testing
classification algorithms due to the low contrast between the
signal (gamma) and background (hadrons).

Hirashima et al. [20] utilized a ML approach along with
novel features, including 3D dosiomics characteristics cou-
pled with plan and dosiomics features, to estimate and
categorize the gamma passing rate value for volumetric mod-
ulated arc therapy (VMAT) plans. Using the high-energy
stereoscopic system (HESS), Ohm et al. [21] demonstrated
the stability and ability to minimize background noise of their
tree classification algorithm compared to the HESS standard
analysis.

Very Energetic Radiation Imaging Telescope Array Sys-
tem (VERITAS) data was classified using ‘‘boosted deci-
sion trees’’ by Krause et al. [22], and the results indi-
cated improved sensitivity compared to the usual VERITAS
analysis.

To do this, Brill et al. [23] presented a combination of
CNNs and RNNs. Using CTLearn, a freely available Python
programme that use deep learning to analyse data from
IACTs, the team created a CNN-RNN network and discov-
ered inadequate evidence that ordering telescope pictures
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by cumulative magnitude improves background rejection
performance. Nieto et al. [24] employed CTLearn, a python
package that uses deep learning in order to analyse data from
IACT arrays.

Using the water Cherenkov detector with a smaller water
volume and four PMTs and analysing the PMT signal’s spa-
tial and time patterns with a ML method enables optimum
muon tagging, as stated by Conceiço et al. [25].
Algorithms are the backbone of ML, which examines data,

learns from it, and then makes well-informed judgments
based on the information it has acquired. One of the key
advantages of deep learning compared to traditional ML
methods is its ability to perform feature engineering auto-
matically. In order to learn quickly, a deep learning system
may analyse the data for related elements without being
explicitly instructed. We used the MAGIC gamma telescope
dataset, which has 19020 observations with ten characteris-
tics (excluding the target). As a result, we proposed a deep
learning-based strategy for identifying gamma rays.

The major contributions of this article are:
• We proposed an efficient classification model to
identify high-energy gamma particles in Cherenkov
Gamma Telescope data using deep learning techniques.
The proposed classification model consists of several
stages: pre-processing, exploratory data analysis, square
root transformation, dataset segregation, deep learning
classifier, and experimental validation.

• We presented an exploratory data analysis that involves
analyzing the relationships between the target attribute
‘class’ and various features. Scatter plots and heat maps
are used to visualize correlations and patterns. We fur-
ther normalized the skewed distributions of attributes
using square root transformation.

• We trained and evaluated three deep learning models:
Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU), and Bidirectional LSTM (Bi-LSTM). Dif-
ferent activation functions (ReLU and Swish) are used
in hidden layers to improve model performance. The
models are evaluated using various metrics: accuracy,
precision, recall, F1 score, and Area Under the ROC
Curve (AUC).

• Our proposed model, LSTM+ReLU, achieved the high-
est accuracy of 88.71% with all attributes and 88.76%
when the least correlated attribute is removed. The AUC
value for the LSTM+ReLU model is 0.9377, indicating
strong performance in distinguishing between classes.

• The proposed model outperforms existing methods,
including logistic regression, linear discriminant anal-
ysis, and CART. This research study demonstrates that
the proposed LSTM+ReLU model is effective in iden-
tifying gamma particles, with an accuracy of up to
88.76%. The model’s AUC-ROC value further validates
its efficacy in classifying gamma and hadron particles.

The research contributes to the field of gamma-ray astronomy
by providing insights into the classification of high-energy
gamma particles using deep learning techniques.

FIGURE 1. The block diagram of proposed classification model.

TABLE 1. Description of the dataset.

III. METHODOLOGY
Figure 1 illustrates the block diagram of the proposed clas-
sification model. It is composed of several stages, including
pre-processing, exploratory data analysis, square root trans-
formation, dataset segregation, deep learning classifier, and
experimental validation.

A. DATA
The MAGIC gamma telescope dataset, sourced from the UCI
ML repository [26], is designed to simulate the registration of
high-energy gamma particles using the IACT. The Cherenkov
gamma telescope studies high-energy gamma rays by detect-
ing the Cherenkov radiation emitted by charged particles
generated in electromagnetic showers established by gamma
rays. This dataset comprises 19020 instances, each with
10 attributes, and its description is provided in Table 1. The
target variable ‘class’ has two values: ‘g’ (gamma) for signal
and ‘h’ (hadron) for background, occurring with frequencies
of 12332 and 6688, respectively.

The dataset contains information about the pulses left by
incoming Cherenkov photons on a plane of photomultiplier
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FIGURE 2. Scatter plot facet – target distribution (a) fLength Vs fWidth
(b) fLength Vs fSize (c) fLength Vs fConc (d) fLength Vs fAsym (e) fLength
Vs fM3Long (f) fLength Vs fM3Trans (g) fLength Vs fAlpha (h) fLength Vs
fDist (i) fAlpha Vs fDist.

tubes, which is commonly referred to as the camera. This data
allows for discriminating between signal and background
by reconstructing the shower image, which represents the

FIGURE 3. Heat map.

resulting pattern from the Cherenkov photons. The attribute
information includes 11 continuous variables, such as the
major andminor axis of the ellipse, size, concentration, asym-
metry, and angle of the major axis with the vector to origin.

However, it is worth noting that the dataset has a limitation,
as it does not provide information about the distribution of
energy and zenith for the 19020 events.

B. DATA PRE-PROCESSING
Duplicate values and missing values have been identified and
removed. There are 18905 distinct instances. The number of
distinct gamma and hadron instances are 12,326 and 6579,
respectively. Duplicate values can cause biased results and
artificially inflate the performance of the model, while miss-
ing values can lead to inaccurate predictions or biased results
if not handled properly. By removing duplicates and missing
values, the dataset becomes more reliable and the model can
learn patterns and make predictions more accurately.

C. EXPLORATORY DATA ANALYSIS
Figure 2 displays the scatter plot facet, highlighting the dis-
tribution of the target attribute ‘class’. Each subplot (a) to (h)
demonstrates the distribution of ‘class’ and the correlation
between various features, including fLength, fWidth, fSize,
fConc, fAsym, fM3Long, fM3Trans, fAlpha, and fDist. Addi-
tionally, subplot 3. (i) illustrates the distribution of ‘class’ and
the correlation between fAlpha and fDist. Once subjected to
preprocessing, a shower image typically appears as a long
cluster. When the telescope is pointed at a point source and
the shower axis aligns with the telescope’s optical axis, the
telescope’s long axis becomes perpendicular to the camera’s
centre. In this scenario, an ellipse is defined by performing a
principal component analysis in the camera plane, yielding a
correlation axis. The unique properties of the ellipse (referred
to as Hillas parameters) can be utilized as image attributes
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FIGURE 4. (a) Original dataset distribution plot; (b) Square root transformation dataset distribution plot.

for discrimination. Asymmetric energy deposits along the
principal axis offer a means of differentiation. Additionally,
other criteria such as the cluster’s size on the image plane or
the total number of depositions can be employed for discrim-
ination. It is evident from the figure that the length parameter
exhibits a stronger dependence on energy compared to the
width parameter.

Figure 3 depicts the pre-processed dataset’s heat map.
According to the heat map, the ‘fM3Tran’ attribute has
the lowest correlation with all other attributes. As a result,
it is determined to conduct the two sorts of investigations.
One includes all ten features, while the other excludes the
‘‘fM3Tran’ attribute and conducts the assessment on deep
learning classifiers.

D. SQUARE ROOT TRANSFORMATION
A square root transformation can be preferable for normalis-
ing a skewed distribution. Data distributions can be described
as symmetric (low skewness) or asymmetric (high skewness),

and as heavy (high kurtosis) or light (low kurtosis) tails
(normal distribution). It is possible for data to be positively
skewed (with data skewed to the right) or negatively skewed
(with data slanted (data pushed towards the left side) [27].
If the variable has right-skewed data, a square root transfor-
mation can be used to normalise it [28]. Figure 4 (a) shows
the distribution plot of the original dataset with 18905 unique
instances. It is observed that most of the features are skewed,
and their values can be found in table 2. Except for ‘fAsym’,
‘fM3Long’, and ‘fM3Tran’ attributes, the other 7 attributes
have been performed with square root transformation. The
minimised skew and kurtosis values can be found in table 2.
The same can be observed in figure 4 (b). It shows the
distribution plot after square root transformation.

E. DEEP LEARNING
Long short-term memory (LSTM) and gated recurrent unit
(GRU) belong to the category of recurrent neural net-
works (RNNs). Each layer in these networks takes its input,
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TABLE 2. Magic gamma telescope dataset – skew and kurtosis values.

multiplies it by a linear layer, and then adds the result to the
hidden layer weights. This output is passed on to the next
iteration of the network, creating a feedback loop character-
istic of recurrent neural networks. In contrast to traditional
feedforward neural networks, LSTMs include feedback con-
nections [29]. GRUs require fewer training parameters,
leading to reduced memory usage and faster execution com-
pared to LSTMs. However, on larger datasets, LSTM tends
to be more accurate [30]. Both LSTM and GRU models
have an advantage over ordinary RNNs as they mitigate the
problem of the vanishing gradient. Specifically, LSTM and
GRU show better performance in terms of validation and
prediction accuracy [31].

Additionally, a Bidirectional LSTM (Bi-LSTM) is a
sequence processing model that comprises two LSTMs—one
processing inputs in a forward direction and the other process-
ing inputs in a backward direction [32]. In this study, LSTM,
GRU, and Bi-LSTM networks were utilized for classification
purposes.

1) ACTIVATION FUNCTION
With different NN models and datasets, activation functions
behave differently [33]. The ReLU function (rectified linear
activation function) is a piecewise linear function that returns
the input value unmodified if the value is positive and returns
zero otherwise. Two famous types of nonlinear activation
functions are the sigmoid and the hyperbolic tangent. With
both the sigmoid and tanh functions, saturation is a frequent
problem. Therefore, large tanh and sigmoid values snap to
1.0, and small ones to -1.0 or 0.0. The Google Brain Team
released a activation function called Swish, and it’s as easy
as f(x) = x sigmoid (x). Their findings suggest that when it
comes to deeper models, Swish is superior to ReLU. So, it is
decided to validate the deep learning approaches with Swish
and ReLU activation functions.

The ReLU activation function [34] can be defined as,

f(x) =

{
x if x > 0
0 if x < 0

}
(1)

where x is the input to a neuron.
The swish activation function [35] can be expressed as,

swish (x) = x.sigmoid (βx) =
x

1 + e−βx (2)

FIGURE 5. Proposed LSTM+ReLU & LSTM+swish model.

where β is either constant or a trainable parameter depending
on the model.

2) LSTM
Figure 5 depicts the proposed LSTM model. It is com-
prised of three hidden layers, the first of which is an LSTM
base layer, followed by a standard feedforward output layer.
The activation functions ‘‘ReLU’’ and ‘‘swish’’ were used
in hidden layers. Because the dataset is binary in nature,
the ‘sigmoid’ activation function was used in the dense
layer. The ‘‘sparse_categorical_crossentropy’’ as loss func-
tion and ‘‘Adam’’ as optimizer have been employed in the
model.

The equations (3) to (8) show in concise form the forward
pass of an LSTM cell with a forget gate [36]. The lowercase
variables represent vectors.

ft = σg (Wfxt + Ufht−1 + bf) (3)

it = σg (Wixt + Uiht−1 + bi) (4)

ot = σg (Woxt + Uoht−1 + bo) (5)

C̃t = σc (Wcxt + Ucht−1 + bc) (6)

Ct = ft ⊙ ct−1 + it ⊙ C̃t (7)

ht = ot ⊙ σh (Ct) (8)

3) GRU
The GRU’s operation is analogous to that of an LSTM
equipped with a forget gate, however it has fewer parameters
due to the absence of an output gate [37]. Figure 6 depicts
the proposed GRU+ReLU model. It is comprised of three
hidden layers, the first of which is a base layer, followed by
a standard feedforward output layer. Because the dataset is
binary in nature, the ‘sigmoid’ activation function was used
in the dense layer. The ‘‘sparse_categorical_crossentropy’’ as
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FIGURE 6. Proposed GRU+ReLU model.

loss function and ‘‘Adam’’ as optimizer have been employed
in the model. Equations (9) and (10), respectively, express the
update gate vector and reset gate vector of GRU.

zt = σg (Uzht−1 + bz) (9)

rt = σg (Urht−1 + br) (10)

4) BI-LSTM
Bi-LSTM can learn long-term dependencies without keeping
redundant background information [38]. Figure 7 depicts
the proposed Bi-LSTM+ReLU model. It is comprised of
three hidden layers, the first of which is a base layer, fol-
lowed by a standard output layer. Because the dataset is
binary, the sigmoid activation function has been used in
the dense layer. In the model, the loss function ‘‘sparse
categorical crossentropy’’ and the optimizer ‘‘Adam’’ were
used.

F. RESULTS AND DISCUSSION
The preprocessed dataset is consisting of 18905 distinct
instances. The dataset has been divided into 15124 and
3781 occurrences as training and test sets, respectively. The
testing set was used to evaluate the model’s performance.
The identification of Gamma particles has been performed

FIGURE 7. Proposed Bi-LSTM+ReLU model.

with two cases as shown in Table 3. In first case, all ten
attributes have been used and classification accuracy has
been validated with the deep learning models LSTM+ReLU,
GRU+ReLU, Bi-LSTM+ReLU, and LSTM+Swish. In Sec-
ond case, As per the correlation matrix, the ‘fM3Tran’
attribute has the lowest correlation with all other attributes.
So, to test the accuracy of classification, this feature has been
discarded, and the remaining 9 attributes with LSTM+Swish
and LSTM+ReLU have been validated. Figure 8 shows the
loss function plot of (a) LSTM+ReLU (b) GRU+ReLU (c)
Bi-LSTM+ReLU (d) LSTM+Swish (e) LSTM+Swishwith
9 attributes (f) LSTM+ReLUwith 9 attributes models. A loss
function is a function that compares the predicted and target
output values. The loss function is a mechanism for determin-
ing how effectively a classification model models the dataset.
A ‘Sparse categorical cross entropy’ loss function, a ‘‘sig-
moid’’ activation function, and an ‘‘ADAM’’ optimizer with
50 epochs have been performed for validation. Each iteration
of the model’s training with all of the available data is called
an epoch. Themodel’s performance stabilizes around the 50th
epoch, indicating a convergence point where further training
epochs may not yield significant improvements and might
lead to overfitting. Figure 9 shows the confusion matrix of the
classification model. In confusion matrix, the gamma (signal)
is represented as 1 and hadron (background) is represented
as 0. Figure 10 shows the receiver operating characteristic
(ROC) curve and area under the ROC Curve (AUC) values
of each model. Table 3 lists the classification metrics such
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FIGURE 8. Loss function plot (a) LSTM+ReLU (b) GRU+ReLU (c) Bi-LSTM + ReLU (d) LSTM+Swish (e) LSTM+Swish with 9 attributes
(f) LSTM+ReLU with 9 attributes.

as accuracy, precision, recall, F1 score, and AUC of each
model [39]. The training set accuracy of the LSTM+ReLU
model has been obtained as 88.69%. It has been seen that the
LSTM+ReLU model has a better accuracy of 88.71% with
all the attributes for test set, and if the attribute with the least
correlation, fM3Tran, is taken out of the model, the accuracy
is 88.76%.

The performance parameters were expressed in equations
from (11) to (14).

Accuracy = (TP + TN)/(TP + FP + TN + FN) (11)

Precision(p) = TP/(TP + FP) (12)

Recall(r) =
TP

TP + FN
(13)

Here, TP stands for true positive, TN stands for true neg-
ative, FP stands for false positive, and FN stands for false
negative.

f1 Score = (2pr)/(p+ r) (14)

The findings [40] of the area under the ROC curve
(AUC) were regarded as excellent for AUC values rang-
ing from 0.9 to 1. The LSTM+ReLU model has an AUC
value of 0.9377. For the selected problem statement, the
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TABLE 3. MAGIC gamma telescope data set – test set.

FIGURE 9. Confusion matrix (a) LSTM+ReLU (b) GRU+ReLU (c) Bi-LSTM +

ReLU (d) LSTM+Swish (e) LSTM+Swish with 9 attributes (f) LSTM+ReLU
with 9 attributes.

LSTM+ReLUmodel performs better than other models such
as GRU+ReLU, Bi-LSTM+ReLU, and LSTM+Swish.

The integration of Long Short-Term Memory (LSTM)
networks with Rectified Linear Unit (ReLU) activation func-
tions aims to leverage the strengths of both architectures.
LSTMs are proficient in capturing long-term dependencies,
while ReLU offers efficient and non-linear transformations,

TABLE 4. Comparison with existing methods.

enabling better representation learning. By integrating LSTM
layers with ReLU activations, the model combines the
memory-retaining capabilities of LSTMs with the non-linear
transformation and computational efficiency of ReLU units.
This hybrid architecture enables themodel to capture intricate
patterns and dependencies within the data while maintaining
computational efficiency. The hybrid architecture facilitates
improved feature learning and representation, enabling the
model to capture complex relationships and patterns within
the data more effectively. The combination of LSTM and
ReLU helps alleviate gradient-related issues, such as van-
ishing and exploding gradients, by leveraging the stability
and non-linearity introduced by ReLU activations. ReLU
activations contribute to computational efficiency by accel-
erating the training process and reducing computational
overhead, allowing the model to process and analyze data
more efficiently. Experimental evaluations and performance
metrics demonstrate that the hybridization of LSTM and
ReLU architectures consistently yields superior results com-
pared to other combinations. Table 4 presents a comparison
between the proposed approach and the existingmethods. In a
recent study by Emmanuel Dadzie and Kelvin Kwakye [41],
an accuracy of 79.44% was achieved using the CART ML
method. In contrast, our results demonstrate a significantly
higher accuracy of 88.76% with 9 attributes and 88.71%
with 10 attributes, indicating the superiority of our proposed
approach.
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FIGURE 10. RoC Curve (a) LSTM+ReLU (b) GRU+ReLU (c) Bi-LSTM + ReLU (d) LSTM+Swish (e) LSTM+Swish with 9 attributes
(f) LSTM+ReLU with 9 attributes.
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IV. CONCLUSION
Utilizing deep learning algorithms, this study distinguishes
between simulated gamma and hadron events reconstructed
by the MAGIC Cherenkov Telescope. Through rigorous
validation, we evaluated various deep learning models,
including LSTM+ReLU, GRU+ReLU, Bi-LSTM+ReLU,
and LSTM+Swish, using the MAGIC Gamma Telescope
Data Set. To address data distribution issues, a square root
transformation was implemented, focusing on skewness and
kurtosis adjustments.

Our findings distinctly highlight the LSTM+ReLU
model’s prowess, achieving an impressive classification accu-
racy of 88.71%when considering all attributes. Notably, even
upon excluding the least correlated attribute, fM3Tran, the
accuracy remains virtually unchanged at 88.76%. To further
validate the model’s discriminative capability, we employed
the AUC-ROC metric, where the LSTM+ReLU model
prominently recorded an AUC value of 0.9377. This robust
performance solidifies its effectiveness in accurately iden-
tifying gamma rays. The limitation of this research is the
foundational dataset from the UCI ML repository lacks cru-
cial energy and zenith distribution information, which could
affect the model’s accuracy and generalizability to real-world
scenarios. The absence of certain features might limit the
model’s ability to capture the full complexity of gamma-ray
events.
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