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ABSTRACT Node localization is one of the most essential features of wireless sensor networks (WSNs).
Vavarious localization algorithms exist for densely deployed 3-D wireless sensor networks. However, for a
sparse 3-D network, range-based localization is still a challenging task because it is difficult to find sufficient
anchor nodes and distance information among nodes in a sparse 3-D network. To mitigate the sparseness
issues in 3-D sensor networks, we present a component-based localization method in this paper in which we
split the entire network into small overlapping sub-networks called components and assign local coordinates
to each component. Then, we merge these small components to make a globally coordinated system. With a
meager anchor ratio, we localize the whole network. We define merging conditions according to the number
of common nodes, actual measured distances among nodes, and the calculated distance based on the local
coordinates of the nodes. We assess how well our proposed algorithm performs by conducting extensive
simulations. The outcomes confirm that the proposed algorithm works comparatively better in a sparse 3-D
sensor network than in a densely deployed 3-D sensor network. Our algorithm localizes more than 83% of
nodes at a node degree of 10 having 5% anchor ratio; however, other algorithms localize only 18%-79% in
the same scenario.

INDEX TERMS Wireless sensor network, 3-D localization, component-based localization, patch and
stitching localization.

I. INTRODUCTION
Internet of Things (IoT) applications are increasing giganti-
cally in many fields [1], [2], [3]. In IoT applications, the most
extensively used end devices are the nodes in Wireless sensor
networks [4], [5]. A wireless sensor network (WSN) consists
of several number of nodes that are randomly deployed.
A wireless sensor network’s objective is to keep an eye on
the area’s physical conditions, collect the data, and, through
the collaboration of sensor nodes with each other, process
the data to a central location [6], [7], [8]. WSNs can be
extensively used in many fields, e.g., oceans monitoring [9],
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health monitoring [10] military surveillance [11], wildlife
monitoring [12], and disaster management [13].

The information gathered from any sensor node in a WSN
application is only useful if we know its source. The data
without the location information is of no use. Therefore,
localization is an important aspect in many applications of
WSN. Similarly, while developing algorithms and protocols
for WSNs, sensor node position plays an important role.
For example, node location information is required in target
tracking [14], indoor positioning systems [15], geographical
routing [16] and coverage optimization [17]. There are
two basic categories in which localization algorithms for
wireless sensor networks can be broadly divided. These are
range-based algorithms [18] and range-free algorithms [19].
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In range-based localization, a sensor node obtains its location
by angle or distance information between itself and its neigh-
bors. Meanwhile, in range-free algorithms, the determination
of the location of an unknown sensor node relies merely on
connectivity knowledge or hop count. The accuracy level of
range-based algorithms is higher than range-free algorithms
because special hardware is used in range-based localization
algorithms to obtain angular or distance measurements,
while no special hardware is used in range-free localization
algorithms. Generally speaking, range-based algorithms are
considered more costly than range-free algorithms due to
the cost of the specialized hardware used. In many Internet
of Things applications, very accurate position information
of the node is required [20], so range-based algorithms are
preferred.

In the past several years, researchers have introduced
many range-based localization algorithms [21], [22]. Most
of these algorithms are for 2-D networks in which the
network’s depth or height is not considered. But in a realistic
environment, WSN is generally utilized in 3-D networks
like underwater wireless sensor networks [23], [24], [25] in
which the depth of the nodes is considered. So localization
for 3-D networks remains a confronting task. Conventional
range-based localization algorithms mostly use sequential
localization techniques to localize the whole network nodes,
in which sensor nodes are localized one by one in proper
sequential order. In this case, each node must have enough
angle or distance information of the nodes before it is
in the sequence. The sequential localization strategy is
successful when the network is dense or has a greater
node degree. However, in the most of the 3-D networks,
the fundamental sparseness poses a challenge in acquiring
an appropriate sequential order of nodes for localization.
Therefore, sequential localization algorithms face difficulties
and are prone to failure in sparse 3-D network scenarios.

To mitigate the sparseness problem of sensor networks,
component-based localization or patch and stitching-based
localization techniques have been proposed [26], [27], [28],
[29], [30], [31], [32], [33]. A component-based localization
strategy divides the sparse sensor network into small
sub-networks called components. Each component can be
localized with a conventional sequential localization strategy.
Each component is assigned a local coordinate system based
on the sensor node’s relative distance information. Then,
these small components are amalgamated to form a single
global component, and forming a global coordinate system.
The component-based localization strategy has solved the
sparseness problem for 2-D networks [27], [28], [29], [30],
[31], [32], however, for 3-D networks, components-based
localization is still a challenging task. One of the essential
aspects of designing the localization algorithm for the
component-based approach is to define the states under
which two component patches can be merged. The existing
component-based localization techniques are primarily for
2-D networks [27], [28], [29], [30], [31], [32], so these

conditions can not be used to localize a 3-D network.
For component-based localization of 3-D sensor networks,
merging conditions still need to be clearly defined as there
is not much work done for sparse 3-D sensor networks.
Localization is also considered a very important aspect in
the Near Field Communication [34], [35]. To this end,
we solve the sparseness problem in 3-D sensor networks
by component-based localization and define the merging
conditions. The main contributions and innovations of this
research article are summarized below.

• We propose a method for node localization in the sparse
wireless sensor 3-D network by dividing the network
into small sub-networks called components.

• We assign local coordinates within a single component
facilitating better management and localization.

• We define the merging conditions based on the number
of common nodes, actual distances, and the measured
distances. The innovation lies here as it is difficult
to have enough neighbor nodes in a sparse network.
So based on the minimum neighbors and their distance
information, we merge the components with the help of
calculated distances and measured distances.

• We conduct extensive simulations to evaluate the
performance of the proposed algorithm demonstrating
that the proposed algorithm performs well in the sparse
3-D network.

The rest of the paper is structured as follows: Section II
presents the literature review of the localization techniques
in 3-D WSNs. We formulate our localization problem in
section III. Section IV explains the framework of our
proposed component-based localization algorithm in detail.
Experimental evaluation is done in section V. Finally,
we conclude the paper in section VI along with future
directions.

II. LITERATURE REVIEW
The localization study in wireless sensor networks has earned
meaningful attention from researchers in recent times [36],
[37], [38], [39], [40], [41], [42]. The ancestor studies employ
graph rigidity theory to determine the orders for the unique
localization of the entire network. In 2-D sensor networks,
attaining unique localization for the whole network is subject
to the global rigidity of the network graph and the presence of
a minimum of three anchor nodes [37]. If it is impossible to
localize the whole network, such conditions are considered in
which the individual nodes can be uniquely localized. In RRT-
3B algorithm [39], [40], some states of unique localization
are given for the nodes in a 2-D sub-network. These three
conditions are 1) the sub-network topology should be rigid, 2)
the presence of a minimum of three anchor nodes is essential,
and 3) the sub-network should form a trilateration graph.
In [43], the authors examined the localization conditions of
nodes and grasped the upper limit for the number of nodes
localized within a network.
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Even for networks considered uniquely localizable, the
complete realization of the entire network persists in a
challenging endeavor, especially in the case of a very sparse
network [37], [44]. The difficult task in sparse networks lies
in the complexity of finding a trilateration order of nodes
contributing to sequential localization [38]. To mitigate the
problem of sparse networks, the Sweep algorithm is proposed
in [41] and [42], which introduced the concept of finite
localization. The wheel network is explicitly designed for an
apparent category of sparse networks that relaxes the criteria
of the trilateration order of nodes and introduces bilateration
ordering, which results in more localized nodes than tradi-
tional sequential trilateration-based algorithms. For a very
sparse network, it is still challenging to find bilateration
order, with the worst-case scenario exhibiting exponential
time complexity, so performance degrades significantly.

To overcome the shortcomings of sequential localization,
component-based localization has been proposed for two-
dimensional networks [27], [28], [30], [32]. In component-
based algorithms, the information about common nodes and
distance is used to localize nodes. In [30], certain conditions
are given for merging two components if there are not
enough common nodes. In [27] and [28], components do
not overlap. Hence, they do not have any common node.
So, the nodes are localized with only distance information
between the neighboring components. As a result, only a
few nodes are localized, limiting the localization process in a
sparse network. In [32], the authors proposed two algorithms
called basic common nodes-based localization algorithm
(BCLA) and component-based localization algorithm with
angle and distance information (CLAD). BCLA improved the
component-based localization by exploiting the information
of common nodes and the distance among neighbor com-
ponents. CLAD further improved the localization process
by utilizing angle information, distance information, and
common nodes. In [29], a robust method called error tolerant
component-based algorithm (ETOC) was introduced, which
deals with ranging noises in component-based localization
algorithms. However, all these component-based algorithms
are for 2-D networks and can not work for 3-D networks.

From the last few years, researchers are more focused
on the localization of 3-D [45], [46], [47], in which more
focus is on underwater wireless sensor networks [48], [49],
[50], [51]. In [52], the algorithm for an underwater sensor
network is proposed, which is called the UPS algorithm.
In this algorithm, the positions of nodes in three-dimensional
space are projected onto two-dimensional space. Then,
a standard 2-D localization algorithm is used to find the
location of sensor nodes. In [48], the performance of
different multilateration algorithms is studied by changing
the deployment strategy of multiple anchor nodes. In [49],
intruder localization is studied in UWSNs. In [50], the
UWSN is divided into sub-networks called skeleton, and the
number of localizable sensors is found. In [26], component-
based localization for 3D networks is introduced in which

certain conditions are derived for uniquely merging two
sub-networks. The localization of sensor nodes depends on
information concerning common nodes and connecting edges
within the network. For transforming the coordinate system,
translation parameters are treated as unknowns to form a
set of uniquely solved equations. Most of the algorithms
proposed require the dense deployment of nodes. Contrary to
them, this proposed algorithm is more suited for sparse 3-D
networks.

III. PROBLEM FORMULATION
We consider a large 3-D sensor network with N nodes. For
this network, we generate a weighted distance graph [37],
G = [N ,E,D]. Each graph vertex represents a node n in
the network. If there is a distance measurement between two
nodes ni and nj, it is represented by the connecting edge
E(i, j). Each connecting edge has a weight called D(i, j). The
network hasM anchor nodes (M < N ) that are aware of their
locations either through manual configuration or via GPS.
We label the anchor nodes from 1 to M . The other nodes
unaware of their positions are called unknown nodes and are
labeled from M + 1 to N . Every unknown node needs to
obtain its physical location by using the distance information
of its neighbor nodes and the locations of the anchor nodes.
The distance information between the sensor node and its
neighbors is known. For any two nodes ni and nj, the distance
measurement is given by dij. The physical location of node
ni is given by Pi or (xi, yi, zi). A component realization is the
mapping of component nodes to the coordinates in 3-D space,
P : N → R3. For all (ni, nj) ∈ E , ||Pi −Pj|| = dij. ||Pi −Pj||
represents the Euclidean distance of nodes ni and nj having
positions Pi and Pj respectively.

Before explaining the details of the proposed algorithm,
we present the patch and stitching localization, also known as
component-based localization, with the help of an example.
In Figure 1a, the distance graph of a sensor network is
shown where the circles represent the unknown sensor nodes
and squares represent the anchor nodes. Suppose we try
to localize the unknown nodes with common localization
techniques. In that case, we can not localize because, for
three-dimensional localization, every unknown node must
have distance information to at least four anchor nodes.
From Figure 1a, we see no single node with sufficient
distance information to the anchor nodes. We can localize all
the nodes using component-based localization for the same
network. We divide the whole network into two small sub-
networks called components, represented by ComponentA
and ComponentB as shown in Figure 1b. We see that the
two components can not be realized as they do not have
enough anchor nodes, so we have to merge both of the
components A and component B with the help of common
nodes and connecting edges between the components to form
a single merged component represented by component (A,B)
as shown in Figure 1c. After merging the components, we see
that the merged component is now realizable because it has
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FIGURE 1. Component-based localization.

enough anchor nodes in a whole component. All the nodes
in the merged component have the coordinate so they can
find the distance between them and anchor nodes, resulting in
localization of all nodes in the component as shown by black
circles in the Figure 1d.

IV. FRAMEWORK OF THE PROPOSED COMPONENT
BASED LOCALIZATION ALGORITHM
The proposed algorithm is used to localize nodes in sparse
3-D sensor networks. It is based upon a patch and stitching
technique in which the 3-D sparse wireless sensor network
is divided into small parts called components [26]. Each
component is assigned a local coordinate system based on the
distance information of the nodes within a component. If the
components meet the requirements of merging conditions,
the components are merged to form the global coordinate
system. Then the global coordinate system is converted
to an absolute coordinate system based on anchor nodes’
information. The algorithm can be divided into four basic
steps: 1) component generation, 2) local coordinate system
construction, 3) component mergence, and 4) component
realization. The framework of the proposed algorithm is
shown in the Figure 2. Each step is explained below.

A. COMPONENTS GENERATIONS
In the component generation phase, the sparse 3D network is
divided into several small sub-networks called components.
While generating the components, some techniques use a
non-overlapping strategy in which the divided components
do not overlap with each other [28], so they do not have any
common node among the components. In the proposed work,
we use an overlapping strategy in which one component
can overlap with others, giving rise to some common nodes,
which help merge the two components.

There are three main steps while generating the com-
ponents. In the first step, we align all the nodes in the

FIGURE 2. The overall illustration of the proposed algorithm.

unarranged state. In the second step, we try to find four
interconnected nodes, and among these four nodes, one of
the nodes must be in the unarranged state. We call these
four nodes a subgraph G0 = K4, and it is considered as the
seed component to which other nodes can be added through
multilateration. The seed component can be extended by
finding any node n that is in unarranged state and not in G0,
but it is connected to at least four nodes in G0, that node n is
added to G0 and G0 is updated. In other words, we can say
that this node n is added to the initial seed component, which
has only four nodes. All the edges between this node n and
subgraph G0 = K4 are also added to the seed component.
This process is done until no more nodes can be added to
G0. This completes the generation of one component, so all
the nodes in this component are marked as in arranged
status. The same (step two) is repeated for generating other
components until no more components can be formed. In the
last (step three), the nodes still in unarranged status are
labeled as in isolated state. This whole process is explained
below in algorithm 1.
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Algorithm 1 Component Generation
Input:The distance graph G=<N,E,D>

Output:Component with local coordinates
1: Mark all nodes with unarranged state.
2: Find four interconnected nodes making subgraph G0 =

k4.
3: Mark the nodes in G0 as in arranged state.
4: Mark subgraph G0 = k4 as seed Component.
5: repeat
6: if there exists a node nwith unarranged state and has

at least four distances to subgraph k4 then
7: Add node n to G0
8: Mark the node as arranged
9: Update G0
10: G0 = G0 ∪ n.
11: Update seed component
12: end if
13: until No more node can be added to G0
14: Mark the node having unarranged status as Isolated

states
15: Construct the local coordinate system
16: Assign local coordinates to all nodes in G0 and return

In the second step, while finding the initial subgraph G0 =

K4, we put a restriction that at least one node should be in
unarranged state. This restriction is because the number of
components can be set to a minimum. Otherwise, without
this restriction, many components can be generated, which
increases exponentially as the number of nodes increases.
By putting this restriction, the localization ratio increases
because it produces overlapped components with enough
common nodes and measured distances. In contrast, in [27]
and [28], the components are nonoverlapping, thus they do
not have common nodes and rely only on the measured
distances between the components for the merging process,
which results in a low localization ratio.

B. LOCAL COORDINATE ASSIGNMENT TO A COMPONENT
After the components are generated, and there are no further
nodes that can be added to any component, we need to
assign a local coordinate system to each component. A local
coordinate system can be assigned to a component by
selecting the initial four interconnected nodes, and local
coordinates are assigned to these nodes. In the initial k4 graph,
we give coordinates to the first three nodes and then use the
trilateration method to set the coordinates to the fourth node.
After finding the coordinates of the initial four nodes, the rest
of the nodes in a component can be assigned coordinates by
using the multilateration technique.

For assigning a local coordinate system, we take three
nodes A,B,C from the initial K4 graph having nodes
A,B,C,D. The coordinates of these three nodes can be
defined in a plane by considering the node B at the origin
of the coordinate system. We also consider that the node A

FIGURE 3. Coordinates of Nodes A, B, C in K3.

FIGURE 4. Coordinates of Node D in K4.

is in the XY Plane and the node C is on positive X − axis as
shown in Figure 3.

As the nodes A,B,C are neighbors and have known
measured distance information given by dab, dbc and dac.
According to the law of cosines, if the lengths of the sides
are known, then the angles can be calculated by the formula
below.

θ = cos−1

(
d2ab + d2bc − d2ac

2dabdbc

)
(1)

After finding θ using the above formula (1), the coordinates
of the nodes A,B, and C can be estimated. To keep the
simplicity, we suppose the node B to be at the origin having
coordinates as B = (0, 0, 0). We assume that the node C is on
positive X − axis having coordinates C = (dbc, 0, 0). As the
nodeA is in theXY plane so the coordinates of nodeA is given
by A = (dab cos θ, dab sin θ, 0).
After finding the coordinates of A,B, and C , we calculate

the coordinates of the fourth nodeD in the initial K4 graph by
using the trilateration method as shown in Figure 4 below.
In the trilateration method, we use the equations of three
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spheres centered at nodes A,B,C having a radius equal to
dad , dbd and dcd respectively.

The equation of the sphere centered at node B with radius
dbd is given by the formula.

X2
+ Y 2

+ Z2
= d2bd (2)

The equation of the sphere centered at node C with radius
dcd is given by the formula

(X − dbc)2 + Y 2
+ Z2

= d2cd (3)

Similarly the equation of the sphere centered at nodeAwith
radius dad is given by the formula

(X − dab cos θ )2 + (Y − dab sin θ )2 + Z2
= d2ad (4)

By solving above three equations eqs. (2) to (4), having
three unknowns X ,Y and Z , we get the following

X =
d2bd − d2cd + d2bc

2dbc
(5)

Y =
d2bd − d2ad + (dab cos θ )2 + (dab sin θ )2

2dab sin θ

− dab cot θ ×
d2bd − d2cd + d2bc

2dbc
(6)

Z =

√
d2bd − X2 − Y 2 (7)

By using eqs. (5) to (7), we calculate the coordinates
of node D, which completes the process of assigning local
coordinates to the initial K4 graph. Now, as the local
coordinates are assigned to the K4 graph, all the other nodes
in the component can find their local coordinates through the
multilateration method.

C. COMPONENT MERGENCE
In this step, if any of the two components satisfy the merging
conditions discussed in section IV-F, the two components
are merged to form a single component. After merging one
component with the other, the coordinate system of one
component should be converted to the coordinate system
of another component so that both components have the
same coordinate system. In this way, a global coordinate
system is formed for the merged components. To merge the
components, first of all, we select a seed component. There
are many ways to choose the seed component. In [31], the
seed component is selected randomly, so any component can
be a seed component. In [33], the node having the highest
degree is the seed node, and its respective component is
selected as the seed component. We adopt the method of [26]
and [32] and set the seed component having the highest
number of nodes. Then, we add other components to the seed
component so that the seed component can be extended and a
single global network can be formed. Components merging
can be either parallel or incremental [33]. In a parallel
merging process, two components that satisfy the merging
conditions are merged simultaneously. The incremental
merging process selects a seed map, and other components

are merged into the seed component in sequential order.
In this paper, we use the incremental merging process
[31]. Two ways exist to decide which component should
be added first to the seed component. The first way is to
take the component with the maximum number of nodes
and add it to the seed component. The second way is to
take the component having a maximum number of common
nodes and add it to the seed component. Contrary to [26],
we adopt the secondmethod and select the component having
a maximum number of common nodes and merge it to
the seed component. If there is more than one component
with the same number of common nodes, we break the tie
by considering the component having a higher number of
nodes. When two components are merged, the new merged
component becomes a new seed, and we repeat the whole
process till there is no further component to merge. After all
the components are merged, we merge the isolated nodes. For
isolated node merging, we try to find at least four connecting
edges between the isolated node and the merged component,
otherwise, the node remains isolated. The complete merging
process is explained in algorithm 2

D. COMPONENT REALIZATION
The last step of the localization process is component realiza-
tion. In this step, we use the coordinates of the anchor nodes
and the measured distances to convert the global coordinates
of the merged component to the absolute coordinates. At least
four anchor nodes are required to calculate the absolute
coordinates of the component. However, if the anchor nodes
are not enough, only the relative positions of the nodes can
be calculated.

E. COMPLEXITY ANALYSIS
We start with the component generation phase, finding a seed
component (K4) and extending it using the multilateration
method. Finding complete subgraph with four edges K4 takes
O(N 2) time [53]. After that, we find an ungrouped vertex
with at least four distances to the seed component, which
takes O(N ) time. We repeat this multilateration method until
no further node can be added to the seed component taking
O(N ) steps, i.e., multilateration extension takes a maximum
O(N 2) time. We assign local coordinates to all nodes inO(N )
steps. So, the component generation phase of our algorithm
takes O(N 2

+ N 2
+ N ) = O(N 2). The time efficiency of our

algorithm is much better than the worst-case time complexity
due to the sparsity of our graph. For component mergence,
we sort all the components according to their size to speed up
the merging process due to a higher probability of satisfying
merging conditions for larger components. For checking the
component’s mergence condition, we need to find common
nodes and edges between these components, which takes
O(N 2/2) time, i.e., only two components containing half
of the nodes each. We assign global coordinates to all the
nodes in components in O(N ) steps. We need to check for a
maximum O(N/4) in the worst case, i.e., when there are only
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Algorithm 2 Component Mergence
Input:Ci−Components generated as per algorithm 1
Output: Merged Component with global coordinate system
1: Find the seed Component Cs
2: if n(Ci) is maximum then
3: Cs = Ci
4: end if
5: repeat
6: Find next component to be merged Cn
7: for all component Ci do
8: Common = Cs ∩ Ci
9: end for
10: if n(Common) is maximum then
11: if more than one component has maximum

common nodes then
12: Take (Ci) with maximum number of nodes
13: Cn = Ci
14: end if
15: end if
16: After satisfying merging conditions as per

section IV-F
17: Merge(Cs,Cn)
18: Update Cs
19: Cs = Cs ∪ Cn
20: until No more component can be merged
21: loop
22: if there exists a node n with isolated state and has

at least four distances to the final merged component Cs
then

23: Add n to the component Cs
24: Cf = Cs ∪ n
25: end if
26: end loop
27: Calculate global coordinate as per method given in

section IV-D

seed components (K4), and all satisfy merging conditions,
making the worst-case running time of component mergance.
O(N/4 ∗ N 2) = O(N 3). Overall, the runtime complexity of
our algorithm becomes O(N 2

+ N 3) = O(N 3), but it would
be much lower than this practically.

F. MERGING CONDITIONS
One of the most significant issues in the patch and stitching-
based localization algorithms is merging the adjoining
components. Generally speaking, components are generated
in a patch and stitching-based localization, and local coordi-
nates are assigned. After merging, the local coordinates are
converted to global coordinates, then to absolute coordinates
defined by the anchor nodes. This coordinate system
conversion is done with the help of sufficient information
about common nodes between the components, but how
will this conversion be done if there is not an adequate
number of common nodes between two components? To

do the coordinate system conversion between components
when there are not sufficient common nodes, we use the
information of connected edges between the components and
distances between the nodes in the components [30]. Two
types of distance information can be used to convert the
coordinate systems. One is the Measured distance, and the
other is the calculated distance. The measured distance is
the actual distance that two nodes have. When two nodes
are in communication range with each other, they have a
connected edge between them. This edge distance is called
the measured distance. Calculated distance is based on the
local coordinates of two nodes, and in this case, both nodes
can not communicate with each other, and there is no
connecting edge between both nodes.

||Pa − Pb|| = dab (8)

where Pa and Pb are the 3-D coordinates of node a and node
b respectively. we can further simplify it as

(xa − xb)2 + (ya − yb)2 + (za − zb)2 = d2ab (9)

In the conventional coordinate system conversion method,
[54] three common nodes are required to merge two compo-
nents in the 2-D networks and four common nodes in the 3-D
networks. However, in a sparse 3-D sensor network, finding
enough common nodes between the components is not easy.
The authors in [27] and [28] proved that two components
could be merged when at least four distance information
exists for any 2-D network between two components. The
algorithm also proved that components could be merged even
when there is no common node between two components.
This proposed work is related to a 3-D network, so more
than four-distance information is required to merge the
networks. We need some extra distance information between
the two components. The proposed algorithm can merge
two components with four or more common nodes without
connecting edges, but when common nodes are less than four,
we need the connecting edges to merge the network. The
requirements of connecting edges depend upon the number
of common nodes, as discussed in cases 1-5. Below are the
conditions for merging two components when we have a
different number of common nodes and connecting edges.

1) CASE 1: FOUR COMMON NODES
We suppose two components A and B have four or more
non-co-linear common nodes between them. As discussed
previously, if there are four or more common nodes, there is
no need for any connecting edge between the components.
The coordinate system conversion can be done only with
the help of common nodes. For example, in Figure 5, all
four common nodes have their coordinates in both coordinate
systems of A and B. Our task is to convert the coordinate
system of B into A′s coordinate system so that both the
components have a single global coordinate system. Any
node in B can calculate its distance to a, b, c, d using the
B′s coordinate system because all the common nodes have
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FIGURE 5. Case of four or more common node.

coordinates in B’s coordinate system. If we find the distance
between each common node and unknown nodes in B, then
by multilateration method, the position of the unknown nodes
in B can be calculated in A′s coordinates with the help of
calculated distances.

2) CASE 2: THREE COMMON NODES
We suppose three common nodes exist between two compo-
nents A and B. More than three common nodes are needed to
convert the coordinate system of B to the coordinate system
of A, so we have to rely on the information on connecting
edges between the components. Two components with three
common nodes can be merged as per theorem 1 below.
Theorem 1: Given three common nodes between two

components A and B, they are uniquely mergeable if and only
if at least one connecting edge exists between a non-common
node in B and a non-common node in A.
Proof: Suppose three nodes a, b, c are common between

two components A and B as shown in Figure 6. In addition
to three common nodes, there is a connecting edge between
non-common nodes in A and B. The connecting edge is the
measured distance represented by the solid line ed .

We can see that the nodes a, b, c, d are in componentB, and
all these four nodes have the local coordinates of component
B, so based upon the local coordinates, these four nodes can
calculate the distance between them, which is represented by
the dashed line ad, bd and ed in Figure 6 and also termed
as the calculated distance. The nodes a, b, c are common,
so they have the local coordinates of component A. Now,
if we find the position of node d in the A′s coordinates,
we have four nodes in component B that have coordinates
of components A. This reduces our problem to case 1, and
then by using multilateration, the position of all nodes in B
can be calculated in A′s coordinates. Below is the method to
calculate the position of node d in A′s coordinates system.

FIGURE 6. Case of three common nodes.

We denote the position of the common nodes a, b, c and
non common node e by (xa, ya, za), (xb, yb, zb), (xc, yc, zc)
and (xe, ye, ze) respectively. These positions are according
to A′s coordinate system. Now let us suppose the location
of node d is unknown in A′s coordinates and is denoted by
(xd , yd , zd ). From Figure 6, we can see that we have a total of
four distance information, three are the calculated distances,
and one is the measured distance, so we can obtain four
distance equations below.

(xe − xd )2 + (ye − yd )2 + (ze − zd )2 = d2ed
(xa − xd )2 + (ya − yd )2 + (za − zd )2 = d2ad
(xb − xd )2 + (yb − yd )2 + (zb − zd )2 = d2bd
(xc − xd )2 + (yc − yd )2 + (zc − zd )2 = d2cd

(10)

In equation 10, we have four distance equations with three
unknowns xd , yd , and zd , which can be solved uniquely. After
finding the location of node d in the A′s coordinates, all the
other nodes in B can easily calculate their position in the A′s
coordinate, as explained earlier.

3) CASE 3: TWO COMMON NODES
We suppose two common nodes exist between two com-
ponents A and B. Like case 2, in addition to two common
nodes, we rely on the information of multiple connecting
edges between the components. Two components with two
common nodes can be merged as per theorem 2 below.
Theorem 2: Given two common nodes between two com-

ponents A and B, they are uniquely mergeable if and only if
at least five nodes exist in both components, and two nodes
should be in each component A and B. In addition, there
should be at least two connecting edges between two non-
common nodes in A and B
Proof: Suppose nodes a and b are common between two

components A and B as shown in Figure 7. In addition to
two common nodes, there are two connecting edges between
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FIGURE 7. Case of two common nodes.

non-common nodes in components A and B. These are the
measured distances represented by solid lines fc and ed .
We can see that the nodes a, b, c, d are in component B, and
all these four nodes have the local coordinates of component
B, so based upon the local coordinates, these four nodes have
calculated distances between them, which are represented by
the dashed line ac, cd, bc, bd and cd as shown in Figure 7.
As the nodes, a and b are common, they have the local
coordinates of component A. Now, if we find the location
of node c and d in the A′s coordinates, there are four
nodes in component B with coordinates of components A.
This will reduce our problem to case 1, and then by using
multilateration, the position of all nodes inB can be calculated
in A′s coordinates. The method is given below to calculate the
position of node c and d in A′s coordinates.

We denote the position of two common nodes a, b and non
common nodes f , e by (xa, ya, za), (xb, yb, zb), (xf , yf , zf ) and
(xe, ye, ze) respectively. These positions are according to A′s
coordinate system. Now let us suppose the position of nodes
c and d is unknown in A′s coordinate system and is denoted
by (xc, yc, zc) and (xd , yd , zd ). From Figure 7, we can see
that we have a total of seven distance information, five are
the calculated distances and two are the measured distances,
so we can obtain seven distance equations below.

(xf − xc)2 + (yf − yc)2 + (zf − zc)2 = d2fc
(xe − xd )2 + (ye − yd )2 + (ze − zd )2 = d2ed
(xa − xc)2 + (ya − yc)2 + (za − zc)2 = d2ac
(xa − xd )2 + (ya − yd )2 + (za − zd )2 = d2ad
(xb − xc)2 + (yb − yc)2 + (zb − zc)2 = d2bc
(xb − xd )2 + (yb − yd )2 + (zb − zd )2 = d2bd
(xc − xd )2 + (yc − yd )2 + (zc − zd )2 = d2cd

(11)

In equation 11, we have seven distance equations with
six unknowns xc, yc, zc, xd , yd and zd , which can be solved
uniquely. After finding the location of node c and d in the A′s

coordinates, all the other nodes in B can easily calculate their
position in the A′s coordinates, as explained earlier.

4) CASE 4: ONE COMMON NODE
We suppose one common node between two components A
and B. Like previous cases, in addition to one common node,
we have to rely on the information of multiple connecting
edges between the components. Two components with one
common node can be merged per theorem 3 below.
Theorem 3: Given one common node between two com-

ponents A and B, They are uniquely mergeable if and only
if there exist more than five nodes in both components, and
there should be at least two non-common nodes in component
A and three non-common nodes in component B. In addition,
there should be at least four connecting edges between two
non-common nodes in A and three non-common nodes in B.
Proof: Suppose the only common node a exists between

two components A and B as shown in Figure 8. In addition to
one common node, there are four connecting edges between
non-common nodes in components A and B. These are the
measured distances represented by solid lines fc, fb, ec, and
ed . We can see that the nodes a, b, c, d are in component
B, and all these four nodes have the local coordinates of
component B, so based upon the local coordinates, these four
nodes have calculated distances between them, which are
represented by the dashed line ac, ab, ad, bc, bd and cd as
shown in Figure 8. Only one common node a has coordinates
in the A′s coordinate system, so if we find the position of node
b, c and d in the A′s coordinate system, then we have four
nodes in component B having coordinates of components A.
This will reduce our problem to case 1, and then by using
multilateration, the position of all nodes inB can be calculated
in A′s coordinate system. Below is the method to calculate the
position of node b, c, and d in A′s coordinates.
We denote the position of single common node a and non

common nodes f , e by (xa, ya, za), (xf , yf , zf ) and (xe, ye, ze)
respectively. These positions are according to A′s coordinate
system. Now let us suppose the position of nodes b, c and
d is unknown in A′s coordinate system and is denoted by
(xb, yb, zb), (xc, yc, zc) and (xd , yd , zd ). FromFigure 8, we can
see that we have a total of ten distance information; six are
the calculated distances, and four are the measured distances,
so we can obtain ten distance equations below

(xf − xc)2 + (yf − yc)2 + (zf − zc)2 = d2fc
(xf − xb)2 + (yf − yb)2 + (zf − zb)2 = d2fb
(xe − xc)2 + (ye − yc)2 + (ze − zc)2 = d2ec
(xe − xd )2 + (ye − yd )2 + (ze − zd )2 = d2ed
(xa − xc)2 + (ya − yc)2 + (za − zc)2 = d2ac
(xa − xb)2 + (ya − yb)2 + (za − zb)2 = d2ab
(xa − xd )2 + (ya − yd )2 + (za − zd )2 = d2ad
(xb − xc)2 + (yb − yc)2 + (zb − zc)2 = d2bc
(xb − xd )2 + (yb − yd )2 + (zb − zd )2 = d2bd
(xc − xd )2 + (yc − yd )2 + (zc − zd )2 = d2cd

(12)
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FIGURE 8. Case of one common node.

In equation 12, we have ten distance equations with nine
unknowns xb, yb, zb, xc, yc, zc, xd , yd and zd which can be
solved uniquely. After finding the location of node b, c and d
in A′s coordinates, all the other nodes in B can easily calculate
their locations in the A′s coordinate system as explained
earlier.

5) CASE 5: NO COMMON NODES
We suppose two componentsA andB have one common node.
These components can still be merged if there are a sufficient
number of connecting edges between the two components.
Two components without a common node can be merged as
per theorem 4 below.
Theorem 4: Given no common node between two com-

ponents A and B, They are uniquely mergeable if and only
if there exist more than seven nodes in both components,
and there should be at least three non-common nodes in
component A and four non-common nodes in component B.
In addition, there should be at least seven connecting edges
between three non-common nodes inA and four non-common
nodes in B.
Proof: Suppose no common node exists between two

components A and B as shown in Figure 9. There are
seven connecting edges between non-common nodes in
components A and B. These are the measured distances
represented by solid lines ea, eb, gb, gd, fb, fc, and fd .
We can see that the nodes a, b, c, d are in component B, and
all these four nodes have the local coordinates of component
B, so based upon the local coordinates, these four nodes have
calculated distances between them which are represented
by the dashed line ac, ab, ad, bc, bd and cd as shown in
Figure 9. If we find the position of node a, b, c and d in theA′s
coordinate system, we have four nodes in component B with
coordinates of components A. This will reduce our problem
to case 1, and then by using multilateration, the position of all

FIGURE 9. Case of no common node.

nodes in B can be calculated in A′s coordinate system. Below
is the method to find the location of node a, b, c and d in A′s
coordinate system.

We denote the position of non common nodes e, f , g
by (xe, ye, ze), (xf , yf , zf ) and (xg, yg, zg) respectively. These
positions are according to A′s coordinate system. Now
let us suppose the position of nodes a, b, c and d
is unknown in A′s coordinate system and is denoted
by (xa, ya, za), (xb, yb, zb), (xc, yc, zc) and (xd , yd , zd ). From
Figure 9, we can see that we have a total of thirteen distance
information; six are the calculated distances, and seven are
the measured distances, so we can obtain thirteen distance
equations below

(xe − xa)2 + (ye − ya)2 + (ze − za)2 = d2ea
(xe − xb)2 + (ye − yb)2 + (ze − zb)2 = d2eb
(xg − xb)2 + (yg − yb)2 + (zg − zb)2 = d2gb
(xg − xd )2 + (yg − yd )2 + (zg − zd )2 = d2gd
(xf − xb)2 + (yf − yb)2 + (zf − zb)2 = d2fb
(xf − xc)2 + (yf − yc)2 + (zf − zc)2 = d2fc
(xf − xd )2 + (yf − yd )2 + (zf − zd )2 = d2fd
(xa − xb)2 + (ya − yb)2 + (za − zb)2 = d2ab
(xa − xc)2 + (ya − yc)2 + (za − zc)2 = d2ac
(xa − xd )2 + (ya − yd )2 + (za − zd )2 = d2ad
(xb − xc)2 + (yb − yc)2 + (zb − zc)2 = d2bc
(xb − xd )2 + (yb − yd )2 + (zb − zd )2 = d2bd
(xc − xd )2 + (yc − yd )2 + (zc − zd )2 = d2cd

(13)

In equation 13 we have thirteen distance equations with
twelve unknowns xa, ya, za, xb, yb, zb, xc, yc, zc, xd , yd and zd
which can be solved uniquely. After finding the position of
node a, b, c and d in A′s coordinate system, all the other
nodes in B can easily calculate their position in A′s coordinate
system as explained earlier.
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V. EXPERIMENTAL EVALUATION
A. SIMULATION SETUP
We provide a thorough study of our proposed component-
based localization in this section. For simplicity, we named
our algorithmComponent-Based 3DAlgorithm (CB3L)in the
rest of the paper. We use an Intel Core I7 machine with 8GB
RAM for performance analysis. Two primary metrics assess
the algorithm’s performance: the localization ratio, indicating
the successfully localized nodes, and the localization error.
The localization ratio is the proportion of localized nodes
to all nodes in the network. On the other hand, the average
difference between all sensor node’s calculated positions and
their ground truth positions is known as the localization error.
For a fair comparison with [26], we express localization error
as a multiple of the communication radius R. Our analysis
is limited to static networks, where all nodes are stationary.
For consistent evaluation, we adopt the same performance
parameters as [26], including anchor ratio, node degree, and
distance measurement error. In a randomly deployed 3-D
sensor network spanning an area of 10R × 10R × 10R,
nodes are uniformly distributed. A node can only measure the
distance from other nodes if it is placed in its communication
range and considered as neighbors of each other. Node
degree is controlled by changing the number of deployed
nodes in our simulations, ranging from 8 to 13. To assess
the proposed CB3L algorithm’s performance, we perform
extensive simulations. Each simulation involves 100 random
network generations for a given set of parameters, ensuring
the reported results are averages from multiple trials.

B. IMPACT OF NODE DEGREE
To probe the effect of varying node degrees on the localization
ratio of the networks, we fix the anchor ratio at 5% and 10%,
respectively, and vary the node degree from 8 to 13. The
simulation results are plotted in Figure 10 and Figure 11,
respectively, which show that the localization ratio increases
with the increase of average node degree. This is because
when the average node degree is less, there is insufficient
distance information among the nodes, so many nodes
remain isolated without joining any component. As a result,
the localization ratio is affected. When the node degree
increases, more nodes are in the node’s communication
radius, which increases distance information. Most nodes
join any components, reducing isolated nodes to a minimum,
which results in an increased location ratio.

The CB3L algorithm outperforms the other state-of-the-
art algorithms. In Figure 10, when the anchor ratio is fixed
at 5%, we can see that the CB3L algorithm’s localization
ratio is higher. For a node degree 10, the CB3L algorithm’s
localization ratio is more than 83% while SQ, UPS, and CBL
can only localize 18%, 39%, and 79% nodes, respectively, for
the same network simulation parameters.

In Figure 11, the anchor ratio is increased from 5% to 10%,
and we can see that the ratio of localized nodes in SQ and
UPS increases more rapidly than CBL and CB3L algorithms.

FIGURE 10. Impact of node degree on localization ratio with 5% anchor.

FIGURE 11. Impact of node degree on localization ratio with 10% anchor.

The reason is that in any component-based localization
algorithm, only four anchor nodes are sufficient to localize
the whole network, provided that none of the anchor nodes is
in isolation. So, increasing the anchor nodes above a certain
number has no significant effect on any component-based
localization algorithm. From both Figure 10 and Figure 11,
we can see that when the network is sparse, there is a
significant performance difference among the algorithms.
However, as the network becomes denser, the performance
difference becomes insignificant. This concludes that the
CB3L algorithm is more suited for a sparse than a dense
network.

Figure 12 describes how the size of a component varies by
changing the node degree. We can see that when the network
is dense, or the node degree is varied from 8 to 13, there are
more nodes in the largest component, which might have a
sufficient number of anchor nodes. Hence, that component
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FIGURE 12. Percentage of nodes in largest component.

FIGURE 13. Impact of anchor ratio on localization ratio for node degree 9.

can be easily localized without any merging process. This
also eases the merging and localization process of other
remaining components.

C. IMPACT OF ANCHOR RATIO
To probe the effect of varying anchor ratios on the localization
ratio of the networks, we fix the node degree at 9 and 11,
respectively. The anchor ratio is varied from 5% to 30%, and
the simulation results are plotted in Figure 13 and Figure 14,
respectively, which show that the localization ratio increases
as the anchor ratio increases. The increased ratio is significant
in the case of regural 3-D localization algorithms like SQ
and UPS. The localization ratio is meager when the anchor
ratio is 5%, and it keeps increasing with an increase in the
anchor ratio. On the other hand, for the localization ratio of
component-based algorithms like CBL andCB3L algorithms,
the increase ratio is insignificant.When the anchor ratio is 5%

FIGURE 14. Impact of anchor ratio on localization ratio for node
degree 11.

FIGURE 15. Impact of distance measurement error on average
localization error.

in the CB3L algorithm, the algorithm performs better with
a localization ratio of 89%. By increasing the anchor ratio
to 30%, there is a slight increase in the localization ratio,
which is 91%. We can see that when the node degree is less
(figure 13), the localization ratio of the CB3L algorithm is
increased with the increase in anchor ratio, but when the node
degree is high (figure 14), and by increasing the anchor ratio,
there is a negligible effect on localization ratio of the CB3L
algorithm. This is because when the node degree is high, most
nodes are in a single largest component with enough anchors
to localize all the nodes.

D. IMPACT OF MEASUREMENT ERROR
Figure 15 presents the analysis of the localization error
with relative distance measurement errors. Due to substantial
error propagation caused by the sequential localization
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process, we notice that the localization error in the sequential
algorithms is significant. UPS achieves the best localization
error result among sequential algorithms because it is
presumed that the depth of the sensor node is known thus,
there is zero error in z-axis coordinates. This changes the
3-D localization of UPS into a normal 2-D localization
process, which performs better regarding localization error.
In contrast to the sequential techniques, the error propagation
is suppressed by the CB3L algorithm, because it generates
a small number of components and merges them afterward,
which experiences much fewer component mergences.

VI. CONCLUSION
In this paper, we address the significant challenge of
node localization in sparse 3-D wireless sensor networks
and propose a component-based localization method that
effectively overcomes the limitations of insufficient anchor
nodes and distance information. By dividing the whole
network into small overlapping components, and on the basis
of common nodes and merging conditions, we merge these
components into a large network having a global coordinate
system. The proposed approach demonstrates remarkable
performance in localizing nodes with a minimum anchor
ratio. The extensive simulations validate our algorithm’s
superiority in sparse 3-D environments. The ability of our
algorithm to localize over 83% of nodes with minimum
localization error shows its potential as a significant effort
in the field of localization of wireless sensor networks. The
results also concluded that the proposed algorithm is more
appropriate for a sparse network than a dense network. In the
forthcomingwork, we plan to enhance the work by improving
merging conditions and exploiting angle information in the
sparse network when we do not have sufficient distance
information among nodes.
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