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ABSTRACT Recently, Chait et al. proposed a new aggregate signature scheme under the RSA setting (IEEE
Access, 2023). In this paper, we show that Chait et al.’s aggregate signature scheme is insecure when
two signers collude with their own secret keys, by presenting an attack algorithm that forges aggregate
signatures of aggregator or individual signatures of all other (non-colluding) users. More concretely, our
attack algorithm consists of three sub-algorithms: The first sub-algorithm computes a multiple of φ(N ) from
secret keys of two users where N is the RSA modulus that is included in the public parameter of the system
and φ is the Euler totient function. The second sub-algorithm recovers an equivalent secret key of a target
user that is congruent to his/her original secret key modulo φ(N ) from his/her public key and the multiple of
φ(N ) which is the output of the first sub-algorithm. Finally, with the equivalent secret key obtained by the
second sub-algorithm, the last sub-algorithm generates valid aggregate/individual signatures of the target
user. Our attack algorithm always succeeds in forging aggregate/individual signatures. Furthermore, it is
lightweight in the sense that it requires several integer operations, gcd computations, and an execution of
aggregate/individual signing algorithm only. For example, when the pubic parameter and secret keys of all
users, except the target user, are provided, our experimental results demonstrate that the proposed attack
algorithm takes less than 1 second only in total to forge an aggregate signature of 29 individual signatures
including that of the target user, where N is 3,072 bits for 128-bit security.

INDEX TERMS Security analysis, aggregate signature, RSA-based, collusion attacks, secret key recovery.

I. INTRODUCTION
An aggregate signature scheme is a specialized type of
signature scheme that offers an additional functionality: It
allows to combine multiple signatures from different users on
different messages into a compact aggregate signature. Then,
when verified, this aggregate signature serves as a convincing
proof to the verifier that all individual signatures involved
are valid. It enables us to reduce the storage for storing
signatures and to improve the efficiency for verification
of signatures. So, it can be applied for various scenarios,
e.g., sensor networks [1], vehicular ad-hoc network [2], smart
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city applications [3], and blockchain [4], [5]. Due to its wide-
ranging applications, since it was firstly introduced by Boneh
et al. [6], there have been proposed numerous aggregate
signature schemes and their variants under diverse settings,
e.g., discrete-log (DL) [1], [2], [3], [4], [5], [7], [8], [9],
[10], [11], [12], [13], [14], lattices [15], [16], codes [17], and
RSA [18], [19], [20], [21].

However, while many aggregate signature schemes and
their variants have been proposed in the DL setting [1], [2],
[3], [4], [5], [7], [8], [9], [10], [11], [12], [13], [14], only a
few (variants of) aggregate signatures have been proposed
in the RSA setting [18], [19], [20], [21]. For instance,
in [18], Lysyanskaya et al. proposed sequential aggregate
signature schemes from trapdoor permutations, in which
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the set of signers is ordered, and provided its instantiation
under the RSA setting where several distinct RSA moduli
were used. Selvi et al. [19] presented an identity-based
aggregate signature scheme. Their construction hires only
one RSA modulus, but a secret key of each user is an RSA
signature of identity and so they did not exploit the key
generation paradigm of the original RSA cryptosystem [22]
several times. Guo and Wang [20] proposed an RSA-based
synchronized aggregate signature scheme, in which a signer
can generate at most one signature for each time period
and aggregation of signatures is only possible for signatures
generated within the same time period. However, in their
construction, each user has the same secret key which is
composed of factors of the common RSA modulus. So, it is
insecure since the adversary in the security game of aggregate
signature scheme can have secret keys of all users, except
the target user. Later, Hohenberger and Waters [21] proposed
another synchronized aggregate signature scheme under the
RSA setting. Their construction uses only one RSA modulus
N , but it exploits relations of DLs over a multiplicative group
Z∗N and does not generate a pair of public and secret keys
as in the original RSA signature scheme [22] as well. Thus,
to the best of our knowledge, there had been no known
aggregate signature scheme under the RSA setting where
it uses only one RSA modulus as well as exploits the key
generation paradigm of the original RSA signature scheme
which generates a random element and its inverse modulo
φ(N ) as public and secret keys, respectively, to generate a
pair of public and secret keys of each user, where N is the
RSA modulus and φ is the Euler totient function.
Very recently, Chait et al. proposed a new aggregate

signature scheme under the RSA setting [23], where all users
in their construction use the same RSA modulus N which
is the product of two (safe) primes. In the general RSA
setting, if a user has a pair of public and secret keys (e, d)
satisfying e × d = 1 (mod φ(N )), then he/she can recover
factors of N , which is the secret information in the RSA-
based cryptosystem. In fact, this feature is the main obstacle
when designing a cryptosystem for multiple users under the
RSA setting, while adhering to the key generation paradigm
of the original RSA cryptosystem [22] with hiring only one
RSA modulus. To avoid this obstacle, in the key generation
algorithm of Chait et al.’s construction, it is assumed that
there exists a trusted-third party (TTP) and the TTP generates
pairs of public and secret keys of all users including the RSA
modulus N . For this purpose, it first generates N and a pair
(er , dr ) satisfying

er × dr = 1 and dr = t × r (mod φ(N ))

for some integers t and r . Then, it generates a pair of public
and secret keys (ei, d ′i ) for each user Ui so that

ei × di = 1 and d ′i = di + r (mod φ(N )).

Here, it was expected that the exact value di is hard to be
calculated when d ′i and other public parameters are given,
because it was masked by r . In addition, even though secret

keys of multiple users are provided as in the traditional
security game of aggregate signature schemes, it was also
claimed that recovering a secret key of the target user is hard
and so forging a signature of the target user is infeasible.

In this paper, we analyze the security of Chait et al.’s
aggregate signature scheme. To that end, we present an
attack algorithm that forges Chait et al.’s aggregate/individual
signatures of the target user when secret keys of two other
users are given. We note that in the traditional security game
of aggregate signature schemes, the adversary can possess
secret keys of all users, except the target user, thus the
requirement for our attack algorithm is natural in the security
model of aggregate signature schemes.

Our attack algorithm can be divided into three sub-
algorithms. The first sub-algorithm takes secret keys of two
users, the public parameter including the RSAmodulusN and
public keys of users as inputs, and then returns a multiple
of φ(N ). The second sub-algorithm takes a public key of
the target user and a multiple of φ(N ), which is obtained by
the first sub-algorithm, as inputs, and returns an equivalent
secret key of the target user that is congruent to the original
secret key of the target user modulo φ(N ). In fact, after
executing the second sub-algorithm, the adversary can get the
equivalent secret key of the target user which is congruent to
the original secret key of the target user modulo φ(N ), and
so it can generate any valid aggregate/individual signatures
of the target user. Finally, with the equivalent secret key of
the target user obtained by the second sub-algorithm and
secret keys of other users, the adversary can generate a valid
aggregate signature and an individual signature of the target
user by calling Chait et al.’s original aggregate algorithm and
signing algorithm, respectively.

Our attack algorithm is very efficient: It requires several
integer operations, gcd computations, and an execution of
Chait et al.’s original aggregate/signing algorithm only.
We confirm it by presenting implementation results of our
attack algorithm. Our experimental results demonstrate that
for 128-bit security with 3,072-bit RSA modulus N , our
attack algorithm takes less than 1 second in total to forge
an aggregate signature of 29 individual signatures, when
secret keys of two users as well as the public parameters
are provided. In particular, under the same setting as above,
it takes less than 30 ms to recover an equivalent secret
key of the target user by running the first and second
sub-algorithms sequentially. As the running time of the
aggregation algorithm of Chait et al.’s scheme is proportional
to the value of t which is the number of signatures to be
aggregated at a time, our attack algorithm also takes a longer
time as t is larger. However, our attack algorithm takes about
5.2 seconds only in total to forge an aggregate signature of
t = 1,009 individual signatures when secret keys of all users,
except the target user, are provided.

Since our attack requires secret keys of two users, Chait
et al.’s scheme may be secure if there is only one user in
the system or it is assumed that all users do not collude
each other. However, these assumptions are too restricted in
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aggregate signature schemes. Thus, their construction lost its
own attraction as aggregate signature. Furthermore, it seems
hard to fix their construction with maintaining the current
setting that not only uses the common RSA modulus in
the system, but also follows the key generation paradigm
of the original RSA cryptosystem for key generation of users
in the system, because a pair of public and secret keys
generated by the RSA key generation algorithm may seem
to leak the factoring information of the corresponding RSA
modulus. Therefore, it also seems to be a challenging task to
fix their scheme for supporting aggregation under the current
setting and we leave it as an open problem.

Outline of the Paper. In the following section, we provide
an overview of related works on aggregate signature schemes.
Section III presents a comprehensive review of Chait et al.’s
RSA-based aggregate signature scheme, including its system
model, description, and security model. Our attack algorithm
with theoretical analysis and toy example is given in
Section IV. Section V provides experimental results of our
attack algorithm. We conclude with remarks in Section VI.

II. RELATED WORKS
In this section, we provide a brief survey on RSA-based
aggregate signature schemes, which are closely related to
the work in this paper. The concept of aggregate signature
with its instantiation was firstly introduced by Boneh
et al. [6]. In aggregate signature schemes, multiple individual
signatures from different users on different messages can
be combined into a compact aggregate signature and then
used to convince a verifier that all individual signatures
involved are valid by verifying an aggregate signature
only. It can be widely applied for various scenarios since
it enables us to reduce the storage and to improve the
efficiency of verification. Thus, there have been proposed
variants of aggregate signatures, identity-based [8], [13],
certificateless [2], sequential [7], [11], synchronized [1],
and unrestricted [10]. However, most of existing aggregate
signature schemes were mainly designed under the DL
setting.

The first RSA-based aggregate signature scheme was
presented by Lysyanskaya et al. [18]. They presented a
generic construction of sequential aggregate signatures from
trapdoor permutations, in which the set of signers to be
aggregated is ordered, and provided an instantiation of their
generic construction under the RSA setting. In their RSA-
based instantiation, each signature is generated using a
distinct RSA modulus: The authors of [18] first considered
the case that RSA moduli satisfy the order N1 < N2 < · · · <

Nℓ where Ni is the RSA modulus for the i-th signature in the
aggregation sequence. Then, they presented a way to remove
such a restriction. But, both cases exploit several RSAmoduli
in the system.

Later, in [19], Selvi et al. proposed an identity-based aggre-
gate signature scheme from the (strong) RSA assumption. In
their identity-based signature scheme, the trusted authority
has a pair of public and secret keys of the original RSA

signature scheme as the public parameter and the master
secret key, respectively. Then, it issues a signature of the
hash value of identity ID as the secret key of user ID.
Then, each user who has his/her own secret key generates a
signature of message by calculating modular exponentiations
with message-dependent exponent. Their construction can
be easily extended to identity-based aggregate signature
schemes. So, their construction hires only one RSAmodulus,
but it does not use the key generation algorithm of the original
RSA signature scheme which generates a pair of (e, d) such
that e × d = 1 (mod φ(N )), to issue a pair of public and
secret keys of each user, where N is an RSA modulus and φ

is the Euler totient function.
Guo and Wang [20] presented a synchronized aggregate

signature scheme from the RSA assumption. In the synchro-
nized aggregate signature scheme, an individual signer can
generate at most one signature for each time period and only
the set of signatures generated in the same period can be
aggregated. However, in their construction, each user has the
same secret key which consists of the factors of the common
RSA modulus. It does not match the traditional security
model of aggregate signature schemes where the adversary
can have secret keys of all users, except the target user. That
is, the construction proposed by Guo and Wang is insecure
under the traditional security model of aggregate signature
schemes.

In 2018, Hohenberger andWaters [21] proposed a synchro-
nized aggregate signature scheme from the RSA assumption.
In their construction, the key generation algorithm generates
a product of ei’s, E =

∏ℓ
i=1 ei, where ei’s are easily

computable. Then, when a signature is generated at time j,
it computes a modular exponentiation of original signature
with exponent E/ej and then verifies using ej and E . Thus,
all users in their construction use the same RSAmodulus, but
it does not follow the key generation paradigm of the original
RSA cryptosystem to generate each user’s key.

Finally, very recently, Chait et al. [23] presented the
RSA-based aggregate signature scheme. Differently from the
previous (secure) constructions, Chait et al.’s construction
follows the key generation paradigm of the original RSA
cryptosystem to generate public and secret keys of each user.
In the key generation algorithm of their construction, the TTP
first generates an RSAmodulusN and computes (er , dr ) such
that

er × dr = 1 and dr = t × r (mod φ(N ))

for some integers t and r . Then, it generates a pair of public
and secret keys (ei, d ′i ) for each user Ui so that

ei × di = 1 and d ′i = di + r (mod φ(N )).

The authors of [23] claimed that it is hard to calculate
d ′i and/or di for the target user, when public parameters
and secret keys of other users are given. However, in this
paper, we show that their construction is not secure. Refer
to Sections III and IV for the details of Chait et al.’s scheme
and our attack algorithm, respectively.
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III. CHAIT ET AL.’S RSA-BASED AGGREGATE SIGNATURE
SCHEME
In this section, we review Chait et al.’s RSA-based aggregate
signature scheme, including its system model, description,
and security model.

A. SYSTEM MODEL FOR CHAIT ET AL.’S RSA-BASED
AGGREGATE SIGNATURE SCHEME
We first recall the system model for Chait et al.’s scheme.
It consists of a TTP and users. Throughout the paper,
we denote by n the number of users that have the signing
ability in the system. The TTP generates a public parameter of
the system, and a pair of secret and public keys for each user
in the system. Each user may play roles of both aggregator
and individual signer. For simple description, we assume that
user 1 is an aggregator and a signer, but all other users are just
signers.

Once the system is established, the TTP first generates a
public parameter, and a pair of secret and public keys for each
user. Then, it publishes the public parameter and the public
keys of all users. The secret key of user i is passed to user i
through a secure channel. When user 1 who is the aggregator
would like to generate an aggregate signature of message,
it first generates a signature of that message and diffuses it in
the system. Once each user receives that signature, it verifies,
and if the verification is passed, then it generates a signature
of the corresponding message under its own secret key.
When user 1 collects t signatures including its own signature,
it aggregates them into one aggregate signature. In this
process, it additionally generates a signature of the list of
users that contribute to generate the aggregate signature using
its own secret key. Finally, anyone can confirm the validity
of all signatures combined into the aggregate signature by
checking the validity of the aggregate signature as well as the
signature of the list of involved users.

B. DESCRIPTION OF CHAIT ET AL.’S RSA-BASED
AGGREGATE SIGNATURE SCHEME
Now, we present the description of Chait et al.’s RSA-
based aggregate signature scheme. Chait et al.’s scheme can
generate an aggregate signature once t individual signatures
are collected. Such an aggregate signature scheme is called
a t-aggregate signature scheme. It consists of the following
five algorithms: KeyGen, IndividualSign, IndividualVerify,
AggSign, and AggVerify.

• KeyGen(1λ): This algorithm is run by the TTP. Given
the security parameter λ, it performs as follows:

1) Select two primes p, q and set N = p× q.

2) Compute φ(N ) = (p− 1)× (q− 1).

3) Set the value of t , which corresponds to the number
of signatures required for generating a valid
aggregate signature. (We note that gcd(t, φ(N )) =
1 for the correctness.)

4) Pick a random element dr such that

dr = t × r (mod φ(N )) and

gcd(dr , φ(N )) = 1.

5) Compute er such that

er × dr = 1 (mod φ(N )).

6) For ℓ = 1, . . . , n, generate a pair (eℓ, dℓ) such that

eℓ × dℓ = 1 (mod φ(N )).

7) Compute d ′ℓ = dℓ + r (mod φ(N )) for ℓ =

1, . . . , n.

8) Generate a cryptographic hash function H :

{0, 1}∗→ ZN .

9) Publish a public parameter

pp = (N , t, er , {eℓ}1≤ℓ≤n) and H,

and pass a secret key skℓ = d ′ℓ of user Uℓ to Uℓ

through a secure channel.

• IndividualSign: This algorithm is run by an individual
user. It behaves differently with respect to the executor.
– IndividualSign(pp, H, sk1,m): If it is run by the

aggregator (i.e., user U1), it takes the public
parameter pp = (N , t, er , {eℓ}1≤ℓ≤n), the hash
function H, the secret key sk1 = d ′1 of user U1, and
a message m as inputs, and performs as follows:
1) Calculate h = H(m).

2) Calculate s1 = hd
′

1 (mod N ).

3) Output (m, s1).

– IndividualSign(pp, H, skℓ, (m, s1)): If it is run by
an individual signer Uℓ with ℓ ̸= 1, it takes the
public parameter pp = (N , t, er , {eℓ}1≤ℓ≤n), the
hash function H, the secret key skℓ = d ′ℓ of user
Uℓ, and a signature (m, s1) of userU1 as inputs, and
performs as follows:
1) Run IndividualVerify(pp, H, (m, s1), 1), descri-

bed below. If it outputs 1, then proceed the
following steps. Otherwise, abort.

2) Calculate h = H(m).

3) Calculate sℓ = hd
′
ℓ (mod N ).

4) Output (m, sℓ).

• IndividualVerify(pp, H, (m, s), ℓ): This algorithm can
be executed by anyone. Given the public parameter pp =
(N , t, er , {eℓ}1≤ℓ≤n), the hash function H, a signature
(m, s) of user Uℓ and the index ℓ, it runs as follows:
1) Calculate h = H(m).

2) Calculate y = her×t+eℓ (mod N ).

3) Calculate y′ = ser×t×eℓ (mod N ).

4) Check if y = y′ (mod N ). If it holds, return 1.
Otherwise, return 0.

• AggSign(pp, H, sk1, (m, {sℓ}ℓ∈I ,|I |=t )): This is done by
the aggregator (i.e., userU1). Given the public parameter
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pp = (N , t, er , {eℓ}1≤ℓ≤n), the hash function H, the
secret key sk1 of user U1, and the message m and t
signatures {sℓ}ℓ∈I of message m where I is the set of
indices of cardinality t , it performs as follows:
1) Run IndividualVerify(pp, H, (m, sℓ), ℓ) for each

ℓ ∈ I . If at least one of results is 0, then abort.
Otherwise, proceed the following steps.

2) Calculate σ =
∏

ℓ∈I sℓ (mod N ).

3) Initialize L as an empty string.

4) Set L = ℓj1∥ℓj2∥ · · · ∥ℓjt by attaching all elements
in I = {ℓj1 , ℓj2 , · · · , ℓjt }.

5) Run IndividualSign(pp, H, sk1,L) to obtain
(L, SL) where SL is a signature of message L under
the signing key of the aggregator (i.e., user U1).

6) Output (m, σ,L, SL).

• AggVerify(pp, H, (m, σ,L, SL)): Given the public
parameter pp = (N , t, er , {eℓ}1≤ℓ≤n), the hash func-
tion H, an aggregate signature (m, σ,L, SL), it performs
as follows:
1) Run IndividualVerify(pp, H, (L, SL), 1). If it out-

puts 0, abort. Otherwise, proceed the following
steps.

2) Calculate h = H(m).

3) Calculate h′ = her (mod N ).

4) Set I = {ℓj1 , ℓj2 , · · · , ℓjt } by parsing L =

ℓj1∥ℓj2∥ · · · ∥ℓjt .

5) Calculate

E =
∑
i∈I

 ∏
j∈I ,j̸=i

ej

 .

6) Calculate s = h′E (mod N ).

7) Calculate E ′ =
∏
j∈I

ej.

8) Calculate s′ = (σ er × h−1)E
′

(mod N ).

9) Check if s = s′. If it holds, return 1. Otherwise,
return 0.

We investigate the correctness of verification algorithms
for individual and aggregate signatures of Chait et al.’s
scheme. First, the correctness of the verification algorithm
for individual signature (m, s) comes from the relation that

ser×t×eℓ = (hd
′

ℓ )er×t×eℓ = h(dℓ+r)×er×t×eℓ

= (hdℓ×er×t×eℓ)× (hr×er×t×eℓ )

= her×t × heℓ = her×t+eℓ = y (mod N )

where h = H(m) since

dℓ × eℓ = 1 (mod φ(N )) and

er × dr = er × t × r = 1 (mod φ(N )).

Next, the correctness of the verification algorithm for
aggregate signature (m, σ,L, SL) comes from the validity of

individual signature (L, SL) and the relation that

s′ = (σ er × h−1)E
′

=
(( ∏

i∈I

hd
′
i
)er
× h−1

)E ′
=

(
h(

∑
i∈I d

′
i )er−1

)E ′
=

(
h(

∑
i∈I (di+r))er−1

)E ′
=

(
h(tr+

∑
i∈I di)er−1

)E ′
=

(
h(

∑
i∈I di)er

)E ′
= (her )(

∑
i∈I di)E

′

= h′(
∑

i∈I di)
∏
j∈I ej

= h′(
∑

i∈I
∏
j∈I ,j̸=i ej) = h′E = s (mod N ).

C. SECURITY MODEL FOR CHAIT ET AL.’S RSA-BASED
AGGREGATE SIGNATURE SCHEME
Next, we take a look at the security model for Chait et al.’s
scheme. It follows the original security model of aggregate
signature schemes [6], [21] and is defined using the security
game between the adversary A and the challenger C.
We say that t-aggregate signature scheme is secure against

existential forgery in the aggregate chosen-key model if there
is no probabilistic polynomial-time (PPT) adversaryAwhose
advantage is negligible in the security parameter λ in the
following game with the challenger C:
• Setup:A receives a public key pk1 for user U1 which is
randomly generated and (pki, ski) for user Ui with 2 ≤
i ≤ t .

• Queries: A may request signatures with the public key
pk1 on the message chosen by A itself.

• Response:A outputs an aggregate signature σagg which
is composed of individual signatures of U1, . . . ,Ut .

We say that A wins the above game if
• AggVerify(pp, H, σagg) = 1 and

• m′ did not appear in the Queries phase.
The advantage of A is defined as the probability that A wins
in the above game.
Remark 1: The security definition of t-aggregate signature

schemes in [23] has some typos: It is stated that a secret key
sk1 = d ′1 is given to A at the Setup phase. In their original
description, a secret key sk1 = d ′1 should be replaced by a
public key pk1 = e1.
We note that our attack algorithm is sufficient if it takes two

secret keys d ′i and d
′
j with the public parameter pp. It does not

need to have access to the signing oracle. The details of our
attack algorithm will be provided in the next section.

IV. OUR ATTACK ALGORITHM
In this section, we provide our attack algorithm against
Chait et al.’s aggregate signature scheme with its theoretical
analysis and toy example.

A. OUR KEY RECOVERY AND FORGE ALGORITHMS
We first present the description of our attack algorithm
that forges an individual signature for the target user or
an aggregate signature which is generated by the target
user as an aggregator. Our attack algorithm can be divided
into three sub-algorithms: The first sub-algorithm, called
ComMulPhiN, computes a multiple of φ(N ) when secret
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keys d ′i , d
′
j of two users Ui, Uj, respectively, in addition to

the public parameter pp are given as inputs where N is the
common RSA modulus of the system and φ is the Euler
totient function. The second algorithm, called RecSecKey,
recovers a value congruent to the secret key of the target
user modulo φ(N ) when the public key of the target user
and the multiple of φ(N ), which is obtained from the first
algorithm, are given as inputs. The last algorithm, called
Forge, generates an individual or aggregate signature using
outputs of the first and second sub-algorithms.

For our attack, we assume that at least two users collude
with their own secret keys and thus the adversary has secret
keys d ′i , d

′
j of two usersUi,Uj, respectively. This requirement

is natural since in the security game it is assumed that the
adversary has secret keys of all users, except the target user.

Let us elaborate our first algorithm that computes a
multiple of φ(N ). This algorithm takes the public parameter
pp = (N , t, er , {eℓ}1≤ℓ≤n) and d ′i , d

′
j as inputs. That is,

we assume that users Ui and Uj collude to recover a secret
key of user Uk . The algorithm computes

phi = (eiejd ′i − ejeid
′
j )+ (ei − ej).

Then, phi is a multiple of φ(N ). (See Theorem 1 in
Section IV-B for the correctness of the first algorithm.)
The formal description of the first algorithm is given in
Algorithm 1.

Algorithm 1 Compute a Multiple of φ(N ):
ComMulPhiN(pp,D′i,D

′
j)

Input: The public parameter pp = (N , t, er , {eℓ}1≤ℓ≤n),
secret keys d ′i , d

′
j of users Ui, Uj, respectively

Output: An integer phi
1: phi← ei × ej × d ′i (as integers)
2: phi← phi− ei × ej × d ′j (as integers)
3: phi← phi+ (ei − ej) (as integers)
4: if phi < 0 then
5: phi←−phi
6: return phi

Next, on top of Algorithm 1, the second algorithm recovers
an equivalent secret key congruent to the secret key d ′k
of the target user Uk modulo φ(N ) from the target public
key ek and phi, which is the output of Algorithm 1. Suppose
that the second algorithm already obtained phi by running
the first algorithm ComMulPhiN(pp, d ′i , d

′
j ). In the second

algorithm with inputs pp = (N , t, er , {eℓ}1≤ℓ≤n), d ′i , d
′
j

and phi, it should calculate the inverse of ek modulo phi,
i.e., e−1k (mod phi), where ek is the public key of the target
user Uk . Thus, gcd(ek , phi) = 1 should hold. Otherwise,
i.e., if g = gcd(ek , phi) ̸= 1, then the algorithm sets phi
to phi/g and repeats this process until gcd(ek , phi) = 1.
This additional process does not violate the correctness of
our attack algorithm because the key generation algorithm of
Chait et al.’s scheme selects ek so that gcd(ek , φ(N )) = 1.
Similarly, gcd(er , phi) = 1 and gcd(t, phi) = 1 should also

hold to calculate the inverse of er × t modulo phi and in fact
they trivially hold since the key generation algorithm of Chait
et al.’s scheme selects er and t such that gcd(er , φ(N )) =
1 and gcd(t, φ(N )) = 1. Then, it calculates

r = (ek × t)−1 (mod phi)

and then

d ′k = e−1k + r (mod phi).

Algorithm 2 provides the formal description of our second
algorithm. The correctness of Algorithm 2 will be shown in
Theorem 2 of Section IV-B.

Algorithm 2 Recover a Secret Key:
RecSecKey(pp,D′i,D

′
j,Phi, k)

Input: The public parameter pp = (N , t, er , {eℓ}1≤ℓ≤n),
secret keys d ′i , d

′
j of users Ui, Uj, respectively, the

modulus phi and the index of the target user Uk with
k ̸= i, j

Output: An integer d ′k
1: while gcd(ek , phi) ̸= 1 do
2: phi← phi/ gcd(ek , phi)
3: while gcd(er , phi) ̸= 1 do
4: phi← phi/ gcd(er , phi)
5: while gcd(t, phi) ̸= 1 do
6: phi← phi/ gcd(t, phi)
7: r ← (er × t)−1 (mod phi)
8: dk ← e−1k (mod phi)
9: d ′k ← dk + r (mod phi)
10: return d ′k

Finally, on top of ComMulPhiN and RecSecKey algo-
rithms, we build the forge algorithm that generates an
individual or aggregate signature of the target user Uk with
respect to the input modemode ∈ {Ind, Agg} in Algorithm 3.
It takes pp = (N , t, er , {eℓ}1≤ℓ≤n), secret keys {d ′ℓ}ℓ∈I where
I is the set of indices of cardinality t − 1, the index k of the
target user Uk where k ̸∈ I , a cryptographic hash function
H : {0, 1}∗ → ZN , and a mode mode ∈ {Ind, Agg} as
inputs. The input mode determines a type of output signature
between an individual signature and an aggregate signature:
Ind andAgg indicate an individual signature and an aggregate
signature, respectively.We remark that our algorithm requires
secret keys of two users only to recover an equivalent secret
key of the target user and to forge an individual signature.
However, by considering the case for forging an aggregate
signature as an aggregator, we describe the algorithm so that
it takes t − 1 secret keys as in the security game of aggregate
signature schemes in Section III-C.
This algorithm first selects two indices i, j, runs

ComMulPhiN(pp, di, dj) to obtain phi, and then runs
RecSecKey(pp, d ′i , d

′
j , phi, k) to obtain d ′k . Subsequently,

it selects a message m and then performs with respect
to the input mode: If mode = Ind, then it runs the
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individual signing algorithm of Chait et al.’s scheme,
IndividualSign(pp, H, d ′k ,m), to generate an individual
signature of the target user Uk on message m. Otherwise,
i.e., if mode = Agg, then it generates t individ-
ual signatures by running IndividualSign(pp, H, d ′k ,m)
for the target user Uk to obtain (m, sk ) and then
IndividualSign(pp, H, d ′ℓ, (m, sk )) for users Uℓ to obtain
(m, sℓ) with ℓ ∈ I . Then, it runs the aggregate signing
algorithm of Chait et al.’s scheme, AggSign(pp, H, d ′k ,
(m, {sℓ}ℓ∈J )), to obtain an aggregate signature where J =
I ∪ {k}. We formally describe the third algorithm in
Algorithm 3 and its correctness will be shown in Theorem 3
of Section IV-B.

Algorithm 3 Forge a Signature:
Forge(pp, {d ′ℓ}ℓ∈I , k, H,mode)

Input: The public parameter pp = (N , t, er , {eℓ}1≤ℓ≤n),
secret keys {d ′ℓ}ℓ∈I of users Uℓ with I of cardinality
|I | = t − 1, the index of the target user Uk with k ̸∈ I ,
a cryptographic hash function H, andmode ∈ {Ind, Agg}

Output: An individual signature (m, sk ) or an aggregate
signature (m, σ ,L, SL)

1: Select two indices i, j from I
2: phi← ComMulPhiN(pp, d ′i , d

′
j )

3: d ′k ← RecSigKey(pp, d ′i , d
′
j , phi, k)

4: Select a message m
5: if mode = Ind then
6: (m, sk )← IndividualSign(pp, H, d ′k ,m)
7: return (m, sk )
8: if mode = Agg then
9: (m, sk )← IndividualSign(pp, H, d ′k ,m)
10: for ℓ ∈ I do
11: (m, sℓ)← IndividualSign(pp, H, d ′ℓ, (m, sk ))

12: J ← I ∪ {k}
13: (m, σ ,L, SL)← AggSign(pp, H, d ′k , (m, {sℓ}ℓ∈J ))
14: return (m, σ ,L, SL)

B. ANALYSIS OF OUR FORGE ATTACK
Now, we investigate the correctness and efficiency of three
algorithms presented in Section IV-A.

Correctness of Our Attack. Theorem 1 shows the
correctness of Algorithm 1.
Theorem 1: Algorithm 1 with inputs (pp, d ′i , d

′
j ) always

returns a multiple of φ(N ) where the public parameter pp =
(N , t, er , {eℓ}1≤ℓ≤n) and secret keys di, dj of users Ui, Uj,
respectively, are involved in the output of the key generation
algorithm KeyGen of Chait et al.’s scheme.

Proof: Let (ei, d ′i ) and (ej, d ′j ) be pairs of public and
secret keys of users Ui and Uj, respectively. Then, since they
are generated by the key generation algorithm of Chait et al.’s
signature scheme, they hold the relations

ei × d ′i = eidi + eir = 1+ qiφ(N )+ eir and

ej × d ′j = ejdj + ejr = 1+ qjφ(N )+ ejr

as integers for some integers qi and qj. Thus,

eiejd ′i = eiej(di + r) = eiejdi + eiejr

= ej(1+ qiφ(N ))+ eiejr = ej + ejqiφ(N )+ eiejr

and

eiejd ′j = eiej(dj + r) = eiejdj + eiejr

= ei(1+ qjφ(N ))+ eiejr = ei + eiqjφ(N )+ eiejr

Therefore,

phi = eiejd ′i − eiejd
′
j + (ei − ej)

= (ej + ejqiφ(N )+ eiejr)

− (ei + eiqjφ(N )+ eiejr)+ (ei − ej)

= (ejqi − eiqj)φ(N ) (1)

which is a multiple of φ(N ). If phi in Equation (1) is negative,
take −phi so that the output of the algorithm is always
positive. However, regardless of the sign of phi, phi is still
a multiple of φ(N ) and the theorem is proved.
Remark 2: The output of Algorithm 1 cannot be 0. First,

since ei and ej are different, d ′i = di + r and d ′j = dj + r are
also different. Suppose that d ′i − d

′
j = c where c is a positive

integer. Then,

phi = eiej(d ′i − d
′
j )+ (ei − ej)

= ceiej + ei − ej

=

(
√
cei −

1
√
c

) (
√
cej +

1
√
c

)
+ c > 0

since ei, ej ≥ 2 and c ≥ 1, and so
√
cei −

1
√
c

> 0 and

√
cej +

1
√
c

> 0.

Similarly, suppose that d ′i − d
′
j = c where c is a negative

integer. Then, if c′ = −c,

phi = eiej(d ′i − d
′
j )+ (ei − ej)

= ceiej + ei − ej
= −(c′eiej + ej − ei)

= −

(
√
c′ei +

1
√
c′

) (
√
c′ej −

1
√
c′

)
− c′ < 0

since ei, ej ≥ 2 and c′ ≥ 1, and so
√
c′ei +

1
√
c′

> 0 and

√
c′ej −

1
√
c′

> 0.

Therefore, the output of Algorithm 1 cannot be 0. ■
Next, the following theorem shows the correctness of

Algorithm 2 when Algorithm 1 is correct.
Theorem 2: Algorithm 2 returns a value congruent to the

secret key of the target user Uk modulo φ(N ) if Algorithm 1
works correctly as in Theorem 1.

Proof: Suppose that Algorithm 1 returns a multiple
of φ(N ). That is, phi = qφ(N ) for some positive integer
q. Assume that gcd(ek , phi) = 1, gcd(er , phi) = 1, and
gcd(t, phi) = 1. Otherwise, we can adjust it by setting phi
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to phi/g while g = gcd(ek , phi) ̸= 1, g = gcd(er , phi) ̸= 1,
or g = gcd(t, phi) ̸= 1 through Steps 1–6 of Algorithm 2.
From Steps 7–9, r , dk and d ′k satisfy

er × t × r = 1 (mod phi) and

ek × dk = 1 (mod phi).

Thus, it holds that

er × t × r ≡ 1 (mod φ(N )) and

ek × dk ≡ 1 (mod φ(N ))

since phi is a multiple of φ(N ). So,

r ≡ r (mod φ(N )) and dk ≡ dk (mod φ(N ))

from the definitions of r and dk . Therefore, we have

d ′k ≡ dk + r ≡ dk + r ≡ d ′k (mod φ(N )).

Finally, Theorem 3 shows that Algorithm 3 generates a
valid individual or aggregate signature of the target user Uk .
Theorem 3: If Algorithms 1 and 2 work correctly,

Algorithm 3 with inputs (pp, {d ′ℓ}ℓ∈I , k, H,mode) outputs a
valid individual signature of the target user Uk when mode =
Ind and a valid aggregate signature of the target user Uk
when mode = Agg, where the public parameter pp =
(N , t, er , {eℓ}1≤ℓ≤n) and secret keys {d ′ℓ}ℓ∈I of users Uℓ for
I which is the set of indices of cardinality t − 1 are generated
by the key generation algorithm of Chait et al.’s scheme, k
is the index of the target user Uk , H : {0, 1}∗ → ZN is a
cryptographic hash function, and mode ∈ {Ind, Agg}.

Proof: The proof of this theorem is straightforward from
the correctness of Algorithms 1, 2 of this paper and that of
individual and aggregate signing algorithms of Chait et al.’s
scheme. Algorithm 3 first callsComMulPhiN(pp, d ′i , d

′
j ) and

RecSecKey(pp, d ′i , d
′
j , phi, k). As a result, we obtain an

equivalent secret key d ′k which is congruent to the secret
key of the target user Uk modulo φ(N ) from the assumption
that Algorithms 1 and 2 work correctly. Then, it selects
a message m and then calls IndividualSign(pp, H, d ′k ,m)
to forge an individual signature of the target user Uk on
message m if mode = Ind. Otherwise, if mode =

Agg, then it generates t individual signatures by run-
ning IndividualSign(pp, H, d ′k ,m) to obtain (m, sk ) and
then IndividualSign(pp, H, d ′ℓ, (m, sk )) to obtain (m, sℓ) for
ℓ ∈ I . Then, it runs the aggregate signing algorithm
AggSign(pp, H, d ′k , (m, {sℓ}ℓ∈J )) with t generated individual
signatures where J = I∪{k}. Therefore, since all inputs of the
algorithms have the correct form, if Chait et al.’s construction
is correct, Algorithm 3 returns a valid individual or aggregate
signature.

From Theorems 1–3, we confirm that our attack succeeds.
Efficiency Analysis of Our Attack. We now analyze the

efficiency of our attack algorithm by concentrating on the
computationally intensive operations that primarily account
for the execution timewithin the algorithm. Algorithm 1 takes

4 integer multiplications at Steps 1–2. Algorithm 2 requires
several gcd computations at Steps 1–6, and 2 modular inverse
calculations at Steps 7–8. We remark that the number of gcd
computations is bounded above by 2 logN when two factors
of N are safe primes as in the key generation algorithm of
Chait et al.’s scheme. However, according to our experiments
in Section V, it is less than 4 on average if we select ei, t ,
and r as random primes. Refer to Table 3 in Section V for
detailed experimental results. Finally, for Algorithm 3 with
input mode = Ind, it requires executions of Algorithm 1,
Algorithm 2, and Chait et al.’s individual signing algorithm
each sequentially. For Algorithm 3 with input mode = Agg,
it additionally requires t − 1 executions of the individual
signing algorithm and 1 execution of the aggregate signing
algorithm of Chait et al.’s scheme.

C. TOY EXAMPLE OF OUR ATTACK
In this subsection, we provide a toy example of our attack to
help readers’ understanding. In our example, we select two
safe primes p, q as

p = 1, 283, q = 1, 307,

and so N , φ(N ) are set to

N = p× q

= 1, 283× 1, 307 = 1, 676, 881,

φ(N ) = (p− 1)× (q− 1)

= 1, 282× 1, 306 = 1, 674, 292.

We set t = 19, r = 7, 919, and compute

dr = t × r (mod φ(N ))

= 19× 7, 919 (mod 1, 674, 292) = 150, 461,

er = d−1r (mod φ(N ))

= 150, 461−1 (mod 1, 674, 292) = 1, 450, 513.

Next, we select three numbers e1, e2, e3 as

e1 = 3, 271,

e2 = 4, 651,

e3 = 5, 003,

and compute

d1 = 32, 759,

d2 = 123, 115,

d3 = 578, 623

so that ei × di ≡ 1 (mod φ(N )) for i = 1, 2, 3. Then,
we compute

d ′1 = d1 + r (mod φ(N ))

= 32, 759+ 7, 919 (mod 1, 674, 292)

= 40, 678,

d ′2 = d2 + r (mod φ(N ))

= 123, 115+ 7, 919 (mod 1, 674, 292)

VOLUME 12, 2024 16469



C. Park et al.: Insecurity of Chait et al.’s RSA-Based Aggregate Signature Scheme

= 131, 034,

d ′3 = d3 + r (mod φ(N ))

= 578, 623+ 7, 919 (mod 1, 674, 292)

= 586, 542.

For our attack algorithm, suppose that d ′2 and d
′

3, in addi-
tion to e2, e3, and N , are given. We now show that we can
recover an equivalent secret key d ′1 which is congruent to d ′1
modulo φ(N ). By executing Algorithm 1, we first calculate

e2e3d ′2 = 4, 651× 5, 003× 131, 034,

= 3, 049, 023, 987, 402,

e2e3d ′3 = 4, 651× 5, 003× 586, 542

= 13, 648, 218, 230, 526

and

phi = e2e3d ′2 − e2e3d
′

3 + (e2 − e3)

= 3, 049, 023, 987, 402− 13, 648, 218, 230, 526

+ (4, 651− 5, 003)

= −10, 599, 194, 243, 476.

Since phi is negative, we replace phi by

−phi = 10, 599, 194, 243, 476.

We confirm that phi is a multiple of φ(N ) from

phi = 6, 330, 553× φ(N ).

Next, we execute Algorithm 2. We check if g1 =

gcd(e1, phi) = 1, g2 = gcd(er , phi) = 1, and g3 =
gcd(t, phi) = 1. If any of three does not hold, we divide
phi by phi/gi for gi ̸= 1 until all three relations hold. In our
example, g1 = gcd(e1, phi) = 1 and g2 = gcd(er , phi), but
gcd(t, phi) = 19. So, we divide phi by 19 and set the result
as a new phi:

phi = 557, 852, 328, 604.

This new phi satisfies gcd(t, phi) = 1 as well.
Then, we calculate

r = (er × t)−1 (mod phi)

= (1, 450, 513× 19)−1 (mod 557, 852, 328, 604)

= 27, 559, 747−1 (mod 557, 852, 328, 604)

= 150, 269, 389, 211

and

d1 = e−11 (mod phi)

= 3, 271−1 (mod 557, 852, 328, 604)

= 519, 820, 818, 583.

Therefore, d ′1 is

d ′1 = d1 + r (mod phi)

= 519, 820, 818, 583+ 150, 269, 389, 211 (mod phi)

= 670, 090, 207, 794 (mod phi)

= 112, 237, 879, 190.

Finally, we investigate the correctness of our attack in the
above example by checking that the following relation holds:

d ′1 (mod φ(N )) = 112, 237, 879, 190 (mod 1, 674, 292)

= 40, 678 = d ′1.

In fact, we additionally demonstrate that

d1 (mod φ(N )) = 519, 820, 818, 583 (mod 1, 674, 292)

= 32, 579 = d1

and

r (mod φ(N )) = 150, 269, 389, 211 (mod 1, 674, 292)

= 7, 919 = r .

We omit an example for Algorithm 3 because its correctness
trivially comes from that of Chait et al.’s scheme. In summary,
from the example given in this subsection, we confirmed the
correctness of our attack algorithm.

V. EXPERIMENTAL ANALYSIS
In this section, we provide experimental results of our attack
algorithm. The source code related to our implementation in
this section is publicly available at GitHub repository.1

A. EXPERIMENTAL ENVIRONMENTS
Our source code was written in C++. The OpenSSL
library [24] of version 3.0.10 was used for integer and
modular operations with large numbers, and cryptographic
hash function, SHA-256. We have tested on the machine
running Ubuntu 20.04.6 LTS on virtual machine which was
installed on Windows Server 2019 Standard with Intel(R)
Xeon(R) Silver 4215R processor at 3.20 GHz with 128 GB
of RAM.

B. EXPERIMENTAL RESULTS
Now, we present experimental results of our attack algorithm.
We conducted several types of experiments with respect to
the bit size of N , the value of t , and the bit size of user’s
public key ei. All experiments were executed 100 times
and all numbers in the tables are averages of 100 trials
each.

Table 1 shows execution times of our attack algorithm for
various sizes of RSAmodulus N and users’ public keys when
the number t of individual signatures required for aggregation
is fixed. We set t to 13 for all experiments in Table 1. The
bit sizes of RSA modulus N , which is a product of two safe
primes, were set to 1024, 2048, and 3072. For sizes of user’s
public keys, we consider two cases: (1) each ei is selected
randomly from Z∗φ(N ) as the original description of Chait
et al.’s scheme and (2) each ei is selected randomly from
the set of 40-bit integers which are relatively prime with

1https://github.com/CRYPTO-REPO/Attacks-on-Chait-s-scheme
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φ(N ) by reflecting the case that uses small public keys to
improve the efficiency in practice. Table 1 presents execution
times of Algorithm 1, Algorithm 2, and Algorithm 3 with Ind
and Agg as input mode. It demonstrates that the execution
time of our attack algorithm increases as the bit size of N
increases. Since each algorithm performs operationswith ei’s,
the running times of algorithms depend on the size of ei, and
our algorithms are slightly faster when ei’s are small. But, for
all cases our attack algorithm takes less than 21 ms only to
recover an equivalent secret key of the target user by running
Algorithm 1 and Algorithm 2, and takes less than 1 second
only to forge an aggregate signature by running Algorithm 2
with input mode = Agg.

TABLE 1. Execution time of our attack algorithm with respect to the bit
sizes of N and ei when t = 13 (unit: ms).

While other algorithms do not depend on the value of
t , Algorithm 3 with input mode = Agg depends on the
value of t since it generates an aggregate signature of t
individual signatures. Table 2 presents execution times of
algorithms for various t = 29, 109, 251, 503, 1009 and two
cases of ei as in Table 1. It shows that the running time
of Algorithm 3 with input mode = Agg increases as t
increases, but those of all algorithms does not depend on the
value of t .
Finally, to make up for our theoretical analysis on the

number of required gcd computations in Algorithm 2,
we measured the number of gcd computations through Steps
1–6 of Algorithm 2 in our experiments. In Section IV-B,
we roughly stated that the number of required gcd computa-
tions is bounded above by 2 logN . Table 3 presents average
numbers of gcd computations at Steps 1–2, Steps 3–4, and
Steps 5–6, respectively, in Algorithm 2 with various t and
two sizes of ei as in Table 1 when N is 3072 bits. It shows
that in fact the number of required gcd computations is less
than 4 for all cases.

TABLE 2. Execution time of our attack algorithm with respect to the value
of t and the bit size of ei when N is 3072 bits (unit: ms).

TABLE 3. The average number of gcd computations with respect to the
value of t and the bit size of ei when N is 3,072 bits.

VI. CONCLUSION
In this paper, we assessed the security of the recent
RSA-based aggregate signature scheme proposed by Chait
et al. [23] which follows the paradigm of the key generation
algorithm of the original RSA cryptosystem [22] under
only one RSA modulus for key generation of users in the
system. For this purpose, we presented an attack algorithm
that recovers an equivalent secret key of the target user
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and then forges an individual or aggregate signature of the
target user with the obtained equivalent secret key. Our
attack algorithm is critical since it can recover an equivalent
secret key of any users in the system with relatively cheap
operations, e.g., several integer operations and modular
operations, when secret keys of two users are given.
We showed the efficiency of our attack algorithm by pre-
senting experimental results. According to the experimental
results, for the parameters of 128-bit security our algorithm
forges an aggregate signature of 29 individual signatures in
1 second.

Since our attack works when secret keys of two users
are given, Chait et al.’s scheme is no longer attractive as
an aggregate signature. Furthermore, fixing it with minor
modifications seems challenging due to the inherent leakage
of information about the factorization of the RSA modulus
when using key pairs generated by the original RSA
cryptosystem, even with some modifications. We leave it as
an open problem to design an RSA-based aggregate signature
scheme under the common RSA modulus while adhering to
the key generation paradigm of the original RSA for user key
generation.
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