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ABSTRACT With the increasing prevalence of chat-based social engineering (CSE) attacks targeting
unsuspecting users, the need for robust defenses has never been more critical. In this paper, we introduce
Chat-based Social Engineering Attack Recognition System (CSE-ARS), an innovative and effective CSE
defense system. CSE-ARS employs a late fusion strategy that integrates the findings of five specialized
deep learning models, each focused on detecting distinct CSE attack enablers: critical information leakage
recognizer (CRINL-R), personality traits recognizer (PERST-R), dialogue acts recognizer (DIACT-R),
persuasion recognizer (PERSU-R), persistence recognizer (PERSI-R). The system harnesses weighted
linear aggregation and employs simulated annealing with 10-fold cross-validation, ensuring optimal model
performance. CSE-ARS is trained on the CSE-ARS Corpus, a carefully curated dataset tailored to the
intricacies of CSE attacks. Extensive evaluation reveals that CSE-ARS achieves satisfactory results in
identifying and neutralizing CSE threats, enhancing user security in online interactions.

INDEX TERMS Corpus, cybersecurity, deep learning, natural language processing, social engineering.

I. INTRODUCTION
Social engineering is a multifaceted technique that manifests
both in real-life and digital environments. It is related to a
manipulative form of communication that exploits human
personality traits either in a mass personal or interpersonal
way [1], [2]. From ‘‘fake news’’ to psychographic advertise-
ments and from cognitive hacking to spear-phishing, there is
a plethora of different types of social engineering attacks [3],
[4], [5]. In the current year, system intrusion, basic web
application attacks, and social engineering have emerged
as the predominant attack patterns, collectively responsible
for 90% of reported breaches as presented in 2023 Data
Breach Investigations Report [6]. Notably, Business Email
Compromise (BEC) attacks, which essentially fall under the
pretexting category, have experienced a significant surge in
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2023, now constituting over 50% of incidents within the
social engineering pattern. Furthermore, a substantial 74%
of all breaches involve a human element, with individuals
being implicated through errors, privilege misuse, stolen
credentials, or involvement in other social engineering tactics.
The increase in social engineering incidents compared to the
previous year can be attributed primarily to the widespread
adoption of pretexting, with occurrences almost doubling
since the preceding year. Moreover, the median monetary
loss resulting from these incidents has also risen over
the past couple of years, reaching a substantial $50,000.
Consequently, social engineering remains a prominent threat,
ranking among the top three attack patterns, accounting for
17% of reported breaches and 10% of incidents. It’s important
to clarify the distinction between phishing and the more
intricate forms of social engineering. If you received an email
with a suspicious attachment or a malicious link, urging
you to update your password, this is a classic example of
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phishing, constituting 44%of all social engineering incidents.
Now, if you have received an email or a direct message
on social media from a friend or family member urgently
requesting financial assistance then this exemplifies social
engineering, specifically pretexting, which demands a higher
level of skill. Proficient social engineers can manipulate
your thoughts, making you believe that a loved one is in
distress. Leveraging information, they’ve gathered about you
and your close associates, they create a convincing scenario
that preys on your emotions and induces a sense of urgency.
Pretexting has now surpassed phishing in terms of prevalence
within social engineering incidents. Contemporary practices
of attackers have been studied thoroughly [4], [5], [7], [8]
and numerous solutions have been suggested within the
academic domain as well as within the public sector [9], [10].
Recently, CSE attacks increased due to the wide-spread use
of electronic medium communication tools that is boosted
due to the COVID-19 pandemic [11] and are now considered
mainstream.We define as CSE attack, the attack that involves
manipulation of individuals through various forms of online
communication such as instant messaging, or social media,
to deceive them into revealing sensitive information, taking
harmful actions, or compromising their security in some
way. These attacks exploit human psychology and personality
traits to achieve the attacker’s goals, often by impersonating
a trusted entity or creating a sense of urgency or fear.
CSE attacks are tightly related to pretexting, in which a
storyline is methodically planned out in advance and the
attacker builds a persona with specific characteristics to
approach the human target. The most known pretexts were
created by Kevin Mitnick, a legendary social engineer,
whose stories met wide media coverage and can be found
in [12]. In CSE attacks, pretexts often exploit a simple
fact: human personality has vulnerabilities that can be
exploited broader using cultural dynamics, social stereotypes,
or gender roles. The complexity of the phenomenon imposes
an interdisciplinary approach to deal with the many different
factors that are engaged. Although several cyber-defense
mechanisms have been proposed [5], [13], [14], [15], [16]
to defend from social engineering attacks, most of the
solutions focus on technical countermeasures to improve
users’ protection. Being technical these mechanisms do not
account for known CSE attack enablers as identified and
illuminated in [17]. Currently, the majority of CSE attacks
include phishing attacks, pre-texting, social media scams,
covid-19 scams, and whaling. The attackers’ favorite method
of approach is impersonation where they pretend to be
someone else to deceive and gain unauthorized access to
sensitive information. Furthermore, the attackers recently use
artificial technology techniques to create realistic videos and
audio of individuals known as deepfakes [18], [19], [20]
which can be used to impersonate them in CSE attacks.
The intricate interplay between human psychology and CSE
attacks underscores the importance of an interdisciplinary
approach to cybersecurity. By integrating insights from
Cialdini’s principles of Persuasion [21], [22], [23] and the Big

Five Theory of Personality [24], [25], [26] we can develop
more robust defense mechanisms and ultimately reduce the
success rate of CSE attacks. CSE attacks are a growing threat
that can lead to various negative consequences, including
financial loss, damage to reputation, loss of productivity,
or legal consequences. Financial loss can occur due to
fraudulent transactions or data breaches, which can be costly
for organizations. A successful CSE attack can damage the
reputation of an organization, leading to a decline in business
and loss of customer trust. Loss of productivity can occur
when important data is lost, leading to the need for system
rebuilding, and decreased efficiency. Legal and regulatory
penalties can be incurred if an organization is held liable for
data breaches. Given the significant impact of CSE attacks,
it is crucial to develop effective detection and prevention
mechanisms. These systems should be cost-effective, easy to
use, and enable individuals and organizations to better protect
themselves against imminent risks. In this paper:

• We propose CSE-ARS, a chat-based social engineering
recognition system that employs an interdisciplinary
approach, considering personality, linguistic, behav-
ioral, and information technology characteristics [27].

• The ensemble includes different deep learning models,
such as RNNs, CNNs, and transformers, for recognizing
various CSE attack enablers. Recognizers like CRINL-
R [28], PERST-R, DIACT-R [29], PERSU-R [30], and
PERSI-R [31] are utilized.

• We introduce an augmented CSECorpus for training and
evaluating CSE-ARS [28].

• We utilize a late fusion approach that combines pre-
dictions from individual recognizers, leveraging their
strengths.

• We utilize an optimization approach that involves
weighted linear aggregation with weights optimized
using simulated annealing and k-fold cross-validation.

The rest of the paper is organized as follows: Section II
gives the required background information around the
context of this work. Section III presents the related work
of fellow researchers trying to detect social engineering
attacks. In section IV CSE-ARS’ design considerations and
architecture decisions are described. In Section V, we briefly
present the system’s individual recognisers each of which
is designed to recognize a different CSE attack enabler.
Section VI details the training of CSE-ARS. Section VII
presents the evaluation results obtained from testing the
proposed system. In Section VIII, we discuss the findings
and limitations of this study. Finally, Section IX concludes
the paper by summarizing the contributions of this work and
highlighting future directions for research.

II. BACKGROUND
A. SOCIAL ENGINEERING
Social engineering [5], [32] is a tactic used by attackers to
manipulate individuals into divulging sensitive information
or performing actions that may compromise cyber security.
It is a common tactic used in cyber-attacks, and it relies
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on exploiting human psychology and behavior. Social engi-
neering attacks can take various forms, including phishing,
pretexting, baiting, and quid pro quo [33], [34]. These attacks
can be conducted through various channels such as chat,
email, phone, or in-person interactions. Recent years have
seen an increase in social engineering attacks, and they are
becomingmore sophisticated and harder to detect. Traditional
technical security measures such as firewalls and antivirus
software are not effective in preventing social engineering
attacks, and there is a growing need for new techniques to
detect and prevent such attacks. Machine learning and deep
learning (DL) techniques have been utilized as a solution
for detecting social engineering attacks. These techniques
have been shown to be effective in identifying patterns
and anomalies in text, which can be used to detect CSE
attacks. Detection methods also involve natural language
processing (NLP) to identify specific queries, commands,
or predefined blacklisted topics. Attackers often use social
networking sites to gather information and manipulate their
targets. Automated data retrieval from semi-structured web
pages is a common strategy used to approach targets with
useful information. To achieve high detection accuracy and
low false negative rates, it is crucial to include as many
influencing factors as possible, such as psychological profiles
of interlocutors, persuasion techniques etc. However, these
techniques alone are not sufficient to detect sophisticated
CSE attacks, and there is a need for an interdisciplinary
approach that combines the results of multiple recognizers.
A very common and dangerous type of CSE attack is
pretexting, which targets specific victims and compromises
their confidential data to get access into a sensitive system.
Pretexting attacks [35] are usually unleashed by sending
malware or sending a URL link to the targets using fake
identities to manipulate the victim [36], [37].

B. PERSUASION
Robert Cialdini in his seminal work [21], [22], [23] in the
field of social psychology, sheds light on the psychological
mechanisms that social engineers often exploit. He identifies
the principles of persuasion, namely Reciprocity, Commit-
ment and Consistency, Social Proof, Authority, Liking, and
Scarcity, which serve as powerful tools in the arsenal of
social engineers. Social engineers employ the principle of
reciprocity by offering small favors or gifts, creating a
sense of indebtedness. Victims, influenced by their innate
inclination to reciprocate, may inadvertently provide access
or information. Exploiting the desire for commitment and
consistency, attackers manipulate individuals into taking
small initial actions that align with the attackers’ ultimate
goals. Once committed, individuals tend to stay on the
course, even if it leads to further compromises. Social
engineers, also, frequently use social proof to convince
targets that their actions are in alignment with those of
a larger group. The fear of missing out or the desire to
conform to perceived social norms can lead individuals to

make ill-advised decisions. Furthermore, people tend to defer
to authority figures. Attackers posing as trusted individuals or
experts can easily gain victims’ trust and coerce them into
revealing confidential information or engaging in harmful
actions. Building rapport and forging a personal connection
are paramount for social engineers. By cultivating a sense
of liking or familiarity, attackers can manipulate victims
into lowering their guard. Finally, creating a perception of
limited availability or urgency is a potent tactic. Individuals,
driven by their fear of missing out on opportunities, are more
susceptible to manipulation under such circumstances.

C. BIG-5 THEORY
Personality, in psychology, refers to an individual’s unique
and enduring pattern of thoughts, feelings, and behaviors. The
Big Five Personality Theory [25], [38], also known as the
Five-FactorModel, identifies five fundamental dimensions of
personality, namely Openness, Conscientiousness, Extraver-
sion, Agreeableness, and Neuroticism (often abbreviated as
OCEAN). The degree of susceptibility to CSE attacks has
also been connected to the five personality traits. Responsible
behavior concerning security best practices has been posi-
tively correlated with low openness [39], meaning that high
levels of openness could potentially facilitate risky security
behavior. Lower levels of Conscientiousness have been found
to predict deviant workplace behavior such as irresponsible
conduct or rule-breaking [26]. High levels of Extraversion
have been shown to be predictive of increased vulnerability
to phishing attacks [40]. Agreeableness has consistently
been associated with phishing in multiple studies [41],
[42]. Agreeable individuals may be more susceptible to
manipulation due to their tendency to establish trust with the
target, which is a characteristic of agreeableness. On the other
hand, lower levels of Neuroticism are associated with higher
susceptibility [43].

D. DEEP LEARNING & EVALUATION METRICS
Deep learning is a subset of machine learning and it is
a cutting-edge approach that has revolutionized artificial
intelligence by enabling computers to automatically learn and
extract intricate patterns from large datasets. This technology
is inspired by the structure and function of the human
brain’s neural networks, consisting of multiple layers of
interconnected nodes. Deep learning models, known as
neural networks, excel in tasks such as image and speech
recognition, and natural language processing. To rigorously
assess the performance of deep learning models and ensure
their effectiveness, evaluation metrics play a vital role. These
metrics, including accuracy, precision, recall, F1 score, and
others, provide quantitative measures that allow researchers
to gauge how well their models are performing and make
informed decisions about refining and optimizing them.
We used several performance metrics to evaluate the quality
of the proposed deep learning models, and to assess how
well they can make accurate predictions on new, unseen data.
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More specifically, throughout our experiments, the following
performance metrics were used:

• Receiver Operating Characteristic (ROC) is a graphical
representation of the performance of a binary classifier
model at different classification thresholds. The ROC
curve plots the true positive rate (TPR) against the false
positive rate (FPR) at various threshold settings, where
the TPR is the proportion of actual positive instances
that are correctly identified by the model, and the FPR is
the proportion of negative instances that are incorrectly
identified as positive.

• Accuracy is a measure of the proportion of correct pre-
dictions made by the model, expressed as a percentage.
It is calculated as the ratio of the number of correct
predictions to the total number of predictions made by
the model.

• Precision is a measure of the proportion of true positive
predictions among all positive predictions made by the
model. It is calculated as the ratio of the number of
true positive predictions to the total number of positive
predictions made by the model.

• Recall, also known as sensitivity, is a measure of the
proportion of true positive predictions among all actual
positive instances. It is calculated as the ratio of the
number of true positive predictions to the total number
of actual positive instances

• F1, is an evaluation measure that combines precision
and recall to assess the performance of a binary
classificationmodel. It provides a single numerical value
that represents the harmonic mean of precision and
recall, giving equal importance to bothmeasures. The F1
metric is particularly useful when there is an imbalance
between the positive and negative classes in the dataset.

• Active Intent Accuracy: The fraction of user turns for
which the active intent has been correctly predicted.

• Requested Slot F1: The macro-averaged F1 score for
requested slots overall eligible turns. Turns with no
requested slots in ground truth and predictions are
skipped.

• Average Goal Accuracy: For each turn, we predict a
single value for each slot present in the dialogue state.
This is the average accuracy of predicting the value of a
slot correctly.

• Joint Goal Accuracy: This is the average accuracy of
predicting all slot assignments for a given service in a
turn correctly. Also, Harmonic mean between seen and
unseen classes.

III. RELATED WORK
Several efforts have been made to detect social engineering
attacks and mitigate the risk of being victimized. We can
dissect these research works based on the approach taken.
Until 2017 there were a lot of works based on statistical
learning and machine learning. These works were mainly
focused on semantic characteristics of the natural language
and were utilizing traditional machine learning algorithms.

In 2005, In [44] and [45] the authors introduced the
Social Engineering Defense Architecture (SEDA) which is
designed to detect social engineering attacks during real-time
phone conversations. Although the model was successful
in detecting the attacks, it did not incorporate previous
activity history or personality traits recognition of both the
attacker and the victim. In their 2010 paper, researchers [46]
introduced an architecture named the Social Engineering
Attack Detection Model (SEADM), which assists users
in making decisions through the use of a simple binary
decision tree model. However, the researchers rely on
several unrealistic assumptions to justify the logic of their
proposed system. SEADM was revisited in a subsequent
paper in [47] where the system was adapted to account for
social engineering attacks that include unidirectional, and
bidirectional communication between the attacker and the
victim. The work of [42] proposed a taxonomy of social
engineering attacks based on Cialdini’s Influence principles.
They investigated the relationship between the Big-5 Theory,
which pertains to personality traits, and Cialdini’s influence
principles. They proposed a Social Engineering Personal-
ity Framework (SEPF) and outlined a complete research
roadmap for future work on SEPF. The findings of [48],
suggest that the most successful social engineering attacks
involve a conversation between the attacker and the victim.
Their methodology involves utilizing a predefined Topic
Blacklist (TBL) to check dialogue sentences. The authors
report achieving a precision rate of a recall rate of 88.9%
with their approach. The study of [49] expanded upon the
aforementioned work by implementing advanced language
processing techniques that balance syntactic and semantic
analysis. The reported results demonstrate 100% precision
and 60% recall. However, they used a small dataset with
only three conversations which limits the precision and
recall’s success as a measure. Moreover, the algorithm did not
consider any contextual information during the classification
process, making it unaware of the specific environment in
which it operates.

Recent developments in the field of social engineering
attack recognition prominently employDL andNLP tools and
methodologies, significantly enhancing their effectiveness.
In 2018, in their work [50], propose a methodology
identifying malicious statements through the application of
NLP techniques. The authors conducted an analysis of these
statements with the specific aim of discerning those that may
indicate a phishing attack. The detection of malicious intent
within these statements is achieved through a comprehensive
analysis. To evaluate the effectiveness of their proposed
algorithm, the researchers employed a benchmark phishing
email dataset as the basis for their assessment. In the works
conducted by [51], [52], and [53] NLP techniques and neural
networks were employed to identify instances of social
engineering attacks. The researchers outlined an approach
in which both offline and online textual materials were
subjected to NLP processing, followed by analysis using
artificial neural networks to distinguish between genuine
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content and potential social engineering attacks. The initial
phase involved parsing the text and applying NLP techniques
to assess syntactical and grammatical aspects. Subsequently,
an artificial neural network was utilized to classify potential
instances of social engineering attacks. Their proposed
methodology achieved high levels of accuracy during the
evaluation phase, which involved the utilization of both
real-world and semi-synthetic datasets for model training.
Additionally, the study explored various classificationmodels
to provide a comparative analysis of the two datasets.
In another study [54] introduced a two-stage DL model
that relies on NLP techniques for the detection of social
engineering attacks. This model specifically focuses on
identifying the principles of persuasion, drawing from the
work of Cialdini. To evaluate its effectiveness, the authors
employed a semi-synthetic dataset and demonstrated that
their approach achieved highly accurate results in detecting
social engineering attacks. In the research conducted by [55],
the focus was on examining conversational agents, specif-
ically chatbots, designed to influence and change people’s
opinions. To accomplish this, the study utilized an annotated
dataset derived from human dialogues. The authors made
predictions regarding ten distinct persuasion strategies, and
they integrated these predictions with the demographic and
psychological profiles of the conversational partners. Their
approach employed a hybrid region-based convolutional net-
work model, incorporating three types of features: sentence
embedding, context embedding, and sentence-level features.
This model yielded favorable results in the prediction of
persuasion strategies within the context of opinion change.
However, it’s important to note that the proposed solution
is not suitable for addressing CSE attacks. This limitation
arises because the persuasion methods employed in CSE
attacks typically revolve around tactics related to authority
and commitment, which are not fully covered by the
strategies investigated in this study. In the work by [56], the
authors introduced a neural network architecture designed
to quantify persuasiveness and identify persuasive strategies.
Their proposed model outperformed several baseline learners
and offered improved interpretability. The architecture of this
model included a semi-supervised neural network comprising
a sentence encoder and a document encoder. It was trained
using a custom dataset, ultimately leading to the identification
of five distinct persuasion strategies. It is noteworthy that
while their approach yielded comparable performance results
to the one discussed in our study, it also exhibited a
growing complexity in its architectural design. In their
research documented in [57], researchers propose a method
for capturing both the syntactic and semantic attributes of
natural language by harnessing a pre-trained BERT model.
The proposedmodel exhibits a robust resilience to adversarial
attacks when attackers intentionally substitute keywords with
synonyms. In a recent study [58], the authors present a system
designed to safeguard against CSE attacks by implementing
a series of NLP components within a pipeline. These
NLP components encompass NER, dialogue engineering,

stylometry, and the utilization of ask and framing questions.
The system employs an active defense strategy to identify the
social engineer’s intent, subsequently diverting her attention
and resources, thus mitigating the potential harm. In [59],
a URL classifier is introduced that leverages Random Forest
models and gradient boosting classifiers. This URL classifier
was designed with the objective of enhancing the algorithm’s
effectiveness in identifying malicious websites. To achieve
this goal, the classifier incorporated features associated
with both the host and linguistic attributes of the URL.
Employing machine learning algorithms, the researchers
were able to significantly reduce the time required to detect
malicious URLs. As a result, their approach provides real-
time protection for safe web browsing while simultaneously
conserving computational resources. The work of [60],
proposes a social engineering detection model, relying on
deep neural networks. Thismodel demonstrates the capability
to identify instances of deception and phishing attempts
through the analysis of textual content. In its initial phase, the
chat history is subjected to processing and analysis utilizing
NLP techniques, while the contextual semantics are extracted
and explored through a bi-directional Long Short-Term
Memory Model (bi-LSTM). Additionally, the incorporation
of user characteristics and chat content attributes as features
for classification is achieved using ResNet. The findings
of [5], investigated the performance of nine distinct machine
learning models, which were trained using three separate
datasets. They extracted features related to threats and evalu-
ated them against a set of twenty-seven threat detectors. The
primary objective was to identify general social engineering
attacks that do not target specific techniques. While the
results of their research show promise, it’s worth noting that
the study’s broad approach does not allow for the detection of
persuasion tactics employed within chat-based conversations.
In their work [61],the authors introduce a system that goes
beyond identifying persuasion cues. It also addresses aspects
such as framing, objectivity/subjectivity, guilt/blame, and the
use of emphasis in text analysis. To train the learner, the
authors employed a custom dataset and integrated traditional
NLP tools, including linguistic inquiry and word count
(LIWC), topic modeling, and sentiment analysis. These
tools contributed to feeding a random forest classifier. The
performance of the system was found to be satisfactory when
compared to other methods such as Labeled-LDA and Long
Short-Term Memory (LSTM). However, it’s important to
note that the presented system lacks the capacity to leverage
modern word representation techniques and the flexibility
offered by CNNs or other more recent neural network
architectures.

IV. CSE-ARS ARCHITECTURE
A chat may begin with the user or the potential social
engineer, who initiates the conversation by entering utter-
ances into the chat software. CSE-ARS deep-learning based
system, acts as an intermediary between the two interlocutors
which can detect and recognize CSE attacks. As shown in
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FIGURE 1. Magnetization as a function of applied field. It is good practice
to explain the significance of the figure in the caption.

Figure 1 CSE-ARS [27] system captures and analyzes the
content of the utterances utilizing deep learning algorithms
and techniques and makes inference regarding the existence
enablers that can lead to successful social engineering attacks.

There are several enablers that can be triggered in order
to achieve a successful CSE attack. By definition [62],
[63], an enabler is something that enables or facilitates
an action. In the context of CSE attacks, enablers refer
to the various tactics and techniques used by attackers to
trick their targets into disclosing sensitive information or
performing certain actions. These enablers include persua-
sion techniques, deception techniques, critical information
leakage tricks, paraphrasing methods, and specific dialogue
acts, which are often used in combination to increase the
chances for a successful CSE attack. Recognition of these
enablers is important and prevents CSE attacks. In [17] the
following critical enablers were identified:

• Critical information leakage: Social engineers may
attempt to extract sensitive or confidential information
from their targets.

• Personality traits: Social engineers may attempt to
exploit certain personality traits of their targets in order
to gain their trust.

• Dialogue acts: Social engineersmay use certain dialogue
acts, such as questions or commands, to elicit infor-
mation or manipulate the conversation. In this attempt
they may utilize previous conversations (with the same
interlocutors) in order to deceive them.

• Persuasion attempts: Social engineering attacks often
involve attempts to persuade the target to take a certain
action.

• Persistent behavior: Social engineers may attempt to
paraphrase information they’ve already obtained in
order to confirm its accuracy or to obtain additional
information.

We designed, and implemented a resilient and efficient
cyber-defense system that predicts whether a chat-based
dialogue is evolving into a CSE attack. The proposed system,
CSE-ARS, utilizes the recent trends in DL and NLP to
examine and classify utterances taking into account the
aforementioned CSE attack enablers. CSE-ARS is a synthesis
of individual recognizers that utilize a different DL model
for each CSE attack enabler. The DL models were evaluated
using the same context to draw safe conclusions. This

means that we paid special attention to the training data, the
hyperparameters, the experimental setup, and the number of
experiments conducted for the comparison to be trustworthy.
As a principle during our evaluations, we preferred to
consider false positives as less important and focused on
not having too many false negatives. This trade-off was a
basic design decision for all DL models that were tested
and evaluated. CSE-ARS brings a multimodal approach to
solving the problem of recognizing CSE attacks. In the
context of our study, multimodal refers to the use of multiple
modalities or sources of information tomake predictions [64],
[65], [66]. The proposed system is utilizing a late fusion
approach, which takes each recognizer’s output and produces
a final prediction through a weighted linear aggregation.
The weights are determined using k-fold cross validation
and are optimized to maximize the performance of the
system. This allows us to exploit the strengths of each
different DL model and to account for the fact that different
types of enablers may be utilized to successfully conduct a
CSE attack. More analytically, CSE-ARS incorporates the
following recognizers:

• Critical Information Leakage Recognizer (CRINL-R):
a bi-LSTM NER model [67], recognizing critical data
information leakage.

• Personality Recognizer (PERST-R): a BERT [68] model
that predicts personality traits of the interlocutors based
on the Big-5 theory.

• Dialogue-act Recognizer (DIACT-R): a BERT model
that recognizes dialogue acts that can lead to deception
taking into account the full chat history.

• Persuasion Recognizer (PERSU-R): a convolutional
neural network (CNN) [69] that predicts persuasion
attempts.

• Persistence Recognizer (PERSI-R): a BERT model that
predicts persistent behavior by identifying paraphrasing
in chat dialogue.

After the individual recognizers generate their outputs,
the late fusion model combines them to determine whether
the chat text constitutes a CSE attack. Each recognizer has
its feature extraction network customized for its specific
objective and state. The outputs of the recognizers are fused
using a weighted linear aggregation method. All the models,
including the CSE-ARS but excluding PERST-R, are trained
on different variants of CSE corpus [28]. The multimodal
fusion architecture of deep learning based CSE-ARS is
depicted in Figure 2. The system’s flexible design allows
for the addition or removal of individual recognizers as
needed. This, in turn, allows the system to be adapted to
new types of social engineering enablers as they emerge or
identified. By using a combination of different recognizers,
the system captures a wide range of enablers and provides
a comprehensive assessment of the likelihood of a particular
input being a CSE attack.

Moreover, this architecture allows CSE-ARS to effectively
use the strengths of the different recognizers and make a
more accurate prediction by combining their results. We used
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FIGURE 2. CSE-ARS architecture.

concatenation for the fusion layer to combine the outputs
of multiple binary recognizers denoting the independence of
the different enablers and keeping the system simple. The
concatenation layer takes the output of each recognizer and
concatenates them into a single vector, which can then be
fed into a fully connected layer for the final prediction. The
outputs of the recognizers are treated as separate features
and the information from each recognizer is retained in the
final combined vector. This is useful when the recognizers
are designed to capture different aspects of the input and
the outputs are independent of each other. Thus, the final
combined vector provides a multimodal representation of the
input and can be used to make a prediction.

V. CSE-ARS RECOGNIZERS
In this section, we provide a concise summary of each
individual recognizer within CSE-ARS, all of which have
been previously introduced in our prior works, with the
exception of PERST-R, which we introduce in this paper.

A. CRINL-R
CRINL-R, employs NER [70] to identify sensitive informa-
tion disclosure in chat conversations using a bi-LSTM to
extract contextual information from unstructured chat text.
CRINL-R is a pre-trained model that is fine-tuned using
an appropriately annotated version of CSE corpus, which
identifies personal information, information technology (IT)
terms, and enterprise information. The terms identified came
from the CSE ontology [28], which connects CSE and
cybersecurity concepts, focusing on information disclosure
during chat interactions. Each sentence was annotated in
IOB format, and tokens were represented using a pre-trained

TABLE 1. CRINL-R performance results.

English language model from spaCy [71]. A bi-LSTM
model is constructed, comprising a bi-directional LSTM
layer and a classification layer to capture context from
preceding and succeeding tokens. The model is trained
using cross-entropy as the loss function and batch-wise gra-
dient descent algorithm. Performance assessment involved
applying the trained model to validation data, generating
predicted tags for each token, and comparing them to true
tags to evaluate the model’s accuracy in identifying named
entities within chat dialogues. The training of the bi-LSTM
neural network involved several sequential steps: token-tag
pairs from dialogue sentences were transformed into word
embeddings using spaCy. The bi-LSTM model considered
prior information at each step, generating an output sequence.
A backward pass was performed, and forward and backward
outputs were combined and used in a classifier to predict
tags (Personal, IT, Enterprise) for input words. This process
enabled the bi-LSTMmodel to learn and predict tags for new
data. After training the model for 10 epochs, we reached the
scores presented in Table 1 for each term contained in one of
the three categories:

B. PERST-R
In psychology, the term ‘‘human personality’’ denotes
the unique variations in patterns of cognition, affect, and
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behavior that distinguish one individual from another. The
Five-Factor Model (FFM) [26], also known as the Big-
5 Theory, represents a widely recognized framework for
the classification of personality traits. These factors are
typically assessed on a continuum ranging from 0 to 1
[72] and play a significant role in CSE attacks, as they are
exploited by attackers to manipulate vulnerable individuals.
Several efforts have already been made by researchers to
recognize personality traits using DL models [73], [74],
[75] The five personality traits have also been linked with
high or low susceptibility to CSE attacks. Although earlier
work showed contradictory results regarding Openness [76],
newer research shows that high Openness has been posi-
tively linked to unresponsible behavior regarding security
best practices [77], [78], [79], and thus would potentially
facilitate dangerous security behavior. Consciousness at low
levels predicted deviant workplace behavior in the form
of irresponsible conduct or rule-breaking [26]. Extraversion
at high level is predictive of increased vulnerability to
phishing attacks [40]. Agreeableness is most associated
with phishing and multiple studies [41], [42] have reached
similar conclusions. Agreeable people may be manipulated
by establishing trust with the target, as this represents a facet
of agreeableness. Neuroticism at low level leads to higher
susceptibility [43]. Table 2 depicts when a personality trait
can lead to increased susceptibility of CSE attacks.

TABLE 2. Personality traits and susceptibility of CSE attacks.

Themain objective of the PERST-Rmodel is to identify the
personality traits, as defined in the Big-5 theory utilizing the
chat dialogue. PERST-R utilizes a pre-trained BERT model
which is fine-tuned on a large corpus of text data that has
been labeled for each of the five personality traits. The model
was trained to predict the likelihood of each of the five
personality traits for a given input text. We employed BERT
(bert-base-uncased) with a hidden size of 768 and 12 attention
heads, encapsulating 12 hidden layers. The model utilizes
a GELU [80] activation function, a batch size of 32 with
learning rate 3 ∗ 10−5, and a maximum sequence length of
512 tokens with attention and hidden dropout probability of
0.1. The performance of the trained model was evaluated
by measuring its accuracy on a held-out test dataset. The
aforementioned workflow is depicted in Figure 3.

The training corpus used is the FriendsPersona [81] which
is a large-scale conversational dataset that was constructed
using scripts from the popular American TV show ‘‘Friends’’.
It contains 1,175 dialogues between pairs of characters,
totaling 105,784 utterances. The dataset is annotated with
the Big-5 personality traits, with each dialogue annotated
by three human raters. The FriendsPersona dataset is unique

in that it provides both conversational data and personality
trait annotations, which enables researchers to explore the
relationship between personality traits and conversational
behavior. In terms of inter-annotator agreement, the creators
achieved an average pair-wise kappa of 54.92% among
2 annotators and Fleiss’ kappa of 20.54% among 3 annotators
across five personality traits. Table 3 presents the corpus
details.

FIGURE 3. PERST-R pipeline.

TABLE 3. FriendsPersona corpus details.

PERST-R model achieved satisfactory accuracy in recog-
nizing Big-5 personality traits, with an overall accuracy of
71,12%. Table 4 and Figure 4 present the performance
results and ROC graph. The area under the ROC curve (AUC)
for each of the Big-5 personality traits was also satisfactory,
with values of 0.83 for Openness, 0.62 for Conscientiousness,
0.79 for Extraversion, 0.57 for Agreeableness, and 0,80
for Neuroticism. These results demonstrate the effectiveness
of the PERST-R model in efficiently recognizing Big-5
personality traits and suggest that this approach could be
useful in CSE attack recognition.

FIGURE 4. PERST-R ROC curves.
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TABLE 4. PERST-R accuracy results.

C. DIACT-R
Dialogue acts (DAs) represent the communicative functions
or intentions conveyed during conversations and are exploited
by attackers in CSE attacks to manipulate targets. Rec-
ognizing dialogue acts in chat text offers advantages in
safeguarding against CSE attacks. DIACT-R is built around
a BERT model, called SG-CSE BERT, which is fine-tuned
on the custom SG-CSE Corpus [29]. It employs a schema-
guided paradigm for CSE attack state tracking, utilizing
previous interactions to establish a baseline of normal
behavior and detect anomalies indicative of CSE attempts.
For example, inconsistencies in impersonation attempts can
be revealed through monitoring interaction history. For the
identification of CSE DAs as shown in Figure 5, a Schema-
Guided Chat-based Social Engineering Ontology (SG-CSE
Ontology) is created using the CSE conceptual model and
ontology. Four CSE attack types are extracted and represented
as services, each mapped to a specific schema. DIACT-
R operates within a schema-guided framework, allowing
for conditioning on the CSE attack service schema using
intent and slot descriptions. The schema includes multiple
intents mapped to corresponding DAs. This schema-guided
paradigm leverages domain ontologies to define service
schemas, and in this research, the domain is CSE attacks. The
system predicts the service, user intention, and requested slot-
value pairs, enhancing the ability to detect and thwart CSE
attacks in chat-based interactions.

FIGURE 5. Distribution of CSE DAs in the SG-CSE corpus.

DIACT-R uses the schema-guided SG-CSE BERT model
to represent unseen intents and slots by encoding them into
embedded representations. The model, as shown in Figure 6,
accommodates varying schema structures in CSE attacks.
Input sequences are paired and processed by the SG-CSE
BERT encoder, with schema embedded as UCLS and token-
level representations as t .
The Hugging Face [82] library and the BERT uncased

model with 12 layers, 768 hidden dimensions, and 12 self-
attention heads were utilized to form the SG-CSE BERT
model. To train the model, we set the batch size at 32 and
used a dropout rate of 0.2 for all classification heads. A linear

FIGURE 6. The SG-CSE BERT model.

warmup strategy with a duration of 10% of the training
steps was employed, as well as the AdamW optimizer [83]
with a learning rate of 2e-5. Table 5 depicts DIACT-R’s
performance, with Active Intent Accuracy and Requested
Slots F1 displaying high efficiency, while Average Goal
Accuracy and Joint Goal Accuracy exhibit lower efficiency.

TABLE 5. DIACT-R performance results.

D. PERSU-R
PERSU-R recognizer, identifies persuasive content in utter-
ances. Cialdini’s principles of persuasion serve as a foun-
dation for understanding persuasive techniques. These prin-
ciples are widely recognized in interdisciplinary scientific
research on persuasion. PERSU-R combines a CNN and a
Multi-Layer Perceptron (MLP) for this purpose. The CNN
functions as a feature extractor, capturing local patterns in
sentences that may indicate persuasive cues. It applies a
nonlinear function to token windows and uses a pooling layer
to create a one-dimensional vector, which is then integrated
into the overall network architecture. The parameters and
values of the filters applied by the CNN are optimized
through back-propagation during the training phase, ensuring
effective identification of persuasive content in sentences.
PERSU-Rwas trained on the CSE-PUCCorpus [30], which is
an appropriately annotated version of the CSE corpus. Before
the training process, we specified several hyperparameters,
such as the number of filters and filter size, as shown in
Table 6.

The performance results f the PERSU-R recognizer are
presented in Table 7.

E. PERSI-R
Paraphrasing involves restating information in different ways
and is used by malicious actors to avoid detection while
persisting in their efforts to extract sensitive data. To address
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TABLE 6. PERSU-R training details.

TABLE 7. PERSU-R performance results.

this issue, PERSI-R recognizer employs a specialized neural
network architecture developed for paraphrase recognition
in the context of CSE attacks. PERSI-R is a fine-tuned
version of BERT model, specifically tailored for the task
of recognizing paraphrasing in the context of CSE attacks.
Following the SNLI paradigm [84], each instance of the CSE-
Persistence corpus [31] is composed of two sentences and is
manually labeled as being a member of one of the following
three categories:

• Identical (I): the two sentences are semantically close
and share a common term targeting the same leaf entity
in the CSE ontology.

• Similar (S): the two sentences are semantically related
and share a common intent, which translates into a
higher-level entity in the CSE ontology, targeting a
different leaf entity

• Different (D): the two sentences are not semantically
related, and they do not share a common higher-level or
leaf entity.

The PERSI-R model takes pairs of sentences as input
and produces a binary classification result, determining
whether the sentences are paraphrases or not. To prepare the
input sentences for the model, they are tokenized, padded
to a fixed length, and passed through the BERT model
to generate contextualized word embeddings. The sentence
representations are then derived by calculating the mean
of the contextualized word embeddings across all tokens
within each sentence. This approach enhances the ability
to detect and thwart such malicious activities during chat-
based interactions. After fine-tuning, PERSI-R compared to
the simple BERT-base model achieved the accuracy values
presented in Table 8.

TABLE 8. PERSI-R performance results.

VI. CSE-ARS TRAINING
To comprehensively assess the effectiveness of our pro-
posed CSE-ARS, a ten-fold cross-validation experiment was
conducted. An augmented version of CSE Corpus, called
CSE-ARS Corpus, underwent a randomization process,
resulting in its division into ten distinct subsets. Throughout
each iteration of the experiment, nine subsets were further
subdivided into training (80%) and validation (20%) sets,
while the remaining subset was designated as the testing set.
By employing this methodology, prediction scores for each
testing subset were obtained after ten rounds, which were
subsequently amalgamated to derive an overall prediction
score. To enhance the performance of our approach, several
strategies were implemented. Initially, we explored diverse
configurations and trained each recognizer using a single
domain training set, with the validation set utilized to
mitigate the risk of overfitting. Subsequently, the optimal
configuration parameters were selected based on the eval-
uation criterion of the area under the receiver operating
characteristic curve (AUC) value. Finally, after the training
of the specific recognizers, an exhaustive examination of
various coefficient combinations was conducted until the
classification performance, as assessed by the AUC value,
reached its maximum on the validation set.

A. CSE-ARS CORPUS
CSE-ARS was trained on the CSE-ARS Corpus [27], which
is an augmented version of the CSE corpus [28]. The CSE-
ARS raw dialogues have been released on DRYAD [85] and
is composed of realized and fictional CSE attack dialogues.
9 presents the summary of the CSE-ARS corpus.

TABLE 9. CSE-ARS corpus details.

B. LATE-FUSION
Ensemble techniques offer a valuable means of enhancing
system performance by combiningmultiple machine learning
models. Such techniques prove particularly beneficial when
individual models exhibit high accuracy but differ in the types
of errors they make, as often encountered in multimodal
approaches. Within the context of this study, we consider
as ‘‘modality’’ [64] each distinct acquisition framework
that captures information regarding the same phenomenon
from various types of recognizers under different conditions,
across multiple experiments or subjects. The late fusion
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approach, akin to decision-level fusion, constitutes an
ensemble technique that combines the output multiplemodels
to generate a final prediction. In late fusion, the unimodal
decision values are acquired and merged to derive the
ultimate decision. This approach facilitates flexible training
and straightforward predictions, even when one or more
modalities are absent, albeit at the expense of disregarding
certain low-level interactions between modalities.

The output of CSE-ARS recognizers is concatenated and
subsequently fed into a final classifier to formulate the
conclusive prediction. Leveraging late fusion methodology
leads to enhanced performance when compared to utilizing a
solitary model, rendering it a commonly adopted technique
across various machine learning domains including image
classification, NLP, and speech recognition. The key advan-
tage of late fusion lies in its capacity to allow individual
recognizers to specialize in their respective areas of expertise,
thereby contributing to a more accurate final prediction. If a
recognizer mi is used on modality i using input ki where i =

1, 2, . . . , M then the final prediction of a late fusion system is
given by p = f (m1(k1),m2(k2), . . . ,mM (kM )). The strengths
of late fusion systems are relatively simple to implement
compared to other models, as they simply combine the
outputs of different models into a single prediction.

C. SIMULATED ANNEALING
The novelty of our approach resides in the architectural
design and the fusion of multi-dimensional data. The
fundamental idea behind our multimodal fusion approach
is to integrate the distinct output to enhance CSE attack
recognition. The outputs of the individual recognizers are
represented by probability distributions, obtained through
the application of the SoftMax [86] classifier. The SoftMax
classifier formula is depicted in Formula 1:

softmax(y)i =
eyi∑n
j=1 e

yi
(1)

where yi represent the data in jth column of the output vector
and n represents the output vector dimension. The SoftMax
layer’s output constitutes a probability distribution across the
two possible classes, whether an utterance is considered a
CSE attack or not. We conducted multimodal fusion based on
weighted linear aggregation; the specific construction steps
are as follows:
STEP1: The trained CSE-ARS recognizers (CRINL-R,

DIACT-R, PERSI-R, PERST-R, and PERSU-R) are applied
to the particular validation sets. The output of each recognizer

(i.e., outputCRINL−R, outputDIACT−R, outputPERSI−R,

outputPERST−R, andoutputPERSU−R)

has the form of a matrix with dimensions equal to the number
of samples in the corresponding validation set and the number
of classes.

STEP2: To fuse the results of the individual recognizers,
we define the fusion methods shown in Formulas 2, 3, 4:

outputCSE−ARS

= α ∗ outputCRINL−R + β ∗ outputDIACT−R

+ γ ∗ outputPERSI−R + δ ∗ outputPERST−R

+ ϵ ∗ outputPERSU−R (2)

α + β + γ + δ + ε = 1 (3)

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ β ≤ 1, 0 ≤ β ≤ 1, 0 ≤ ε ≤ 1

(4)

where outputCSE−ARS represent the result of feature fusion,
α represents the weight of the CRINL-R output, β represents
the weight of the DIACT-R output, γ represents the weight of
the PERSI-R output, δ represents the weight of the PERST-R
output and ϵ represents the weight of the PERSU-R output.
STEP3: We find the best combination of (α, β, γ, δ, ε)

on the validation set so that the cross entropy between
outputCSE−ARS and label (one-hot encoding) is close to the
theoretical minimum (α, β, γ, δ, ε). The step is equivalent
to a new round of feature learning.
STEP4: In order to find the optimal solution of

(α, β, γ, δ, ε) on the validation set, we define the
optimization problem as shown in Formulas 5, 6, 7 :

min(Loss(outputCSE−ARS ,Label) (5)

α + β + γ + δ + ε = 1 (6)

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ β ≤ 1, 0 ≤ β ≤ 1, 0 ≤ ε ≤ 1

(7)

To obtain the global optimal solution, we utilize the Sim-
ulated Annealing (SA) algorithm [87]. SA is an optimization
algorithm used for discovering the global optimum of a
complex objective function. The probability of a particular
state of x is determined by Formula 8:

p(x) = e
−1f (x)
kT (8)

where f(x) is the configuration of energy, k is Boltzmann’s
constant, and T is temperature. The algorithm that describes
the optimization procedure is shown in Algorithm 1

To summarize, the Simulated Annealing (SA) algorithm
is an optimization algorithm used to find the global optimal
solution of a complex objective function. It starts with an
initial solution and evaluates it using the objective function.
Then, it perturbs the solution and evaluates the new solution.
If the new solution is better, it becomes the new current
solution. If it’s worse, it may still be accepted with a
probability based on the temperature parameter. The objective
function in this work is defined as shown in Formula 5 and
the SA algorithm is used to determine the optimal values
of (α, β, γ, δ, ϵ) on the validation set. Finally, the tuple
(α, β, γ, δ, ϵ) is transferred to the test set to predict CSE
attacks using the fused features, and the results are compared
to those obtained through single modality feature learning.
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Algorithm 1 Simulated Annealing
1: procedure Optimize
2: Generate a random initial solution x0
3: Calculate objective function
4: Parameter Initialization (T , k, c)
5: while control condition not true do
6: for number of new states do
7: Pick new solution x0+1x in neighborhood
8: #Evaluate new state
9: if f(x0 + 1x) > f(x0) then
10: f = f(x0+); x = x + 1x
11: else
12: 1f = f(x0 + 1x) – f(x0)
13: if r>exp(−1f (x)/(kt)) then
14: f = f(f +1x), x = x 1x
15: else
16: fnew = f(x0
17: end if
18: end if
19: f = fnew
20: Decrease the temperature periodically: T = Txc
21: end for
22: end while
23: end procedure

FIGURE 7. Workflow of the CSE-ARS multimodal fusion.

The workflow of the CSE-ARS multimodal fusion is shown
in Figure 7.

The layers depicted in the figure above are as follows:
• Embeddings Layer: This layer receives input from the
individual recognizers.

• Fusion Layer: This layer combines the outputs from
the individual recognizers into a single representation.
The fusion layer is implemented as a weighted linear
aggregation.

• Output Layer: The output of the recognizers is concate-
nated.

• Dense Layer: This layer is used to apply non-linear
transformations to the fused representation to produce
the final prediction. The dense layer is implemented as
a fully connected layer.

• Inference Layer: This layer produces the final predic-
tion, which could be the probability of a given text being
a CSE attack or not.

These steps are repeated until the system reached sat-
isfactory performance. For this specific problem of CSE
attack recognition, a binary cross-entropy loss function is
used. For the optimizer, our method of choice was the
Adam optimizer [88], which adaptively adjusts the learning
rate for each parameter based on the historical gradient

information. Furthermore, it tends to converge faster and
with a better convergence minimum compared to Stochastic
Gradient Descent (SGD) [89]. The choice of a binary cross-
entropy loss function and the Adam optimizer is a reasonable
one for the late fusion system for CSE attack recognition, as it
provides a robust and efficient way to measure the error and
update the system parameters.

VII. CSE-ARS EVALUATION
During our research, every experiment was tracked as it
relates to the progress and the results. Furthermore, the level
of detail logged concerning each experiment was at such
a level that we could be able to recreate each experiment
or compare it at a later time with another experiment. For
experiment tracking (e.g., loss curve, model performance
metrics, hyperparameters, etc.) and experiment versioning,
we utilized the Weight & Biases platform [90]. Different
combinations of hyper-parameter values, as expected, gave
different performance results. We exhaustively searched all
possible combinations to find the optimal hyper-parameter
values. The performance of each hyper-parameters set was
evaluated against a dedicated validation set. Our test split was
never used for hyper-parameter tuning, to avoid overfitting
and the best model was selected based on its performance on
the validation set. Afterward, this model’s performance was
measured against the test split. CSE-ARS system has been
extensively evaluated on the CSE-ARS corpus.

Due to the lack of similar CSE recognition systems, we uti-
lized a baseline system based on the majority voting [91]
method, in which the predictions of all the classifiers are
combined and the class label with the highest frequency is
selected as the final prediction. By comparing the results of
the two models, we aim to show the benefits of using a more
sophisticated late fusion model over a simple majority voting
ensemble model for CSE attack recognition. The results show
that CSE-ARS is outperforming themajority voting ensemble
model. For each different recognizer, we suppose that if
recognition is true (e.g., persuasion is recognized) then a
CSE attack is underway. Thus, there are two different classes
we need to predict: CSE-attack and Neutral. The predicted
class label ŷ, if there are m different classifiers, is given by
Formula 9

ŷ = mode {C1(x), C2(x), . . . , Cm(x)} (9)

We evaluated the model performance of each recognizer
via 10-fold cross-validation on the training dataset before we
combine them into an ensemble recognizer: e.g., the global
optimization outcome for (α, β, γ, δ, ϵ) on the validation set
yielded (0.134, 0.294, 0.201, 0.169, 0.202). Upon acquiring
the key parameters (α, β, γ, δ, ϵ) for the multimodal fusion
model, we tested both the individual recognizers and the
fusion model on the test set. Their respective prediction
accuracies were 56,70%, 71,20%, 68,70%, 64,90%, 58,90%,
and 79,96%. The multimodal fusion model achieved a
prediction accuracy of 8.76% greater than the optimal single
modality model. The loss value of each model was calculated
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TABLE 10. Average accuracy of individual recognizers and ensemble
models.

TABLE 11. AUC values of the CSE-ARS and individual recognizers.

as shown in Formula 10

Loss
(
Lt , L∗

t
)

= −
1
n

∑ [
Lt (i) ∗ logL∗

t (i)
]
+ λR(w) (10)

where Lt is the correct label of the sample, L∗
t is the

network output, and λ is the weight of the regularization
term.

The loss value for each recognizer was 0.304, 0.250, 0.378,
0.401, 0.290 and the multimodal fusion model was only
0.179. We used 10 times 10-fold cross-validation on the
individual recognizers and multimodal fusion model and the
results are shown in Figure 8.
Each set represents a 10-fold cross-validation. All indi-

vidual recognizers are represented with gray-scaled colors in
each set. In the ten times of validations, the average prediction
accuracy of the models of CSE-ARS multimodal fusion, and
particular recognizers is shown in Table 10.

To evaluate the performance of CSE-ARS in predicting
CSE attacks, we computed ROC curves for each class and
determined the AUC values for each model. Figure 9 shows
the ROC curves of the models used to evaluate the prediction
performance of CSE attacks, and Table 11 displays the
calculated AUC values for each model.

VIII. DISCUSSION
Deep learning is a powerful approach for building recognizers
as it allows for the learning of high-level abstractions from
data. This is particularly useful in the case of CSE attacks,
where the patterns of behavior and language used by attackers
can be complex and difficult to identify. Deep learning
models such as recurrent neural networks and transformer-
based networks can learn these complex patterns and make
accurate predictions about the likelihood of a CSE attack.
Furthermore, the use of pre-trained deep learning models
is beneficial as these models are trained on large amounts
of data, which enables them to generalize well to new data
and new types of CSE attacks. This is important as CSE

attacks are constantly evolving, and being able to adapt to
new types of attacks is crucial for the effectiveness of a
CSE attack recognition system. For the implementation of
the individual deep learning recognizers, we mainly used
the popular deep learning frameworks PyTorch [92] and
HuggingFace [93]. CSE-ARS outperformed the individual
recognizers in terms of accuracy, precision, recall, F1 score,
and AUC value. PERSI-R had the highest performance
among the individual models, but the multimodal fusion
model achieved a higher accuracy in 10-fold cross-validation.
However, there was a large gap between the AUC value of
the multimodal fusion model and PERSI-R. It is suggested
that the superior performance of the CSE-ARS model is
due to the strength of the late fusion approach to utilize
multiple modalities, which may capture more comprehensive
information about CSE attacks. Overall, the results suggest
that the multimodal fusion approach has the potential for
improving the accuracy of CSE attack prediction. However,
further research is needed to validate the findings on larger
and more diverse datasets and to explore the generalizability
and robustness of the approach. Additionally, it may be
beneficial to investigate the interpretability of the model and
the specific features that contribute to the prediction. Many
trade-offs had to be considered during model selection such
as computing requirements, and performance. As already
mentioned, the design decision was to prefer models that
had fewer false positives neglecting the false negatives
metric. Furthermore, it was also a design decision to choose
the models based solely on their performance and not on
computing requirements. Neural networks demand more
powerful machines (e.g., GPU over CPU) to deliver high
accuracy with an acceptable inference latency. It was crucial
to maintain a comprehensive record of definitions required
to replicate an experiment alongside its pertinent artifacts,
which refer to the files created during an experiment such
as those displaying loss curves, evaluation loss graphs,
logs, or intermediate results of a model throughout a
training process. This practice facilitates the comparison
of distinct experiments and aids in the selection of the
optimal experiment tailored to one’s specific requirements.
The proposed CSE-ARS has shown promising results in
recognizing the various enablers such as personality traits,
dialogue acts, persuasion attempts, persistent behavior, and
critical information leakage. The system’s performance has
been evaluated using CSE-ARS Corpus comprised of real-
world and fictional chat conversations and the results indicate
that it can accurately recognize these enablers with high
precision and recall. Another contribution of this study is
the use of the late fusion method to combine the separate
outputs of the individual recognizer. This approach allows
for the strengths of each technique to be leveraged and
results in a more robust and accurate recognition system.
The individual recognizers used in the proposed system
also deserve further discussion. The use of a convolutional
network for recognizing persuasion attempts has been shown
to be effective in identifying patterns in the language used
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FIGURE 8. Sequence of 10-fold cross-validation.

FIGURE 9. ROC curves of CSE-ARS and individual recognizers.

in persuasion attempts. The use of BERT for recognizing
personality traits, dialogue acts, and persistent behavior
is also well-suited for these tasks as BERT is a pre-
trained language model that has been shown to have strong
performance in natural language understanding tasks. It is
worth noting that BERT models used in this study were
fine-tuned on specific and appropriate corpora, and their
performance may be improved by further fine-tuning on
larger and more diverse corpora. Moreover, the use of
such models allows for the proposed system to be easily
updated and improved as new data and techniques become
available, making it more adaptive to the constantly evolving
social engineering attacks. Overall, the individual recognizers
used in CSE-ARS have been shown to be effective in
recognizing the various enablers of social engineering
attacks.

However, SE attacks nowadays utilize a diverse set of
communication channels such as audio, video etc. CSE-ARS
could significantly benefit from incorporating image, video,
and audio inputs, enabling a more comprehensive analysis
of social engineering attacks. The integration of diverse
modalities would enhance the system’s ability to detect
nuanced deceptive cues, such as visual anomalies, audio
manipulation, or behavioral patterns, thereby improving
its overall accuracy and resilience against multifaceted
social engineering strategies. Sophisticated image, video
and audio processing techniques may enhance CSE-ARS’s
ability to analyze and interpret visual and audio content
in diverse contexts, potentially improving its overall per-
formance. For example advancements in nighttime image
enhancement presented in [94], nighttime haze removal
method [95] leveraging the innovative gray haze-line or
NightHazeFormer’s transformer-based framework [96] that
demonstrates superior nighttime haze removal by addressing
multiple adverse effects. Such techniques may contribute
to improved visual content analysis in challenging night-
time conditions, aligning with CSE-ARS’s future goal
of recognizing social engineering attacks across diverse
contexts.

IX. CONCLUSION
In this work, we introduced CSE-ARS, demonstrating
its effectiveness in detecting and mitigating CSE attacks.
CSE-ARS adopts an interdisciplinary approach, considering
factors such as personality traits, linguistic aspects, behav-
ioral characteristics, and information technology attributes.
Through multimodal late fusion, it integrates predic-
tions from various deep learning models, leveraging their
strengths.

We optimized performance by aggregating recognizer
outputs through a weighted linear combination, determined
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using simulated annealing and k-fold cross-validation. This
ensured peak performance while maintaining a balanced
integration of individual recognizers.

Comprehensive evaluation substantiates CSE-ARS’s
effectiveness in recognizing CSE attacks, making it a
valuable tool for safeguarding individuals and organizations.
Future research will expand capabilities by incorporating
additional factors influencing CSE attacks. The emergence of
FoundationalModels [97] opens opportunities for identifying
deepfake content, though challenges exist.

REFERENCES
[1] I. Del Pozo, M. Iturralde, and F. Restrepo, ‘‘Social engineering:

Application of psychology to information security,’’ in Proc. 6th Int.
Conf. Future Internet Things Cloud Workshops (FiCloudW), Aug. 2018,
pp. 108–114.

[2] R. W. Gehl and S. T. Lawson, Social Engineering: How Crowdmasters,
Phreaks, Hackers, and Trolls Created a New Form of Manipulativ e
Communication. Cambridge, MA, USA: MIT Press, 2022.

[3] R. Heartfield and G. Loukas, ‘‘A taxonomy of attacks and a survey
of defence mechanisms for semantic social engineering attacks,’’ ACM
Comput. Surv., vol. 48, no. 3, pp. 1–39, Feb. 2016.

[4] F. Salahdine and N. Kaabouch, ‘‘Social engineering attacks: A survey,’’
Future Internet, vol. 11, no. 4, p. 89, Apr. 2019.

[5] Z. Wang, H. Zhu, and L. Sun, ‘‘Social engineering in cybersecurity: Effect
mechanisms, human vulnerabilities and attack methods,’’ IEEE Access,
vol. 9, pp. 11895–11910, 2021.

[6] DBIR Report 2023—Master’s Guide, Business Verizon, Ashburn, VA,
USA, 2023.

[7] K. Chetioui, B. Bah, A. O. Alami, and A. Bahnasse, ‘‘Overview of social
engineering attacks on social networks,’’ Proc. Comput. Sci., vol. 198,
pp. 656–661, Jan. 2022.

[8] V. Y. Sokolov and O. Y. Korzhenko, ‘‘Analysis of recent attacks based on
social engineering techniques,’’ 2019, arXiv:1902.07965.

[9] C. Catal, G. Giray, B. Tekinerdogan, S. Kumar, and S. Shukla, ‘‘Appli-
cations of deep learning for phishing detection: A systematic literature
review,’’ Knowl. Inf. Syst., vol. 64, no. 6, pp. 1457–1500, Jun. 2022.

[10] W. Syafitri, Z. Shukur, U. A. Mokhtar, R. Sulaiman, and M. A. Ibrahim,
‘‘Social engineering attacks prevention: A systematic literature review,’’
IEEE Access, vol. 10, pp. 39325–39343, 2022.

[11] S. Venkatesha, K. R. Reddy, and B. R. Chandavarkar, ‘‘Social engineering
attacks during the COVID-19 pandemic,’’ Social Netw. Comput. Sci.,
vol. 2, no. 2, pp. 1–9, Apr. 2021.

[12] K.Mitnick,Ghost in theWires: My Adventures as theWorld’s Most Wanted
Hacker. Hachette, 2011.

[13] S. M. Albladi and G. R. S. Weir, ‘‘Predicting individuals’ vulnerability
to social engineering in social networks,’’ Cybersecurity, vol. 3, no. 1,
pp. 1–19, Dec. 2020.

[14] T. Li, K. Wang, and J. Horkoff, ‘‘Towards effective assessment for social
engineering attacks,’’ in Proc. IEEE 27th Int. Requirements Eng. Conf.
(RE), Sep. 2019, pp. 392–397.

[15] M. Mattera and M. M. Chowdhury, ‘‘Social engineering: The looming
threat,’’ in Proc. IEEE Int. Conf. Electro Inf. Technol. (EIT), May 2021,
pp. 056–061.

[16] A. Vishwanath, The Weakest Link: How to Diagnose, Detect, and Defend
Users From Phishing. Cambridge, MA, USA: MIT Press, 2022.

[17] N. Tsinganos, G. Sakellariou, P. Fouliras, and I. Mavridis, ‘‘Towards an
automated recognition system for chat-based social engineering attacks in
enterprise environments,’’ in Proc. 13th Int. Conf. Availability, Rel. Secur.,
Aug. 2018, pp. 1–10.

[18] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and
C. Canton Ferrer, ‘‘The DeepFake detection challenge (DFDC) dataset,’’
2020, arXiv:2006.07397.

[19] S. Lyu, ‘‘Deepfake detection: Current challenges and next steps,’’ in Proc.
IEEE Int. Conf. Multimedia ExpoWorkshops (ICMEW), Jul. 2020, pp. 1–6.

[20] M. Westerlund, ‘‘The emergence of deepfake technology: A review,’’
Technol. Innov. Manag. Rev., vol. 9, no. 11, pp. 39–52, Jan. 2019.

[21] B. C. Robert, Influence, New and Expanded: The Psychology of
Persuasion. HarperCollins Publishers, 2021.

[22] R. B. Cialdini and N. J. Goldstein, ‘‘The science and practice of
persuasion,’’ Cornell Hotel Restaurant Admin. Quart., vol. 43, no. 2,
pp. 40–50, 2002.

[23] R. B. Cialdini, Influence: Science and Practice, vol. 4, Boston, MA, USA:
Pearson, 2009.

[24] G. W. Allport, ‘‘Personality: A psychological interpretation,’’
Tech. Rep., 1937.

[25] L. R. Goldberg, ‘‘The structure of phenotypic personality traits,’’ Amer.
Psychologist, vol. 48, no. 1, pp. 26–34, 1993.

[26] J. F. Salgado, ‘‘The big five personality dimensions and counterproductive
behaviors,’’ Int. J. Selection Assessment, vol. 10, nos. 1–2, pp. 117–125,
Mar. 2002.

[27] N. Tsinganos, ‘‘Utilizing deep learning and natural language processing
to recognise chat-based social engineering attacks for cyber security
situational awareness,’’ Ph.D. thesis, School Inf. Sci., Dept. Appl. Inform.,
Univ. Macedonia, Thessaloniki, Greece, Oct. 2023.

[28] N. Tsinganos and I. Mavridis, ‘‘Building and evaluating an annotated
corpus for automated recognition of chat-based social engineering
attacks,’’ Appl. Sci., vol. 11, no. 22, p. 10871, Nov. 2021.

[29] N. Tsinganos, P. Fouliras, and I. Mavridis, ‘‘Leveraging dialogue state
tracking for zero-shot chat-based social engineering attack recognition,’’
Appl. Sci., vol. 13, no. 8, p. 5110, Apr. 2023.

[30] N. Tsinganos, I. Mavridis, and D. Gritzalis, ‘‘Utilizing convolutional
neural networks and word embeddings for early-stage recognition of
persuasion in chat-based social engineering attacks,’’ IEEE Access, vol. 10,
pp. 108517–108529, 2022.

[31] N. Tsinganos, P. Fouliras, and I.Mavridis, ‘‘Applying BERT for early-stage
recognition of persistence in chat-based social engineering attacks,’’ Appl.
Sci., vol. 12, no. 23, p. 12353, Dec. 2022.

[32] Z. Wang, Y. Ren, H. Zhu, and L. Sun, ‘‘Threat detection for general
social engineering attack using machine learning techniques,’’ 2022,
arXiv:2203.07933.

[33] J. M. Hatfield, ‘‘Social engineering in cybersecurity: The evolution of a
concept,’’ Comput. Secur., vol. 73, pp. 102–113, Mar. 2018.

[34] J. H. Bullée, L. Montoya, W. Pieters, M. Junger, and P. Hartel, ‘‘On the
anatomy of social engineering attacks—A literature-based dissection of
successful attacks,’’ J. Investigative Psychol. Offender Profiling, vol. 15,
no. 1, pp. 20–45, Jan. 2018.

[35] K. Krombholz, H. Hobel, M. Huber, and E. Weippl, ‘‘Advanced social
engineering attacks,’’ J. Inf. Secur. Appl., vol. 22, pp. 113–122, Jun. 2015.

[36] Y. P. Atmojo, I. M. D. Susila, M. R. Hilmi, E. S. Rini, L. Yuningsih, and
D. P. Hostiadi, ‘‘A new approach for spear phishing detection,’’ in Proc.
3rd East Indonesia Conf. Comput. Inf. Technol. (EIConCIT), Apr. 2021,
pp. 49–54.

[37] V. Shakela andH. Jazri, ‘‘Assessment of spear phishing user experience and
awareness: An evaluation framework model of spear phishing exposure
level (SPEL) in the Namibian financial industry,’’ in Proc. Int. Conf. Adv.
Big Data, Comput. Data Commun. Syst. (icABCD), Aug. 2019, pp. 1–5.

[38] J. S. Wiggins, The Five-Factor Model of Personality: Theoretical
Perspectives. Guilford Press, 1996.

[39] F. Sudzina and A. Pavlicek, ‘‘Propensity to click on suspicious links:
Impact of gender, of age, and of personality traits,’’ Tech. Rep., 2017.

[40] S. M. Albladi and G. R. S. Weir, ‘‘Personality traits and cyber-attack
victimisation: Multiple mediation analysis,’’ in Proc. Internet Things Bus.
Models, Users, Netw., Nov. 2017, pp. 1–6.

[41] S. Anawar, D. L. Kunasegaran, M. Z. Mas’ud, and N. A. Zakaria,
‘‘Analysis of phishing susceptibility in a workplace: A big-five personality
perspectives,’’ J. Eng. Sci. Technol., vol. 14, no. 5, pp. 2865–2882, 2019.

[42] S. Uebelacker and S. Quiel, ‘‘The social engineering personality frame-
work,’’ in Proc. Workshop Socio-Technical Aspects Secur. Trust, Jul. 2014,
pp. 24–30.

[43] M. McBride, L. Carter, and M. Warkentin, ‘‘Exploring the role of individ-
ual employee characteristics and personality on employee compliance with
cybersecurity policies,’’ RTI Int.-Inst. Homeland Secur. Solutions, vol. 5,
no. 1, pp. 45–83, 2012.

[44] M. Hoeschele andM. Rogers, ‘‘Detecting social engineering,’’ inAdvances
in Digital Forensics. Berlin, Germany: Springer, 2005, pp. 67–77.

[45] M. Hoeschele, ‘‘CERIAS tech report 2006–15 detecting social engineer-
ing,’’ Tech. Rep., 2006.

[46] M. Bezuidenhout, F. Mouton, and H. S. Venter, ‘‘Social engineering attack
detection model: SEADM,’’ in Proc. Inf. Secur. South Afr., Aug. 2010,
pp. 1–8.

16086 VOLUME 12, 2024



N. Tsinganos et al.: CSE-ARS: Deep Learning-Based Late Fusion of Multimodal Information

[47] F. Mouton, L. Leenen, and H. S. Venter, ‘‘Social engineering attack
detection model: SEADMv2,’’ in Proc. Int. Conf. Cyberworlds (CW),
Oct. 2015, pp. 216–223.

[48] R. Bhakta and I. G. Harris, ‘‘Semantic analysis of dialogs to detect social
engineering attacks,’’ inProc. IEEE 9th Int. Conf. Semantic Comput. (IEEE
ICSC), Feb. 2015, pp. 424–427.

[49] Y. Sawa, R. Bhakta, I. G. Harris, and C. Hadnagy, ‘‘Detection of social
engineering attacks through natural language processing of conversations,’’
in Proc. IEEE 10th Int. Conf. Semantic Comput. (ICSC), Feb. 2016,
pp. 262–265.

[50] T. Peng, I. Harris, and Y. Sawa, ‘‘Detecting phishing attacks using natural
language processing and machine learning,’’ in Proc. IEEE 12th Int. Conf.
Semantic Comput. (ICSC), Jan. 2018, pp. 300–301.

[51] M. Lansley, N. Polatidis, and S. Kapetanakis, ‘‘SEADer: A social
engineering attack detection method based on natural language processing
and artificial neural networks,’’ in Computational Collective Intelligence.
Hendaye, France: Springer, 2019, pp. 686–696.

[52] M. Lansley, S. Kapetanakis, and N. Polatidis, ‘‘SEADer++v2: Detecting
social engineering attacks using natural language processing and machine
learning,’’ in Proc. Int. Conf. Innov. Intell. Syst. Appl. (INISTA), Aug. 2020,
pp. 1–6.

[53] M. Lansley, F. Mouton, S. Kapetanakis, and N. Polatidis, ‘‘SEADer++:
Social engineering attack detection in online environments using machine
learning,’’ J. Inf. Telecommun., vol. 4, no. 3, pp. 346–362, Jul. 2020.

[54] M. Lansley, N. Polatidis, S. Kapetanakis, K. Amin, G. Samakovitis, and
M. Petridis, ‘‘Seen the villains: Detecting social engineering attacks using
case-based reasoning and deep learning,’’ Tech. Rep., 2019.

[55] X.Wang,W. Shi, R. Kim, Y. Oh, S. Yang, J. Zhang, and Z. Yu, ‘‘Persuasion
for good: Towards a personalized persuasive dialogue system for social
good,’’ 2019, arXiv:1906.06725.

[56] D. Yang, J. Chen, Z. Yang, D. Jurafsky, and E. Hovy, ‘‘Let’s make
your request more persuasive: Modeling persuasive strategies via semi-
supervised neural nets on crowdfunding platforms,’’ in Proc. Conf.
North, 2019, pp. 3620–3630.

[57] Y. Lee, J. Saxe, and R. Harang, ‘‘CATBERT: Context-aware tiny BERT for
detecting social engineering emails,’’ 2020, arXiv:2010.03484.

[58] A. Dalton, E. Aghaei, E. Al-Shaer, A. Bhatia, E. Castillo, Z. Cheng,
S. Dhaduvai, Q. Duan, B. Hebenstreit, and M. M. Islam, ‘‘Active defense
against social engineering: The case for human language technology,’’ in
Proc. 1st Int. Workshop Social Threats Online Conversations, Understand.
Manag., 2020, pp. 1–8.

[59] F. O. Catak, K. Sahinbas, and V. Dörtkardeş, ‘‘Malicious URL detection
using machine learning,’’ in Artificial Intelligence Paradigms for Smart
Cyber-Physical Systems. IGI global, 2021, pp. 160–180.

[60] Y. Lan, ‘‘Chat-oriented social engineering attack detection using attention-
based bi-LSTM and CNN,’’ in Proc. 2nd Int. Conf. Comput. Data Sci.
(CDS), Jan. 2021, pp. 483–487.

[61] H. Shi, M. Silva, L. Giovanini, D. Capecci, L. Czech, J. Fernandes, and
D. Oliveira, ‘‘Lumen: A machine learning framework to expose influence
cues in texts,’’ Frontiers Comput. Sci., vol. 4, Aug. 2022, Art. no. 929515.

[62] ISACA. (2023). In Pursuit if Digital Trust | ISACA. Accessed: Sep. 27,
2023. [Online]. Available: https://www.isaca.org/

[63] P. Bernard, COBIT 5-A Management Guide. Van Haren, 2012.
[64] D. Lahat, T. Adali, and C. Jutten, ‘‘Multimodal data fusion: An overview

of methods, challenges, and prospects,’’ Proc. IEEE, vol. 103, no. 9,
pp. 1449–1477, Sep. 2015.

[65] M. Pawlowski, A. Wróblewska, and S. Sysko-Romanczuk, ‘‘Effective
techniques for multimodal data fusion: A comparative analysis,’’ Sensors,
vol. 23, no. 5, p. 2381, Feb. 2023.

[66] D. Ramachandram andG.W. Taylor, ‘‘Deepmultimodal learning: A survey
on recent advances and trends,’’ IEEE Signal Process. Mag., vol. 34, no. 6,
pp. 96–108, Nov. 2017.

[67] M. Schuster and K. K. Paliwal, ‘‘Bidirectional recurrent neural networks,’’
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[68] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[69] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[70] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, ‘‘Natural language processing (almost) from scratch,’’ J. Mach.
Learn. Res., vol. 12, pp. 2493–2537, Jan. 2011.

[71] X. Schmitt, S. Kubler, J. Robert, M. Papadakis, and Y. LeTraon, ‘‘A
replicable comparison study of NER software: StanfordNLP, NLTK,
OpenNLP, SpaCy, gate,’’ in Proc. 6th Int. Conf. Social Netw. Anal., Manag.
Secur. (SNAMS), Oct. 2019, pp. 338–343.

[72] C. Spielberger, Encyclopedia of Applied Psychology. Cambridge, MA,
USA: Academic Press, 2004.

[73] H. Ahmad, M. U. Asghar, M. Z. Asghar, A. Khan, and A. H. Mosavi,
‘‘A hybrid deep learning technique for personality trait classification from
text,’’ IEEE Access, vol. 9, pp. 146214–146232, 2021.

[74] J. E. Arijanto, S. Geraldy, C. Tania, and D. Suhartono, ‘‘Personality pre-
diction based on text analytics using bidirectional encoder representations
from transformers from English Twitter dataset,’’ Int. J. FUZZY Log. Intell.
Syst., vol. 21, no. 3, pp. 310–316, Sep. 2021.

[75] N. H. Jeremy, G. Christian, M. F. Kamal, D. Suhartono, and
K. M. Suryaningrum, ‘‘Automatic personality prediction using deep
learning based on social media profile picture and posts,’’ in Proc. 4th Int.
Seminar Res. Inf. Technol. Intell. Syst. (ISRITI), Dec. 2021, pp. 166–172.

[76] M. Pattinson, C. Jerram, K. Parsons, A. McCormac, and M. Butavicius,
‘‘Why do some people manage phishing e-mails better than others?’’ Inf.
Manag. Comput. Secur., vol. 20, no. 1, pp. 18–28, 2012.

[77] I. Alseadoon, M. Othman, and T. Chan, ‘‘What is the influence of users’
characteristics on their ability to detect phishing emails?’’ in Proc. 1st
Int. Conf. Commun. Comput. Eng. Cham, Switzerland: Springer, 2015,
pp. 949–962.

[78] T. Halevi, J. Lewis, and N. Memon, ‘‘A pilot study of cyber security and
privacy related behavior and personality traits,’’ in Proc. 22nd Int. Conf.
World Wide Web, May 2013, pp. 737–744.

[79] A. C. Johnston, M. Warkentin, M. McBride, and L. Carter, ‘‘Dispositional
and situational factors: Influences on information security policy viola-
tions,’’ Eur. J. Inf. Syst., vol. 25, no. 3, pp. 231–251, May 2016.

[80] D. Hendrycks and K. Gimpel, ‘‘Gaussian error linear units (GELUs),’’
2016, arXiv:1606.08415.

[81] H. Jiang, X. Zhang, and J. D. Choi, ‘‘Automatic text-based personality
recognition on monologues and multiparty dialogues using attentive
networks and contextual embeddings (student abstract),’’ in Proc. AAAI
Conf. Artif. Intell., vol. 34, 2020, pp. 13821–13822.

[82] Hugging Face—The AI Community Building The Future, May 2023.
[Online]. Available: https://huggingface.co/

[83] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,’’
2017, arXiv:1711.05101.

[84] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, ‘‘A large annotated
corpus for learning natural language inference,’’ 2015, arXiv:1508.05326.

[85] Nikolaos Tsinganos, CSE-ARS Corpus, Univ. Macedonia, Thessaloniki,
Greece, 2023.

[86] J. Bridle, ‘‘Training stochastic model recognition algorithms as networks
can lead to maximum mutual information estimation of parameters,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 2, 1989, pp. 1–7.

[87] L. M. R. Rere, M. I. Fanany, and A. M. Arymurthy, ‘‘Simulated
annealing algorithm for deep learning,’’ Proc. Comput. Sci., vol. 72,
pp. 137–144, Jan. 2015.

[88] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[89] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
2016, arXiv:1609.04747.

[90] L. Biewald, ‘‘Experiment tracking with weights and biases,’’ Softw.
Available From Wandb. Com, vol. 2, p. 233, Jan. 2020.

[91] A. Jain, A. Kumar, and S. Susan, ‘‘Evaluating deep neural network
ensembles by majority voting cum meta-learning scheme,’’ in Soft
Computing and Signal Processing, vol. 2. Berlin, Germany: Springer,
2022, pp. 29–37.

[92] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, and L. Antiga, ‘‘PyTorch: An imperative style,
high-performance deep learning library,’’ inProc. Adv. Neural Inf. Process.
Syst., vol. 32, 2019, pp. 1–12.

[93] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, and M. Funtowicz, ‘‘Transformers: State-of-the-art
natural language processing,’’ in Proc. Conf. Empirical Methods Natural
Lang. Syst. Demonstrations, 2020, pp. 38–45.

[94] Y. Liu, Z. Yan, J. Tan, and Y. Li, ‘‘Multi-purpose oriented single nighttime
image haze removal based on unified variational retinex model,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 33, no. 4, pp. 1643–1657,
Apr. 2023.

[95] W. Wang, A. Wang, and C. Liu, ‘‘Variational single nighttime image haze
removal with a gray haze-line prior,’’ IEEE Trans. Image Process., vol. 31,
pp. 1349–1363, 2022.

VOLUME 12, 2024 16087



N. Tsinganos et al.: CSE-ARS: Deep Learning-Based Late Fusion of Multimodal Information

[96] Y. Liu, Z. Yan, S. Chen, T. Ye, W. Ren, and E. Chen, ‘‘NightHazeFormer:
Single nighttime haze removal using prior query transformer,’’ in Proc.
31st ACM Int. Conf. Multimedia, Oct. 2023, pp. 4119–4128.

[97] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx,
M. S. Bernstein, J. Bohg, A. Bosselut, and E. Brunskill, ‘‘On the
opportunities and risks of foundation models,’’ 2021, arXiv:2108.07258.

NIKOLAOS TSINGANOS received the B.Sc.
degree in computer science and the M.Sc. degree
in pervasive and mobile computing systems from
Hellenic Open University, Patras, Greece, and
the Ph.D. degree in information systems security
from the University of Macedonia. He is cur-
rently a member of the InfoSec Research Group,
Multimedia, Security, and Networking Labora-
tory (MSNLab). He has participated in several
international and nationally-funded research and

development (R&D) projects. His current research interests include the
design and performance evaluation of cyber defense mechanisms utilizing
machine learning methods, particularly in the context of social engineering
attack recognition.

PANAGIOTIS FOULIRAS received the B.Sc.
degree in physics from the Aristotle University
of Thessaloniki, Greece, and the M.Sc. and Ph.D.
degrees in computer science from the University
of London, U.K. (QMW). He is currently a
permanent Assistant Professor with the University
of Macedonia, Thessaloniki, Greece. He has par-
ticipated in several national and European-funded
(H2020) research projects and published articles in
many international journals. His research interests

include computer networks and network security, blockchain, and system
evaluation methods.

IOANNIS MAVRIDIS received the Diploma
degree in computer engineering and informatics
from the University of Patras, Greece, and the
Ph.D. degree in information systems security from
the Aristotle University of Thessaloniki, Greece.
He is currently a Professor of information security
with the Department of Applied Informatics,
University of Macedonia (UoM), Greece. He is
also the Director of the Multimedia, Security and
Networking Laboratory (MSN Lab). His research

interests include AI-based attack detection, cybersecurity education, risk
management, access control, cyber threat intelligence, digital forensics, and
security economics. He serves as an Area Editor for the Array journal
(Elsevier).

DIMITRIS GRITZALIS received the B.Sc. degree
in mathematics from the University of Patras,
Greece, the M.Sc. degree in computer science
from the City University of New York, New York,
NY, USA, and the Ph.D. degree in information
systems security from the University of the
Aegean, Greece. He has served as an Associate
Rector for Research, the President of the Greek
Computer Society, and an Associate Data Pro-
tection Commissioner of Greece. He is currently

a Professor of cybersecurity with the Department of Informatics, Athens
University of Economics and Business, Greece, where he serves as the
Director of the M.Sc. Programme in information systems security. His
research interests include risk assessment, cybersecurity education, malware,
and cyber conflicts. He is an Academic Editor of theComputers and Security
journal.

16088 VOLUME 12, 2024


