
Received 23 November 2023, accepted 19 January 2024, date of publication 29 January 2024, date of current version 2 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3359418

Automated Brain Tumor Segmentation
and Classification in MRI Using
YOLO-Based Deep Learning
MARAM FAHAAD ALMUFAREH 1, MUHAMMAD IMRAN 2,
ABDULLAH KHAN 2, MAMOONA HUMAYUN 1, AND MUHAMMAD ASIM 2
1Department of Information Systems, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia
2Institute of Computer Sciences and Information Technology, Faculty of Management and Computer Sciences, The University of Agriculture, Peshawar,
Peshawar 25130, Pakistan

Corresponding authors: Mamoona Humayun (mahumayun@ju.edu.sa) and Muhammad Imran (mimran@aup.edu.pk)

This work was supported by the Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia, under Project 223202.

ABSTRACT Recent advancements in image processing and computer vision have brought significant
transformations in healthcare technology, leading to significant improvements in diagnosis accuracy, cost-
effectiveness, and time efficiency. Magnetic Resonance Imaging (MRI) is employed by the radiologist for its
remarkable ability to detect even the most subtle brain abnormalities. This study considers a comprehensive
analysis of the two prominent object identification frameworks, YOLOv5 and YOLOv7, leveraging state-
of-the-art deep learning architectures to classify and detect brain cancers within MRI. The brain tumor
dataset encompasses three distinct classes, including meningiomas, gliomas and pituitary tumors. To ensure
precise segmentation of the tumor regions, the preprocessing phase incorporates advanced mask alignment
techniques. This preprocessed dataset has been used to evaluate the performance of the deep learning models
for brain tumor detection and classification. From the numerical results of YOLOv5, it was noticed that a
recall score of 0.905 for box detection and 0.906 for mask segmentation, with a precision score of 0.94 and
0.936, respectively. At an IoU threshold of 0.5, both box detection and mask segmentation achieve a mAP
of 0.947, whereas, at an IoU threshold of 0.5 to 0.95, they achieve mAPs of 0.666 and 0.657, respectively.
In comparison, YOLOv7 exhibits strong performance with box detection accuracy of 0.936 and a mask
segmentation accuracy of 0.935. The recall score are 0.904 for box detection and mask segmentation is
0.903. Notably, the mAP result at the IoU threshold of 0.5 are 0.94 for box detection and mask segmentation
is 0.941. Over the broader IoU spectrum of 0.5 to 0.95, the mAP was 0.677 for box detection and 0.659 for
mask segmentation. To underscore the novelty of the approach, the performance of the proposed framework
is systematically compared with established methods such as RCNN, Faster RCNN, and Mask RCNN.

INDEX TERMS Brain tumor, deep learning, image processing, MRI, YOLO.

I. INTRODUCTION
Brain cancer is a widespread devastating illness that results
in numerous fatalities, even in developed nations. In the
United States, the death toll is particularly alarming, with
approximately 20,000 lives lost to this formidable disease [1].
It is characterized by the uncontrolled growth and spread
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of cells within the body. The human body normally regu-
lates cell growth and multiplication, generating new cells
through cell division. When an old or damaged cell dies,
they are promptly replaced by new ones. However, in cases
where this well-organized process fails, abnormal or damaged
cells can proliferate inappropriately. These cells can manifest
as tissue masses called tumors. Primary brain tumors, for
instance, originate in the brain and typically remain localized
there [2], [3]. On the other hand, secondary brain tumors
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begin elsewhere in the body and subsequently spread to the
brain [4].

Tumors can be classified into malignant and benign [5].
Malignant tumors can infiltrate neighboring tissues and
metastasize, forming new tumors in distant body parts.
In contrast, benign tumors do not invade nearby tissues
and lack the capacity to metastasize. Once removed, benign
tumors usually do not regenerate, unlike malignant tumors.
Although benign tumors do not spread, they can occasionally
attain significant size and pose severe symptoms or life-
threatening risks. Human brain is a crucial for controlling
actions and decision-making, acting as the central hub of
the nervous system. Protecting it from harm is essential and
among potential threats, tumors are a significant concern.
Specific types of brain tumors, such as meningioma, glioma,
and pituitary tumors, result from abnormal cell growth.
Meningiomas typically develop in the thin membranes sur-
rounding the brain and are primarily benign [6]. Despite their
benign nature, they still present a life-threatening disease that
directly impacts human life.

Meningiomas, which make up 36.1% of all primary
tumors, tend to cluster around the brain’s outer and upper
contours. The meninges are the three layers of tissue that
cover and protect the brain and spinal cord, and these growths
emerge as bumps there. Meningioma may be diagnosed
based on its anatomical location, form, and cellular appear-
ance. These tumors develop slowly and might cause serious
side effects, including convulsions and vision loss. However,
gliomas are tumors that develop from the brain’s glial cells
rather than its neurons. They comprise a large subset of
tumors with a wide range of symptoms and danger levels.
In addition, the pituitary glands at the base of the skull are
surrounded by cells, and tumors may form as aberrant masses
there. Due to their closeness to the pituitary glands, which
play a vital role in regulating hormone synthesis and release,
these tumors can affect many biological systems.

The ability to successfully prevent and treat brain tumors
depends on thoroughly understanding the disease’s many
phases. Radiologists have used various imaging modalities,
such as X-ray, Magnetoencephalography (MEG), Com-
puted Tomography (CT), Ultrasound, Electroencephalog-
raphy (EEG), and Magnetic Resonance Imaging (MRI),
to examine brain tumors and aid in accurate diagnosis and
selection of appropriate treatment in recent years. Primary
brain tumors vary significantly in size, location, and other
features, making early diagnosis difficult. Accurate visualiza-
tion of tumors by non-invasive imaging methods relies on the
absorption characteristics of tissues, making it necessary to
precisely delineate absorption rates for efficient tumor imag-
ing [7]. When comparing various imaging options, magnetic
resonance imaging (MRI) stands out as the gold standard
because it can provide information about the brain in both
healthy and diseased states. In the event of anomalies, it aids
in pinpointing the precise tumor type [8]. However, analyzing
MRI scan results requires meticulous observation and a high
level of proficiency, making it impossible for an ordinary per-

son to perform. Unfortunately, some hospitals and healthcare
centers still lack the expertise to meet these requirements,
further contributing to the lengthy diagnostic process [9].

The rapid advancements in machine learning and computer
vision have given rise to power solutions known as Convolu-
tional Neural Networks (CNNs). These cutting-edge models
have successfully addressed complex Computer-Aided Diag-
nosis (CAD) problems, encompassing recognition, classifica-
tion, segmentation, and even detection [10], [11], [12], [13],
[14]. However, many existing CAD solutions for brain tumor
detection and identification relying on CNNs suffer from
inefficiency across various platforms and demand substantial
computational resources. The lighter variants of CNN clas-
sification models have inherent limitations when pinpointing
the tumor’s exact location precisely [15]. On the other hand,
segmentation models can accurately identify the affected area
using a mask, thus enabling tumor localization, albeit at the
expense of higher computing costs. This poses challenges
when employing ordinary devices, leading to inefficient per-
formance and unsatisfactory results.

Several object detection algorithms have been developed to
enhance the detection of various objects in images [16], [17].
Notable algorithms include the Single Shot Multibox Detec-
tor (SSD) [18], R-CNN [19], and Fast R-CNN [20]. Some
recent literature also explores the use of self-supervised deep
learningmodels to enhance performance by leveraging aggre-
gated information related to semantics and position [21], [22].
However, the You-Only-Look-Once (YOLO) algorithm [23]
has gained considerable attention due to its exceptional object
detection system and employs single unified neural network.
This algorithm revolutionized object detection by treating it
as a regression problem, estimating bounding box coordinates
and class probabilities directly from pixel-level information.
It enables the simultaneous prediction of multiple bounding
boxes and class probabilities, having higher performance in
terms of both speed and accuracy. As a result, it has found
widespread application in the medical field, such as its ability
to accurately categorize and locate abnormalities in brain
images, as demonstrated in this study.

In this work, we employed two variant of YOLO deep
learning models, namely YOLOv5 and YOLOv7 that pro-
vides a more efficient solution for segmenting and classifying
brain tumors from MRI scans. The main contributions of this
manuscript are as follows:

1) Dataset alignment: Figshare brain tumor dataset [24] is
used to train and validate the models. Henceforth, the
dataset will be denoted as the BT dataset throughout
the remainder of the article. Mask alignment scheme
has been employed on the images in the dataset and
are aligned using segmentation coordinates to ensure a
standardized format, enhancing analysis outcomes and
training for tumor detection.

2) Tumor segmentation and classification: (a). To the best
of our knowledge, this study stands as a pioneering
effort, being the first to utilize the BT dataset [24]
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for training both YOLO variants. Additionally, it is
noteworthy to highlight the absence of any documented
instances of YOLOv7 implementation in the existing
literature for brain tumor segmentation and classifica-
tion. (b). Furthermore, YOLO V5 has not previously
been utilized with the selected dataset, and its imple-
mentation has been included to validate the results by
comparing them with the state of the art.

3) Evaluation metrics: To assess the performance of
deep learning models in handling multiple-class MRI
scans of brain tumors, various evaluation metrics are
employed, including precision, recall, f1-score, and
mean Average Precision (mAP) at different thresholds
(mAP@0.5 and mAP@ 0.5 to 0.95). These metrics
allow for a comprehensive comparison of the perfor-
mance between the two YOLO variants.

4) Finally, the proposed framework is systematically com-
pared with established methods such as RCNN, Faster
RCNN, and Mask RCNN, to highlight the contribution
of this work.

The remaining paper is organized as follows: Section II
presents a systematic literature review, the scope of this
paper, and highlights the research gap. Section III presents the
research methodology for deep learning based on brain tumor
detection and classification. This section covers data collec-
tion, preprocessing, deep learning models, and performance
analysis methods. Section IV presents the numerical results
and discusses the performance achieved by the considered
deep learning strategies. In Section V, the performance of
the proposed deep learning framework is compared with
state-of-the art results from the literature and presents future
work. Finally, Section VI serves as the concluding section,
summarizing the key finding and insights.

II. LITERATURE REVIEW
Timely detection of brain tumors is challenging, but the
evolution of deep learning algorithms has shown promising
results in accurately detecting brain tumors using digital
images. MRI images, CT scans, and EEG are standard meth-
ods used to detect brain tumors. MRI and CT scans combined
with deep learning models have shown improved accuracy in
correctly detecting brain tumors. Deep learning models based
on CNNs [6], [7], [25], Recurrent Neural Networks [26],
Auto-Encoders (AEs) [27], [28], [29], [30], transfer learn-
ing and hybrid algorithms [31], [32] are explored heavily
by researchers in recent years because of their ability for
early detection and high accuracy. CNNs, in particular, have
become a choice of researchers for detecting and classifying
brain tumors.

BrainMRNet [33] used an end-to-end model to detect
tumors using MR images and CNN, in which dataset con-
tains 253 images, with 155 tumors and 98 normal images.
The model is evaluated in terms of standard parameters and
achieved 96% accuracy, 92% precision, and 96% sensitivity.
Similarly, a research work in [25] has proposed a 3D CNN

that validates extracted features through feedforward NN as
a classification model. The feature extraction process was
accomplished using a pre-trained VGG19 network. Their
model is trained and evaluated using BraTS 2015, 2016, and
2018 dataset with 98%, 96%, and 92% respective accuracy.
Their work achieved higher accuracy in some cases, but the
model result varies depending on the dataset.

A patch-based DNN is proposed in [34] to classify brain
tumors using MR images. The proposed model is eval-
uated extensively using eight datasets, including BraTS
2012 to 2015, Ischemic Stroke Lesion Segmentation (ISLES)
2015 and 2017, and MICCAI. The model achieved a high
Dice Similarity Coefficient of 99.8% on BraTS 2013 dataset
and showed a consistent performance across different modal-
ities and datasets. The authors in [35] have proposed an
automatic system for detecting brain tumors using the seg-
mentation method and DNN. The proposed model used
MR images for training consuming the BraTS 2013 dataset.
The model explored a unique method where local and
global features are consumed for diagnosis. Their model
achieved an 85% dice score, 93% specificity, and 80%
sensitivity

The research work in [36] proposed a deep learning model
to detect Gliomas type of brain tumor using a hybrid CNN
consisting of two and three-path networks. Their model is
evaluated on BraTS 2013 dataset and achieved 0.86 (dice
score), 0.86 (sensitivity), and 0.91 (specificity). The dataset
contains scans of 20 patients with four modalities resulting in
a total of 80 images. A recent study has proposed a decision
support system (DSS) using a pre-trained Densenet201 deep
learningmodel for multi-class brain tumor classification [37].
Two different metaheuristic algorithms are employed for fea-
ture selection in the proposed DSS. The model is trained and
evaluated using BraTS 2018 and BraTS 2019 datasets and
achieves a high accuracy of 95% using the SVM classifier.

The BT dataset used in this study has been explored by
various researchers for brain tumor classification [38], [39],
[40]. For instance, the research work in [38] uses a cus-
tomized dual suppression encoding and factorized bilinear
encoding plugged in to standard CNN model. The model is
heavily tested on different dataset and achieved an accuracy
of 95%. Similarly, the research in [39] proposed a residual
network based on transfer learning for the classification of
brain tumor. The model is checked in terms of accuracy with
standard models including ConvNet, AlexNet, and VGG 16.
The proposed model achieved accuracy of 95% using the BT
dataset.

Many researchers have applied the YOLOmodel for object
detection in medical images because of its speed and perfor-
mance [41], [42], [43], [44]. The YOLOv5 object detection
model, integrated into a portable Microwave Head Imag-
ing system (MWHI), autonomously classifies and detects
human brain abnormalities. Using 400 RMW image samples,
encompassing non-tumor and tumor instances at various loca-
tions, the YOLOv5l model achieves notable metrics: 96.32%
accuracy, 95.17% precision, 94.98% sensitivity, 95.28%
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TABLE 1. Summary of tools, technologies, and models used for Brain Tumor segmentation and classification.

specificity, 95.53% F1-score and 96.12% mean average pre-
cision (mAP). Similarly, the research work in [46] has applied
YOLOv5 using a transfer learning approach to detect the
brain using using BraTS 2020 dataset. The proposed model
achieved 82-92% accuracy depending on the YOLO version,
with YOLOv5 achieving the highest accuracy. Their work
also suggests the tradeoff between the achieved accuracy and
training time. Table 1 summarizes the significant research,
existing tools, technologies, and models utilized to classify
and detect brain tumors.

The literature review demonstrates the utilization of vari-
ous object detectionmodels in conjunction with classification
models for detecting and classifying brain tumors. The
accuracy of these models depends on factors such as the com-
plexity of the underlying algorithm, the dataset utilized, and
the extracted features. Among various object detection mod-
els, YOLO has exhibited remarkable performance in object
detection across diverse domains, includingmedical imaging.
Lightweight CNN classification models, in particular, have
limitations in accurately identifying small objects. Segmen-
tation models like YOLO address this limitation, albeit at a
higher cost. This research aims to provide a balanced solution
by combining the latest object detection models with classi-
fication models to achieve optimal performance.

In [47], an innovative deep learning approach incorporat-
ing transfer learning techniques was introduced, resulting in
an impressive accuracy rate of 99.68% using ResNet50-v2.
Furthermore, [48] developed an automated tumor identifi-
cation and segmentation system, achieving a segmentation
accuracy of 95% by utilizing mask images as labels. The
work in [49] proposed a computer-aided system incorpo-
rating preprocessing, segmentation, and CNN-based clas-
sification, demonstrating improved efficiency compared to
alternative techniques. However, it is worth noting that
the provided illustrations portray some inaccurate in the
segmentations.

The research work in [50] employed the Faster R-CNN
algorithm for tumor detection, achieving an average preci-
sion of 77.60%. In [51], a CNN architecture was proposed,
achieving a high accuracy rate of 96.56% for tumor clas-
sification. Lastly, [52] combined a pre-trained CNN with
gray-level co-occurrence matrix features, resulting in a %
accuracy rate of 96.5%. Previous work’s lack of specific task
details hinders a comprehensive analysis of overall perfor-
mance. It becomes challenging to fully evaluate and compare
the effectiveness of the related work and models by omit-
ting essential metrics, such as recall or specific detection
thresholds.
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FIGURE 1. YOLO-based Brain Tumor Segmentation and Classification Research Flow Block Diagram.

III. PROPOSED METHODOLOGY
Figure 1 outlines the proposed research’s key steps, start-
ing with a thorough review of relevant literature, including
the most recent papers, leading to dataset compilation. Sub-
sequently, the data undergoes preprocessing and selection.
The proposed model is trained and evaluated using standard
parameters following these steps.

A. DATA COLLECTION
The Brain Tumor dataset of Southern Medical University,
Guangzhou, is utilized for this research acquired from [24]
and [53]. Figure 2 summarizes the dataset, revealing that it
comprises 3064 images from 233 patients. All the images in
the dataset belong to any of the three tumor classes: menin-
gioma, glioma, and pituitary, with proportions of 23.11%,
30.35%, and 46.54%, respectively. Each slice is composed
of 512 pixels.

B. DATA PREPROCESSING
The dataset is converted from .mat format to extract .png
images and masks. Additionally, this study observes that the
tumor border vector does not accurately align with the tumor
in the images. As a result, the research extends to annotating
the tumor using mask images. Figure 3 depicts the images
and corresponding masks, which have been transformed from
.mat to .png format. Subsequently, the masks are utilized to
annotate the images using CV2 accurately.

Algorithm 1 presents the essential steps for converting .mat
files to .png files. It begins by initializing the necessary paths
for the dataset, output directory, and list.MAT files. Next,
an outer for loop iterates over each file in the list (step 3).
Within the loop, the transformation from MATLAB ‘‘.mat’’
images and masks to .png format is performed (step 4).
Following the transformation, the brain tumor polygonal

Algorithm 1 Pseudo Code for Converting .mat to .png Image
Step 1 → Begin
Step 2 → Initialize path to the dataset, path to the output
directory and a list of .mat files
Step 3 → Outer for Loop: for file in files:
Step 4 → Transform : MATLAB.matimages and masks to
.png
Step 5 → Extract : Brain tumor polygonal segmentation
coordinates
Step 6 → Inner for loop : for index, element in enumerate
(seg_coords):
Step 7 → Convert : The extracted coordinates to.txt YOLO
format
Step 8 → End : Inner for loop
Step 9 → End : Outer for loop
Step 10 → End

segmentation coordinates are extracted. This step involves
utilizing image processing and analysis techniques to identify
and extract the coordinates representing the tumor regions
(step 5). Subsequently, an inner for loop is entered, iterating
over the segmentation coordinates (step 6). Each coordinate
in the list is converted to the YOLO format. This process
entails transforming the coordinates into normalized values
relative to the image dimensions and writing them into a .txt
file (step 7). Once all the coordinates have been processed, the
inner loop is exited (step 8). Finally, the outer loop is exited,
completing the conversion and coordinate extraction for all
the .mat files in the dataset (step 9).

Algorithm 2 aims to align the segmentation coordinates to
a standardized format to enable further analysis and training
for tumor detection tasks. It consists of preprocessing and
correction steps by performing morphological closing on a
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FIGURE 2. Distribution of Brain Tumor Slices in the Dataset.

binary mask image (step 3) which closes small holes in
masked brain tumor, finding tumor contours (step 4), approx-
imating contours with polygons (step 6), and converting the
coordinates to the YOLO format (step 8). The aligned seg-
mented annotations are saved in a .txt file, completing the
preprocessing and correction step.

Algorithm 2 Pseudo code for correction of annotations
Input: Binary Mask Image
Output: Aligned Segmentation Coordinates in .TXT
Step 1 → Begin
Step 2 → Initialize Provide binary mask image of brain
tumor, list of coordinates
Step 3 → Perform: Morphological closing C(x, y) =

E(D (f (x, y)), B)
Step 4 → Find: Contours of tumor in image
Step 5 → for loop: for contour in contours:
Step 6 → Approximate: Contour with polygon
Step 7 → Append: Polygonal coordinates to list of coordi-
nates
Step 8 → Convert: List of coordinates to YOLO annotation
format
Step 9 → End: for loop
Step 10 → End

The results of Algorithm 2 are illustrated in Figure 4,
where 4(a) shows sample images before correction, and 4(b)
displays the images after modification. It is evident that
Algorithm 2 effectively aligns and corrects the labels and
coordinates accordingly.

C. DATA SELECTION
After the necessary preprocessing, the entire dataset is split
into three portions for model training, validation, and testing.
The training set comprises 2144 images, which account for
69.97% of the data. The validation set contains 827 images,
representing 26.99% of the data. The testing set consists of
91 images comprising 2.97% of the data. Note that all three
portions of the dataset have additional mask annotations.

FIGURE 3. Brain Tumor Slices and Masks.

D. MODEL TRAINING
Two variants of the YOLO framework, i.e., YOLOv5 and
YOLOv7, are employed in this research work for brain tumor
segmentation and classification. The selection of these vari-
ants is aimed at facilitating a comprehensive assessment of
their capabilities and gauging their effectiveness in address-
ing the challenge of tumor detection and classification.

1) YOLO V5 MODEL
The YOLOv5 is a robust architecture for object detection.
It consists of 225 layers and 7,413,608 parameters. It is a
deep convolutional neural network type, where various lay-
ers extract meaningful features, and object localization is
achieved within images, as shown in Figure 5.
The model begins with a series of Convolutional (Conv)

layers, which learn low-level features from the input images.
These layers are followed by C3 layers, which help in feature
aggregation and information fusion. The C3 layers, responsi-
ble for collecting more general and high-level information,
use larger filters. Down-sampling is achieved using Conv
layers with stride and kernel size settings to improve the
model’s capacity to collect multi-scale features by lowering
the spatial dimensions of the feature maps. The input pic-
ture is down-sampled so that the model can better identify
items across various sizes. A Spatial Pyramid Pooling Fusion
(SPPF) component is also a part of the YOLOv5 design. The
SPPF component is built to execute pooling operations of
varying sizes on the feature maps, thereby capturing contex-
tual information at various scales.

This broadens the model understanding of the images
contents, which improves the accuracy with which it can
recognize things. The YOLOv5 model last levels are the
Conversion (Conv) and Concatenation (Concat) layers. The
Conv layers aid in the fine-tuning of the features, while the
Concat layers combine multi-scale feature maps to create
detailed object representations. The YOLOv5 model final
layer, called YOLOv5 Segment, performs the actual object
detection task.
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FIGURE 4. Tumor Mask Alignment for Correction of Annotations or Label.

FIGURE 5. YOLOv5 Architecture for Brain Tumor Segmentation and Classification.

It generates bounding box predictions for three scales,
allowing the model to detect objects of various sizes and
aspect ratios. These bounding boxes are predicted based on
anchor boxes as illustrated in Figure 6.

The mathematical formulas used to predict the bound-
ing boxes in YOLO which involves determining the width
and height as offsets from cluster centroids and the center
coordinates relative to the filter application location using
a sigmoid function [54]. In particular, the network predicts
five coordinates for each bounding box, tx , ty, tw, th and
to.If the cell is positioned with an offset from the top left
corner of the image by (Cx ,Cy), and the bounding priors
have widths and heights represented as pw, ph, then the
predictions correspond to bx , by, bw, bh, as depicted in the
Figure 6.

The pseudo code of the employed model to segments
meningioma, glioma, and pituitary for the given input
images. It starts by initializing the segmenters optimized
weights, image dimensions, and confidence score (step 2).
Subsequently, each layer is executed, which includes the
convolutional layer (step 6), C3 layer (step 8), SPPF (step 10),
upsample layer (step 12), concatenation layer (step 14), and
the segment layer (step 16). After processing all the layers,
the output is obtained as the segmented image of the any
particular class of the brain tumor.

2) YOLO V7 MODEL
YOLOv7 is a refined variant of the YOLO framework, intro-
ducing a range of advancements to achieve highly efficient
and accurate results. It incorporates several enhancements
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FIGURE 6. Bounding Box with dimension prior and location
prediction [54].

Algorithm 3 Pseudo code for YOLOv5 Model for Brain
Tumor Detection
Input: Brain Tumor Dataset
Output: Segment Tumor (Meningioma, Glioma, Pituitary)
Step 1 → Begin
Step 2 → Initialize: Segmentor with best weights, image size,

and confidence value
Step 3 → Input: Camera or image
Step 4 → for loop: for layer in layers:
Step 5 → if condition: if layer in Conv_layers:
Step 6 → Conv(layer)
Step 7 → elseif condition: layer in C3:
Step 8 → C3 (layer)
Step 9 → elseif condition: layer in SPPF:
Step 10 → SPPF(layer)
Step 11 → elseif condition: layer in Upsample_layers:
Step 12 → Upsample (layer)
Step 13 → elseif condition:layer in Concat_layers:
Step 14 → Concat(layer)
Step 15 → elseif condition: layer in segment_layers
Step 16 → Segment (layer)
Step 17 → Endif
Step 18 → EndFor
Step 19 → End

to improve performance and handle objects across different
scales effectively. It excels at capturing contextual informa-
tion from diverse scales by integrating multi-scale feature
fusion, which enhances object detection accuracy. Addition-
ally, spatial pyramid pooling enables the model to extract
information at multiple scales and effectively handle objects
of varying sizes. Moreover, it integrates upsampling layers
to facilitate the detection of smaller objects by enlarging
the feature maps. It employs concatenation operations and
multiple convolutional layers to iteratively enhance the rep-
resentation of objects and elevate the precision of bounding
box predictions.

Figure 7 shows the employed YOLOv7 segmentor archi-
tecture for brain tumor segmentation and classification. The
segmentor consists of 82 convolution layers, 15 concate-
nation layers, five max-pooling layers, an SPPCSP layer,
two upsample layers, and a segment layer as the foundation
of the algorithm for brain tumor segmentation. Further, the
segmentor is trained with 2144 images with 512 image size,
64 batch size, and yolov7-seg.pt weights for 100 epochs.
The employed framework accurately segment meningioma,
glioma, and pituitary tumors using using MR images.

The pseudo code of the emoloyedmodel to segmentmenin-
gioma, glioma, and pituitary by using the given MR images.
It begins by initializing the segmentor optimized weights,
image dimensions, and confidence score (Step 2). Subse-
quently, each layer is executed based on its respective nature:
the convolutional layer conducts feature extraction by con-
volving input data with filters (step 6), the concatenation layer
merges feature maps from diverse network stages (step 8), the
max-pooling layer partitions the input into non-overlapping
regions and retains the maximum value within each region
(step 10), the SPPCSPC layer effectively captures multi-scale
information using the SPP layer and guarantees the proper
flow of gradients and information across different stages of
the network using the CSP connection (step 12), the upsam-
pling layer enhances the spatial resolution of the feature
maps (step 14), and the segment layer generates predictions
for segmentation boundaries and class probabilities for the
segmented objects (step 16). After processing all the layers,
the output is obtained as the segmented image of the brain
tumor.

Algorithm 4 Pseudo Code for YOLOv7 Model for Brain
Tumor Detection
Input: Brain Tumor Dataset
Output: Segment Tumor (Meningioma, Glioma, Pituitary)
Step 1 → Begin
Step 2 → Initialize: Segmentor with best weights, image size,

and confidence value
Step 3 → Input: Camera or image
Step 4 → for loop: for layer in layers:
Step 5 → if condition: if layer in Conv_layers:
Step 6 → Conv(layer)
Step 7 → elseif condition: layer in Concat_layers:
Step 8 → Concat (layer)
Step 9 → elseif condition: layer in MP_layers
Step 10 → MP (layer)
Step 11 → elseif condition: layer in SPPCSPC_layer
Step 12 → SPPCSPC (layer)
Step 13 → elseif condition:layer in Upsample_layers
Step 14 → Upsample (layer)
Step 15 → elseif condition: layer in segment_layers
Step 16 → Segment (layer)
Step 17 → End if
Step 18 → End For
Step 19 → End
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FIGURE 7. YOLOv7 Architecture for Brain Tumor segmentation and classification.

E. EVALUATION PARAMETERS
Precision, Recall, and F1 Score are widely used performance
evaluation metric, which are discussed below.

1) CONFUSION MATRIX
The metric provide insights in to the precision and inaccu-
racies of the proposed models. Each element (i, j) within the
matrix denotes the proportion of instances that are labeled as
class ‘‘i’’ while predicted as a class ‘‘j’’.

2) LOSS
The loss function optimizes the training phase of the model
to minimize the loss and is given as:

loss = lbox + lcls + lobj (1)

where lbox represents the bounding box regression, lcls rep-
resents the classification loss, and lobj represents confidence
loss. Equation (2) – (4) presents the loss for each category as
follows:

lbox = λcoord

S2∑
i=0

B∑
j=0

Iobji,j bj (2 − wi × hi)

×

[(
xi−x̂

j
i

)2
+

(
yi−ŷ

j
i

)2
+

(
wi−ŵ

j
i

)2
+

(
hi−ĥ

j
i

)2]
,

(2)

lcls = λcls

S2∑
i=0

B∑
j=0

Iobji,j

∑
c∈classes

pi(c) log (p̂l(c)), (3)

lobj = λnoobj

S2∑
i=0

B∑
j=0

Inoobji,j

(
ci − ĉl

)2

+ λobj

S2∑
i=0

B∑
j=0

Iobji,j

(
ci − ĉl

)2
, (4)

where coefficient λco??rd is the weight given to positional
loss, while coefficient λcls is the weight given to category
loss. The variables x̂ and ŷ are the actual central coordinate
of the target while ŵ and ĥ are the target width and height.
If the anchor box located at position (i, j) contains targets,
the corresponding value Iobji,j is set to 1; otherwise, 0. The
variable pi(C) denotes the probability of the target belonging
to a specific category, and pl(C) is the actual category value.
The lengths of both variables equal the total number of
categories C.

3) PRECISION
This metric assess the correctness of the bounding box (bbox)
predictions by calculating the proportion of true positive
detections to the combined count of true positive and false
positive using (5)

Precision =
TP

TP+ FP
(5)

whereas TP and FP are the true positive and false positive
values, respectively.

4) RECALL
It is determined by calculating the ratio of true positive detec-
tions to the total of true positive and false negative using (6)

Recall =
TP

TP+ FN
(6)

whereas TP and FN are the true positive and false negative
values, respectively.
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TABLE 2. Loss performance of the YOLO models.

FIGURE 8. Loss Performance for the YOLOv5 and YOLOv7 for Brain Tumor segmentation and classification.

5) MEAN AVERAGE PRECISION(MAP@.5 & MAP@.5:.95)
The metric mAP@0.5 represents the mean Average Precision
(mAP) at an Intersection over a Union (IoU) threshold of 0.5,
while mAP@0.5:0.95 stands for the average mAP calculated
across various IoU thresholds ranging from 0.5 to 0.95 and
calculated using (7)

mAP =
1
n

k=n∑
n=1

APk (7)

where n are the number of classes and APk refers to the
average precision of class k.

6) F1-CONFIDENCE CURVE
It is a graphical illustrates the correlation between F1 score
and the confidence threshold for object detection. Under-
standing the tradeoff between precision and recall at different
degrees of confidence may be facilitated by examining the
F1-confidence curve.

IV. RESULTS AND DISCUSSION
This section provides all the necessary detail required to
deploy the YOLO based models for brain tumor segmenta-
tion and classification. This section also outlines an in-depth
assessment and findings for understanding the outcome of
this study.

A. PRELIMINARY STUDY
Google Colab integrated development environment i.e.,
Google Colab Pro has been used for training and evaluating

the performance of the deployed models for brain tumors
with A100-SXM4-40GB GPU. The GitHub repositories of
YOLOv5 andYOLOv7 are cloned toGoogleDrive. Themod-
els are evaluated using a dataset of 827 images of brain tumors
as discussed in section III (c). Both models have been trained
using hyper parameters with the stochastic gradient decent
learning algorithm, employing a learning rate of 0.001 over
the course of 100 epochs.

B. LOSS PERFORMANCE
Table 2 depicts the training loss of box, segmentation, object,
and classification in brain tumor detection. In box training
loss (T/box), YOLOv5 has slightly high than YOLOv7 with
values of 0.017893 and 0.012063, respectively. In segmen-
tation training loss (T/seg), YOLOv7 performs better than
YOLOv5 with 0.017295 compared to 0.014582. YOLOv5
also exhibits classification training loss (T/cls) and object
training loss (T/obj) compared to YOLOv7 with values of
0.000391 and 0.005704 for YOLOv5, and 0.000368 and
0.00412 for YOLOv7, respectively. Regarding validation
loss, YOLOv5 shows slightly higher values for box validation
loss (V/box) and classification validation loss (C/cls). The
segment validation loss (V/seg) compared to YOLOv7 is low.
However, YOLOv7 outperforms YOLOv5 in box validation
loss (V/box) and classification validation loss (V/cls) with
lower values. Figure 8 displays the data in Table 2 graphically
to facilitate a clear understanding of the employed models.
To maintain brevity, we refrain from presenting additional
results obtained from the analysis.
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FIGURE 9. Precision confidence curve for YOLO models for Brain Tumor segmentation and classification.

C. PRECISION PERFORMANCE
The performance evaluation of YOLOv5 and YOLOv7 on
827 labeled boxes and mask images are presented in Table 3.
Meningioma, glioma, and pituitary brain tumors are evalu-
ated for the precision metric. The precision measures provide
the model ability to accurately identify the regions of interest
(ROI) in images. For all the classes, YOLOv5 has a precision
score of 0.94 for box detection and 0.936 for mask detection,
while YOLOv7 has a precision score of 0.936 for box detec-
tion and 0.935 for mask detection.

For meningioma, both YOLOv5 and YOLOv7 have the
highest precision scores of 0.965 for box detection and

TABLE 3. Precision performance of YOLO models.

0.985 for mask detection. For glioma, YOLOv5 has a box
detection precision score of 0.893 and a mask detection pre-
cision score of 0.879, while YOLOv7 has a box detection
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FIGURE 10. Recall-confidence curve for YOLO models for Brain Tumor segmentation and classification.

precision score of 0.962 and a mask detection precision score
of 0.964, while YOLOv7 has box detection precision score of
0.953 and a mask detection precision score of 0.953.

Figure 9 depicts the precision-confidence curves for
YOLOv5 and YOLOv7, showing the exceptional perfor-
mance of both models; overall, with one exception in the
glioma class, which is represented by the orange line. The
score for 100% precision is at a confidence value of 0.955 and
0.985 for YOLOv5 and YOLOv7, respectively.

D. RECALL PERFORMANCE
Table 4 presents the recall performance evaluation of
YOLOv5 and YOLOv7 on 827 labeled boxes and masks
images. For all the classes, YOLOv5 has a recall score of

0.905 for box detection and 0.906 for mask detection, while
YOLOv7 has a recall score of 0.904 for box detection and
0.903 for mask detection. For meningioma, both YOLOv5
and YOLOv7 have the highest recall scores of 0.965 for box
detection and 0.97 for mask detection. For glioma, YOLOv5
has a box detection recall score of 0.799 and a mask detection
recall score of 0.801, while YOLOv7 has a box detection
recall score of 0.787 and a mask detection recall score of
0.785. For the pituitary, both YOLOv5 and YOLOv7 have
high recall scores of 0.951 for box detection and 0.955 for
mask detection. Refer to the Table 4, for more results clarity.

Figure 9 shows the box and mask recall-confidence curves
of YOLOv5 and YOLOv7, which depict that both models
have good performance for two classes i.e., meningioma and
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FIGURE 11. F1-confidence curve for YOLO models for brain tumor segmentation and classification.

TABLE 4. Recall performance of the YOLO models.

pituitary. However, the recall-confidence curve for glioma
indicates slightly poor performance, highlighted as orange
line in the Figure 9.

E. MEAN AVERAGE PRECISION (mAP@.5)
Table 5 shows the mean Average Precision (mAP) for the
YOLOv5 and YOLOv7 models on 827 labeled boxes and
masks images, evaluated at the IoU threshold of 0.5. For all

TABLE 5. Mean average precision (MAP@.5).

the classes combined, YOLOv5 has a mAP score of 0.947 for
box detection and 0.947 for mask detection, while YOLOv7
has a mAP score of 0.94 for box detection and 0.941 for mask
detection. For meningioma, both YOLOv5 and YOLOv7
have the highest mAP scores of 0.99 for box detection and
0.985 for mask detection.

For glioma, YOLOv5 has a box detection mAP score
of 0.872 and a mask detection mAP score of 0.872, while
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FIGURE 12. Precision-recall curve for YOLO models for brain tumor segmentation and classification.

YOLOv7 has a box detection mAP score of 0.86 and a mask
detection mAP score of 0.862. For pituitary, YOLOv5 has a
box detection mAP score of 0.978 and a mask detection mAP
score of 0.978, while YOLOv7 has a box detectionmAP score
of 0.976 and a mask detection mAP score of 0.975.

Figure 11 presents the F1-confidence curves for YOLOv5
and YOLOv7. Both the models perform good for two classes
i.e., meningioma and pituitary. However, the glioma has a low
curve indicating poor performance relating to other classes.
Further, it depicts that the ideal box confidence value is
0.639 and 0.53 while mask confidence values are 0.635 and
0.53 for YOLOv5 and YOLOv7, respectively, to achieve a
0.92 f1-score.

F. MEAN AVERAGE PRECISION (mAP@.5:.95)
Table 6 shows the mAP for the YOLOv5 and YOLOv7
models on 827 labeled boxes and masks images, evaluated
at IoU threshold of 0.5-0.95. The mAP@.5:.95 score means
that the model considers an object detected if it has an IOU
threshold score between 50- 95%.

The mAP@.5 score for all the classes for YOLOv5 has
0.666 for box detection and 0.657 for mask detection, while
YOLOv7 has mAP@.5 score of 0.677 for box detection and
0.659 for mask detection. For meningioma, both YOLOv5
and YOLOv7 have the highest scores of 0.79 for box detec-
tion and 0.799 for mask detection. For glioma, YOLOv5 has a
score of 0.546 for box detection and 0.53 for mask detection,
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FIGURE 13. Confusion Matrix for YOLO models for Brain Tumor segmentation and classification.

TABLE 6. Mean average precision (MAP@.5:.95).

while YOLOv7 has a score of 0.553 for box detection and
0.531 for mask detection. For the pituitary, YOLOv5 has a
score of 0.661 for box detection and 0.642 for mask detection,
while YOLOv7 has a score of 0.675 for box detection and
0.653 for mask detection.

Figure 12 demonstrate the precision-recall curves of
YOLOv5 and YOLOv7 models. It depicts that both models
perform better for all classes except glioma. The glioma curve
shows a more false positive than meningioma and pituitary.

G. DETECTION TIME
The models are evaluated on a dataset of 91 frames using an
image size of 512 pixels. For YOLOv5, the inference time is
7.0 ms, and the NMS time is 1.2 ms. The Frames Per Second
(FPS) for YOLOv5 is 142.857, indicating that the model can
process approximately 143 frames per second on average. For
YOLOv7, the inference time is 10.0 ms, and the NMS time is
1.1 ms per image. The FPS for YOLOv7 is 100, indicating
that the model can process approximately 100 frames per
second on average.

H. CONFUSION MATRIX
Figure 13 shows the normalized confusion matrix of
YOLOv5 and YOLOv7, illustrating that both models perform
well for all classes except for glioma, which exhibits high
false positives with values of 0.75 and 0.74, respectively.

Figure 14 illustrates the visual representation of the valida-
tion (a) and (c) batches, as well as prediction batches (b) and
(d) for both YOLOv5 and YOLOv7 models. These batches
serve to optimize computational efficiency and enhance
inference speed, enabling the detection of instances across
multiple images. The validation images showcase tumor
detection on the original images; while the predicted images
demonstrate the accuracy of the brain tumor detection after
training on the original images.

I. DISCUSSION
The performance of the YOLOv5 and YOLOv7 is evaluated
in segmenting three distinct classes of brain tumors, namely
meningioma, glioma, and pituitary. The performance of these
models relies on several metrics, including the confusion
matrix, precision, recall, F1-curve, and inference criteria. The
finding revealed that both models exhibited superior perfor-
mance across all classes except for glioma, which displayed
an elevated false positives rate of 0.75 and 0.74 for YOLOv5
and YOLOv7, respectively. Notably, YOLOv5 excelled in
detecting meningioma, while it also outperformed in glioma
and pituitary tumor detection. In contrast, YOLOv7 demon-
strated comparable performance across all three classes,
albeit with slightly lower precision scores than YOLOv5.
Furthermore, precision scores for box detection are generally
exceeded those for mask detection.

The study also presented the precision-confidence curves,
which underscored models robust performance, except in
the case of glioma. Remarkably, recall scores for all classes
exceeded 0.78, with the highest recall observed for menin-
gioma in both YOLOv5 and YOLOv7. Based on these
results, it can be concluded that both models offer excep-
tional overall performance, with YOLOv7 demonstrates
superior performance across numerous evaluation crite-
ria, particularly with regard to mAP@0.5-0.95as evidence
in Table 6.
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FIGURE 14. Validation and prediction batches for tumor segmentation and classification.

V. COMPARATIVE ANALYSIS OF SEGMENTATION
MODELS
Table 7 showcase various segmentation models, including
RCNN, Faster RCNN, and Mask RCNN [49], all of which
employed the same dataset. The RCNN models achieved a
commendable high recall rate with 95%, though precision
andmAP remain unspecified. In contrast, YOLOv5 exhibited
a precision of 93.6%, a recall rate of 90.6%, and an mAP

of 94.7% at an IoU of 0.5, with a slightly reduced mAP of
65.7% in the broader IoU range of 0.5 to 0.95. Similarly,
YOLOv7 achieved a precision of 93.5% precision, a recall
rate of 90.3%, and an mAP of 94.7% at an IoU of 0.5, with a
corresponding mAP of 65.7% within the IoU range of 0.5 to
0.95. This work presents a state-of-the-art implementation of
YOLO based brain tumor detection and classification. How-
ever, it is essential to note that this study relies exclusively on
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TABLE 7. Comparison of the proposed models.

a single dataset, namely the brain tumor dataset for evaluating
the employed model. Additionally, a limitations of this work
lies in the substantial computational resources required to
analyze larger datasets with thesemodels. This challengemay
be mitigated by augmenting available computing resources
and amalgamating multiple datasets, including BraTS, and
to assess variations in accuracy, training time, and other
pertinent performance metrics. Conversely, transitioning to
more lightweight deep learning models [46] or investigat-
ing self-supervised learning [22], holds significant potential,
especially in handling diverse data sources.

VI. CONCLUSION
This study presents a comprehensive evaluation of the
YOLO-based deep learning segmentation and classifications
of brain tumors, in particular meningioma, glioma, and pitu-
itary. Both YOLOv5 and YOLOv7 demonstrated superior
performance in segmenting and correctly identifying the
specific tumor class. These models exhibited remarkable pro-
ficiency in accurately detecting meningioma, with YOLOv5
excelling in identifying glioma and pituitary tumors. Further-
more, YOLOv7 displayed comparable performance across
all three tumor categories, with only slight difference in
precision scores compare to YOLOv5. Recall scores for all
categories consistently exceeded the threshold of 0.78, with
the highest recall scores observed for meningioma in both
YOLOv5 and YOLOv7. These findings validate the potential
of YOLO models in precisely detecting brain tumors, partic-
ularly in the case of meningioma. They also offer valuable
insights into the performance characteristics and limitations
of these models, paving the way for further advancements in
the computer vision and medical field.
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