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ABSTRACT Wood diameter needs to be measured in the process of production, sales and import and
export. In order to solve the problem that it is difficult to accurately measure the densely stacked and
irregularly arranged vehicle wood manually, this paper proposes a timber segmentation methodology that
leverages a Swin Transformer model mechanism to enhance the performance of the target detection model.
The method automatically learns and calculates distinct regions in the input image, assigning varying
weights to different sizes and shapes of wood. This approach achieves finer detection of densely stacked
logs, thereby promoting intelligent inspection and enhancing inspection efficiency.This study optimizes the
backbone network by refining its modules and incorporating the operation of the log-space bias module.
Additionally, improvements are made to the feature fusion network and loss function to further enhance
network performance. The instance segmentation model parameters are also modified, encompassing multi-
scale training, an increased number of training samples, improved image input size, and effective data
widening techniques, all of which enhance log measurement accuracy and resolve the issue of partially
occluded logs.This study conducts multiple control experiments to evaluate various scale metrics, such as
mean average precision (mAP), log true detection rate, false detection rate, as well as comparing the root
count and volume of logs through prediction. The experiments demonstrate that themAP of thismethodology
reaches 0.685, and the true detection rate reaches 0.96 when compared with mainstream neural networks
of similar scale, highlighting the advantages of this paper’s approach in wood segmentation detection. The
model exhibits a strong detection effect on dense wood, effectively overcoming occlusion challenges, leading
to more accurate measurement data. Moreover, the algorithm demonstrates robustness and migration ability,
rendering it highly applicable to the task of detecting and segmenting dense wood of all sizes.

INDEX TERMS Dense wood detection, Swin transformer, obscured targets, deep learning.

I. INTRODUCTION
Wood, a renewable and biodegradable resource, holds a
prominent position in the contemporary world as a sus-
tainable, eco-friendly material. It finds extensive application
across diverse construction projects, standing as a pivotal
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driver of economic advancement. Moreover, fostering intel-
ligent and information-driven growth constitutes a vital
objective within the global forestry sector [1]. Ensuring
timber accuracy stands as a vital factor affecting both the
quality and economic efficiency of the timber industry, which
is governed by a spectrum of regulations and standards to
ensure product quality and safety. Accurate timber sizing
constitutes one of the most crucial steps in adhering to
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FIGURE 1. Manual on-site detection.

these regulations and standards. Deviations from the required
dimensions and specifications can lead to product rejections
or penalties, directly impacting sales and market position.
Additionally, inspectors are entrusted with precisely measur-
ing and documenting parameters such as timber dimensions,
length, and width, as the accuracy of their inspections directly
affects their remuneration.

However, the timber gauging process entails inspecting
logs of all sizes in a complex environment to ascertain
their volume and grade for industrial processing. Currently,
manual inspection remains prevalent, as depicted in Figure 1.
This approach not only necessitates significant human and
material resources but also suffers from diminished precision.
Addressing this issue bears immense importance for the
advancement of the timber industry.

A. IMAGE DETECTION SEGMENTATION
With the advancement of visual technology, image detection
and segmentation techniques in the realm of visual processing
can be broadly categorized into two directions.

The first involves conventional image detection. For
instance, Yella et al. [2] employed multiple color spaces
alongside geometric operators to segment timber images,
extracting edge details. This facilitated the segmentation
and computation of log quantities and diameters on truck
beds. However, this algorithm exhibits limited adaptability to
diverse and intricate environments, as its accuracy diminishes
in the presence of log occlusion. Budiman et al. [3] devised
a portable measuring tool to assess the minimum diameter
of logs. They harnessed edge detection algorithms to discern
edge pixels in separated images, effectively halving the
measurement time for logs and achieving a measurement
precision of 97%. Nevertheless, this method is tailored
exclusively for individual logs, is sensitive to lighting
conditions, and struggles with image quality constraints and
intricate scenarios.

The second direction revolves around deep learning-based
image detection. Tang et al. [4], for instance, utilized
the SSD [5]framework for training. The resultant model

proficiently detects and identifies log endpoints in natural
surroundings, even in cases involving overlapping logs,
external debris, and the interference of log cross-sections.
Nonetheless, this approach demands high data quality,
substantial datasets, and annotations, and its inference time
warrants enhancement. Samdangdech et al. [6], on the other
hand, merged the SSD network architecture with the FCN [7]
fully convolutional network to extract pixel regions for
segmenting log endpoints. They achieved a segmentation
method for onboard eucalyptus tree images, boasting an
average accuracy of 94.45%. This led to reduced estimation
time for log quantities and lowered human costs. However,
inaccuracies in localization and segmentation may arise
when log endpoints exhibit cracks or are occluded by other
objects, potentially resulting in misidentifications or false
positives.

B. DISCUSSION AND ANALYSIS
The aforementioned approaches underscore the extensive
exploration undertaken in log detection, encompassing both
traditional image processing methods and sophisticated deep
learning models. Despite these efforts, challenges persist in
terms of limited robustness and suboptimal log detection
performance.

To refine the precision of log detection, the author
ventures into the realm of deep learning, delving into the
viability of employing an instance segmentation model for
segmenting wood end faces. This pursuit culminates in the
proposition of a novel methodology designed to assess the
count of logs within an entire truckload, capitalizing on
an enhanced Swin Transformer [8]. This augmentation is
achieved through a holistic approach, refining the backbone
network, trimming model parameters, and extracting more
dynamic and efficacious features. Furthermore, the method
integrates the BFP [9] feature fusion network to bolster the
network’s feature extraction capacity, specifically catering
to the detection of diminutive target entities. The loss
function for bounding box regression is devised using
the CIOU [10], serving as the algorithm for filtering
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FIGURE 2. Dataset samples.

prediction frames.Experiments show that the improvedmodel
introduced in this paper has a good detection effect on the
logs in the log scene of the whole vehicle, which significantly
improves the detection efficiency of the logs, with the mAP
reaching 0.685 and the true detection rate reaching 0.96.
Experiments and practical application in forest farms verify
the effectiveness of the proposed method and model, and
provide important and unique contributions and progress for
the research and practice in related fields. At the same time,
this paper provides valuable insights and solutions for the
future research direction, and further contributes to the wood
detection algorithm under complex background.

As of the present moment, this model has been actively
applied in the daily timber transportation operations of Fujian
Jinsen Co., Ltd. The successful integration of the improved
model has replaced manual operations, streamlining the
intricate task that typically required collaboration in timber
inspection to a single-person operation. This not only
mitigates the safety risks associated with personnel climbing
trucks during inspection but also reduces the time required
for manual timber inspection per truck from approximately
ten minutes to a matter of seconds. This results in heightened
speed and precision, significantly diminishing inspection
costs, simplifying workflow, and making a substantial
contribution to industrial production.

II. MATERIALS AND METHODS
A. DATASET
The dataset utilized in this study was collected from our
team’s forestry site, as illustrated in Figure 2. It consists of
500 images capturing entire truckloads of timber. The number
of timbers per truckload varies, ranging from 40 to 200.
The timber logs were randomly distributed in size, with
dimensions spanning between 5 cm to 45 cm, and themajority
of the timbers falling within a medium-size range. The
dataset was carefully curated to include images captured
under diverse lighting conditions, with various wood end
backgrounds and camera angles. After a thorough screening

TABLE 1. Annotated image dataset statistics table.

process, 150 high-quality images were retained as raw data,
following the removal of blurred images.

For annotation, the entire wooden logs in the images were
marked using the polygon annotation tool in the Labelme
software. However, the bark of the logs was not annotated.
This annotation process enables the model to learn the
contour features of the wood during training, allowing for
accurate timber counting based on the contour mask map.
With this comprehensive dataset and meticulous annotations,
the model can be trained effectively to perform timber
counting tasks in real-world scenarios.

All the annotated images were partitioned into training,
validation, and test sets at a ratio of 6:2:2. The annotated
dataset was statistically divided based on the target size
categories defined in the COCO dataset, namely small targets
(pixel area < 32 × 32), medium targets (32 × 32 < pixel
area < 96 × 96), and large targets (pixel area > 96 × 96).
The distribution of the dataset according to these target size
categories is presented in Table 1.

B. IMPROVED SWIN TRANSFORMER NETWORK
Currently, prevalent models for timber detection predomi-
nantly employ the ResNet [11] architecture. However, with
the continual advancement of technology, achieving a notable
enhancement in the precision and robustness of this model
has become a challenging endeavor. Confrontedwith intricate
detection tasks, there is an urgent necessity to introduce novel
models for the augmentation of detection capabilities.

Recently, the Swin Transformer model, derived from the
foundational architecture of the Transformer [12] model,
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FIGURE 3. Architecture of the swin transformer model.

has recently demonstrated exceptional performance across
various computer vision applications, establishing itself as a
proficient solution for tasks related to target detection.This
research leverages the target detection model based on the
Swin Transformer, adopting the central structure of the Swin
Transformer and integrating it with the Mask R-CNN [13]
framework. The entire architecture of the Swin Transformer
model is depicted in Figure 3, The input image undergoes a
patch mapping process, initially segmented into 4×4 blocks,
which are then expanded into pixel points on the channels
using convolutional layers.

However, initially in practical application scenarios, the
Swin Transformer did not demonstrate the expected robust
performance in wood detection, revealing certain limitations
associated with specific tasks. This could be attributed to
various factors such as model parameters, training data,
or specific application environments, primarily presenting the
following issues:

1) When loading logs onto the truck using a hooker, there
is a likelihood of carrying along unwanted elements like
weeds, dirt, and other attachments. These foreign objects may
obstruct the ends of the logs, leading to missed detections by
the model.

2) The inspection process for the entire truckload of logs
can be affected by external factors such as outdoor lighting
conditions and the dense arrangement of the timber with
variations in diameter grades. As a result, the accuracy of the
final inspection may be somewhat compromised.

This suggests that, in order to enhance the performance
of the Swin Transformer in wood detection tasks, further
optimization and adjustments to the model may be necessary.

1) OPTIMISATION OF THE BACKBONE NETWORK
Swin Transformer V2 [14] is a model that has been partially
optimized based on the Swin Transformer model. Some
modules have been modified to further enhance the model’s
performance. However, when applied to the target detection
task of wood segmentation, it does not yield satisfactory
results in practical scenarios involving small detection
objects, large detection targets, and low image resolutions.
Despite this, certain modules from the Swin Transformer V2
model still offer valuable insights.

In this paper, we utilize and optimize certain modules
from both the Swin Transformer and Swin Transformer
V2 models, which are based on the attention mechanism
and have demonstrated promising results. These selected
modules serve as the framework for our backbone network,
which is then integrated into an optimized Mask R-CNN
segmentation model. By leveraging the strengths of these
modules and their respective models, we aim to enhance the
overall performance of the wood segmentation task in the
Mask R-CNN model.

During optimization, the research observed that improve-
ments such as cosine attention and LayerNorm posterior were
not very effective when applied to the wood segmentation
task in practical scenarios involving small detection objects,
an increased number of detection targets, and low image
resolution. This is because these enhancements tend to
expand the model’s capacity, which may not be suitable
for models with small datasets. However, the logarithmic
spatial continuous position bias addresses the challenge of
window size inconsistency, thereby enhancing performance
during training on practical production wood dataset images
of varying sizes. It effectively handles the migration problem
arising due to inconsistencies in window sizes. The utilization
of logarithmic space is adopted to improve the model’s
performance in training on wood detection datasets of
different sizes. This adjustment helps address the challenges
associated with window size inconsistency and is illustrated
in Figure 4, outlining the potential impact of these bias
improvements on the overall performance of the model in
wood segmentation tasks.

2) FEATURE FUSION BASED ON BFP NETWORKS
The Feature Pyramid Network (FPN) [15], employed
commonly in detection tasks, achieves information fusion
between various feature maps through a top-down pathway,
constructing a feature pyramid. However, its predominant
utilization of upsampling and downsampling to merge fea-
tures across different levels proves ineffective in addressing
the issue of indistinct features due to widespread occlusion
challenges among wood. Moreover, despite the FPN’s
pyramid structure providing multi-scale feature maps, it still
grapples with the problem of scale mismatch, leading to
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FIGURE 4. Continuous position deviation in logarithmic space.

suboptimal detection results for both small and large wooden
targets.

In order to enhance the characteristic information of
wood and elevate the performance of target detection, this
study adopts the Balanced Feature Pyramid Network (BFP)
as a replacement for the original FPN network. The BFP
network innovatively addresses the limitations of FPN,
offering improved feature clarity amidst occlusion challenges
and enhancing detection efficacy for targets of various
sizes. The BFP network enhances the expressive capacity
of each level feature map by leveraging information from
multiple hierarchical feature maps. It achieves a balance in
the fused feature information for different scales of wood,
ensuring that semantic information from non-adjacent levels
is preserved throughout the information propagation process
without dilution. Simultaneously, the BFP feature fusion
network considers cross-level and cross-scale feature fusion
to comprehensively capture the characteristics of wood. This
design effectively elevates the performance of wood detection
tasks, enabling the network to more accurately identify
wooden targets under various scales, shapes, and occlusion
scenarios. The structural depiction of the BFP feature fusion
network is illustrated in Figure 5.

3) LOSS FUNCTION BASED ON CIOU NETWORK
The Generalized Intersection over Union (GIOU) [16] stands
as a prevalent loss function in wood detection models,
formulated as follows:

LGIOU = 1 − IOU +
C − (A ∪ B)

|C|
(1)

IOU =
|A ∩ B|

|A ∪ B|
(2)

However, in practical wood detection tasks, sensitivity to
variations in bounding box dimensions gradually becomes
apparent, especially when dealing with a multitude of
wood elements of disparate scales. This results in training
instability and inconsistent performance across targets of
varying sizes. Additionally, GIOU lacks the incorporation
of learnable parameters, thereby rendering it incapable of

enhancing performance on wood detection tasks through the
acquisition of adaptive parameters. To address these issues
and elevate detection accuracy, this study introduces the
Complete Intersection over Union (CIOU) as follows:

LCIOU = 1 − IOU +
ρ2(b, bgt )

c2
+ αν (3)

α =
ν

1 − IOU + ν
(4)

ν =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2 (5)

By introducing penalties for diagonal distance and aspect
ratio, CIOU exhibits heightened robustness when handling
elliptical-shaped wood target boxes, mitigating oscillations
and instability during training. Simultaneously, the introduc-
tion of learnable parameters allows the model to adapt more
effectively to specific wood detection tasks. When evaluating
the matching degree of target boxes, consideration of the
shape of the target box facilitates a closer alignment between
predicted and actual boxes, enhancing the precision of object
detection models.

C. IMAGE PROCESSING
For the image dataset, this study employs Albumenta-
tions, a Python-based image augmentation library primarily
designed for deep learning and computer vision tasks to
enhance the quality of training models. Leveraging the highly
optimized OpenCV library, Albumentations rapidly aug-
ments image data, exhibiting superior performance compared
to most data augmentation libraries, as illustrated in Table 2.

The augmentation techniques involve blur processing,
manipulation of image color channels, and the introduction
of interference noise to simulate the generation of images
under various outdoor weather conditions, contributing to
image augmentation and expanding the dataset. This strategy
aims to enhance the generalization of deep learning models,
consequently improving the segmentation accuracy of wood
images in diverse weather environments, as depicted in
Figure 6.
Furthermore, this study enhances the original wood

dataset’s resolution from 1600×1200 to 2000×1200. During
data training, a multi-scale training approach is implemented
by varying the input size of images to multiple scales. In the
training process, each image is randomly assigned a scale for
input into the model, enabling the model to learn features of
objects at different sizes. This proves particularly effective in
extracting features of small targets, significantly enhancing
the model’s detection capabilities.

III. RESULTS AND ANALYSIS
A. TRAINING ENVIRONMENT AND
HYPERPARAMETER SETUP
The algorithm is built upon PyTorch, a prominent open-
source framework for deep learning. To expedite the training
and inference of the neural network, NVIDIA CUDA GPUs
are employed. Table 3 provides details about the specific
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FIGURE 5. Schematic diagram of BFP network.

TABLE 2. Model accuracy changes after using albumentations.

FIGURE 6. Data augmentation with the albumentations library.

experimental environment, including information related to
the hardware and software configuration.

Based on the detection requirements of this experiment,
the general training configuration parameters are as follows:

the number of target categories is 1, with the detection
category specified as ‘‘wood.’’ To optimize network operation
efficiency, the Rectified Linear Unit (ReLU) serves as the
activation function for the model. The BatchSize is set to 1,
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TABLE 3. Experimental environment.

TABLE 4. Key evaluation metrics for the MS COCO dataset.

and there are 2 data loading threads. The number of training
Epochs is 36, with an initial learning rate of 0.01. A linearly
varying warm-up is applied during the first 500 iterations to
stabilize parameter gradients in the initial stages of training,
and Stochastic Gradient Descent (SGD) is employed for
gradient optimization. Additionally, a descent strategy is
used, where the learning rate is multiplied by a factor of 0.1 at
Epoch numbers equal to 12, 20, and 28, respectively, further
refining the training process and enhancing the model’s
performance.

B. MODEL EVALUATION
To comprehensively assess the model’s performance, this
study employs several evaluationmetrics from theMSCOCO
dataset, as presented in Table 4.

The evaluation procedure involves the utilization of ten
distinct IOU thresholds, ranging from 0.5 to 0.95 in intervals
of 0.05. These thresholds facilitate the calculation of Average
Precisions (AP) for small (mAPs), medium (mAPm), and
large (mAPl) target sizes, respectively. This approach offers
a nuanced evaluation that accounts for targets of varying
scales. The cumulative assessment metric, termed mAP
(mean Average Precision), is derived by averaging the APs
across all IOU thresholds. This comprehensive metric, mAP,
encapsulates the statistical mean of the evaluation outcomes,
encapsulating the algorithm’s performance holistically.

C. MODEL IMPROVEMENT EXPERIMENT AND RESULT
ANALYSIS
To validate the enhanced performance of the optimized
Swin Transformer algorithm, a series of three meticulously
designed experiments were conducted within the same
experimental environment and under consistent training data
conditions. These experiments encompassed a performance
assessment of the predominant detection model, an ablation

study, and a performance evaluation of the dominant target
detection model in the context of real log detection.

The ablation study, an integral component of the eval-
uation process, sought to analyze the impact of distinct
enhancements within the same network framework on overall
network performance. This step allowed for a granular
understanding of the contributions of different modifications
to the network’s efficacy.Subsequently, the performance of
the proposed research method was benchmarked against that
of mainstream detection networks through two crucial experi-
ments: a performance comparison with mainstream detection
models and an evaluation of its true detection performance in
log detection tasks. These comparative analyses provided a
comprehensive perspective on the strengths and weaknesses
of the research approach.

Given that the proposed algorithm’s backbone network
is an improvement built upon the Swin-T architecture, the
choice of comparison models was purposefully aligned with
networks of similar dimensions. This strategy ensured a fair
and accurate assessment of the algorithm’s advancements
within a relevant context.

1) PERFORMANCE COMPARISON OF MAINSTREAM
DETECTION MODELS
In order to facilitate a comprehensive comparative analysis
of various prominent models with respect to log detection
performance, this research conducted a systematic compar-
ative experiment. As detailed in Table 5, the enhanced model
presented in this study achieved an mAP (mean average
precision) of 0.685, representing a notable improvement of
0.024 when contrasted with the performance of the Swin-T
algorithm. Additionally, it exhibited an extra enhancement in
IOU (Intersection over Union) of 0.015. Furthermore, in com-
parison to peer models operating within the same framework,
such as ResNet-50, the mAP demonstrated a superiority
margin of 0.029, while the IOU registered a 0.017 increase.
Across diverse frameworks, when measured against models
of similar scale, including Cascade RCNN, HTC, and TOOD,
the mAP outperformed them by margins of 0.029, 0.027, and
0.017, respectively. Although there was a slight IOU decrease
compared to HTC by 0.021, it nevertheless showcased overall
improvements in comparison to other models.

To further highlight the disparity between the model’s
performance before and after enhancement, we direct the
output of identical channels from the same layer, as illustrated
in Figure 7. The refinedmodel demonstrates heightened focus
on intricate details within the images, resulting in a more
pronounced delineation of wood contours and an augmented
capacity for feature extraction compared to its predecessor.
Concurrently, for empirical validation of themodel’s efficacy,
field tests were conducted in a forestry setting, the visual
representation of the pre and post-enhancement detection
performance is depicted in Figure 8, illustrating a substantial
improvement in the model’s ability to detect occluded wood
and small target timber.
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TABLE 5. Performance comparison of state-of-the-art detection models.

FIGURE 7. Comparison of feature maps before(left) and after(right) improvement.

FIGURE 8. Comparison of effects before and after improvement.

2) ABLATION TESTS
To comprehensively assess the impact of the proposed
improvement methods on the performance of the Swin

Transformer algorithm, four meticulously designed scenarios
were employed, each analyzing distinct aspects of enhance-
ment. All scenarios maintained uniform training parameters,

VOLUME 12, 2024 16801



Z. Ding et al.: Intelligent Wood Inspection Approach Utilizing Enhanced Swin Transformer

TABLE 6. Ablation experiment.

TABLE 7. Comparison of model performance in detecting logs in real-world scenarios.

ensuring consistent evaluation. The outcomes, elucidating
the effects of these methods on the model’s detection
performance, are consolidated in Table 6, where the symbols
‘‘✓’’ and ‘‘×’’ denote the integration and omission of
respective improvement strategies within the network model.

Scheme 1, which employs continuous relative position bias
in logarithmic space within the backbone network instead
of the previous parametric learnable relative position bias
method, effectively addresses the suboptimal performance
of timber dataset images during actual production training.
This improvement is particularly evident in the training
phase, resulting in a substantial mAP enhancement of
0.015 compared to the baseline. Scheme 2, tailored to
datasets featuring numerous small and medium-sized targets,
introduces a novel feature fusion structure. By fusing the
bottom layer feature map with the top layer feature map,
the model’s feature extraction capability is enhanced, leading
to modest increments in both mAP and IoU. In Scheme 3,
the integration of the CIOU loss function aims to enhance
the model’s accuracy in locating target frames. This results
in improved sample robustness and learnability, fostering
better alignment with target frames and thereby significantly
increasing bothmAP and IoU by 0.004 and 0.03, respectively,
over Scheme 2.Finally, Scheme 4 introduces the Albu-
mentations data enhancement module, effectively enhancing
training speed and contributing to an additional mAP boost
of 0.003. However, this improvement is accompanied by a
slight IoU reduction of 0.014.Comparing the mAP values
before and after the proposed enhancements, the model
in this study achieves an mAP of 0.685, surpassing the
pre-improvement mAP of Swin Transformer. Moreover, this
mAP improvement of 0.024 demonstrates the efficacy of the
proposed enhancements. Additionally, the IoU reaches 0.913,
marking a substantial enhancement of 0.027 over the pre-
improvement value.

3) COMPARISON OF MODEL PERFORMANCE IN DETECTING
LOGS IN REAL-WORLD SCENARIOS
To substantiate the effectiveness of the improved model
in real-world scenarios, professional personnel conducted
manual measurements in an actual forest setting, resulting
in an actual count of 1783 logs. Subsequently, various state-
of-the-art models were employed to estimate the number of
logs. Table 7 reveals that, when compared to the pre-improved
Swin Transformer model, the true detection rate for logs has
increased from 92.753% to 96.255%, marking a significant
gain of 3.502%. The false detection rate has reduced from
1.32% to 0.46%, a decrease of 0.86%. In comparison to other
leading detection models, this model demonstrates a superior
performance in both true detection rate and false detection
rate for logs.

Meanwhile, considering the comprehensive data presented
in Tables 5 and Tables 6, it can be concluded that the
model achieves the most favorable evaluation metrics while
also attaining the highest true detection rate in practical log
detection. This serves as compelling evidence that the model
has indeed made substantial improvements in log detection
performance.

IV. CONCLUSION
The efficiency and effectiveness of log handling play a pivotal
role in automating the timber industry, underscoring the
significance of accurate and streamlined log segmentation.
This paper tackles the challenge of detecting and segment-
ing complete logs by harnessing the power of the Swin
Transformer algorithm. The study delves into four primary
dimensions, each systematically revamped to elevate network
performance and bolster generalization.

Primarily, the integration of the log-space continuous
positional bias method addresses the migration issue arising
from inconsistent window sizes. This innovation offers
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a pragmatic solution to real-world production challenges.
Subsequently, the BFP feature fusion module is harnessed to
harmonize data from varying resolutions, thereby amplifying
the network’s overall efficacy. Furthermore, the incorporation
of the CIOU loss function enriches the model’s precision
in pinpointing target frames, fostering a higher level of
detection accuracy. Concluding the suite of improvements,
the application of the Albumentations data enhancement
technique adapts to the distinctive attributes and complexities
of log datasets. Through operations like rotation, cropping,
scaling, flipping, and noise injection applied to the original
images, dataset size and diversity are expanded, effectively
enhancing the network’s resilience and adaptability.

To validate the prowess and supremacy of the proposed
algorithm, an extensive comparative analysis is conducted,
encompassing classical target detection, segmentation, and
log segmentation algorithms. This thorough assessment
employs the same experimental platform environment and
evaluates against metrics of detection accuracy and effective-
ness. The outcomes convincingly portray the superiority of
the algorithm presented in this paper across all metrics, estab-
lishing its prowess in efficiently detecting and segmenting
complete logs. Moreover, ablation comparison experiments
are undertaken to dissect the impact and contribution of the
introduced enhancements. The results conclusively demon-
strate the enhancements’ positive influence on detection
performance, affirming their indispensability and efficacy.
In summary, the algorithms formulated within this study
yield substantial achievements in the realm of detecting and
segmenting entire logs. This research presents a promising
and innovative avenue for streamlining log processing
efficiency while preserving accuracy.
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