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ABSTRACT This paper is concerned with the speed regulation of permanent magnet synchronous motor
systems using sliding mode control. To deal with the contradiction between reaching speed and chattering
while ensuring finite time convergence, a new sliding mode reaching law is designed by introducing a
variable gain associated with system states. Based on this, a speed regulation controller is first designed
for permanent magnet synchronous motor systems using the new reaching law to solve the speed regulation
problem and improve system robustness. A rigorously theoretical proof is provided for the designed speed
controller using our proposed practical finite time stability criterion. We further investigate the speed
estimation of permanent magnet synchronous motors without mechanical sensors. To obtain more accurate
rotor information, a new sliding mode observer is designed by incorporating a back electromotive force
observer, whose validity is verified by Lyapunov theory. Finally, the correctness of our developed theory is
verified through simulation studies.

INDEX TERMS Permanent magnet synchronous motor, new sliding mode reaching law, sliding mode
controller, sliding mode observer.

I. INTRODUCTION
Due to the rapid development of science and technology,
permanent magnet synchronous motors (PMSMs) have
demonstrated remarkable performances, such as simple
structure, high power density, and high efficiency. Because of
these advantages, it has been extensively employed in various
industrial regions, such as electric vehicles, intelligent robots,
and industrial automation [1]. At the same time, PMSMs are
also a challenging control object with nonlinearity, strong
coupling, and multiple variables, making it vulnerable to the
effects of unmodeled dynamics, parameter changes, and load
disturbances [2], [3].

Proportional integral (PI) as a classical linear control
method has been employed to regulate the speed of
PMSMs [4]. Due to the dependence on the accuracy of
system models, PI control is sensitive to disturbances and
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parameter changes in the systems. To address these issues,
many nonlinear control methods have been proposed and
developed, including fuzzy control [5], predictive control [6],
neural network control [7] and sliding mode control (SMC)
[8], [9], [10]. Compared with the control methods mentioned
above, SMC has been widely researched and developed
because of its low requirement for system model accuracy
and high robustness to internal and external perturbations.

However, the problem of chattering due to high-frequency
switching of the system states in the sliding surface region
has to be considered in the SMC. To suppress chattering
and improve convergence speed, various methods have
been proposed, including high-order sliding mode [11] and
fractional-order sliding mode [12]. One of the very effective
measures to solve it is by improving the sliding mode
reaching law [13], [14]. In [8], a new sliding mode reaching
law was proposed in which a variable gain was introduced.
In [15], a power-reaching law was proposed to achieve chat-
tering reduction and increase convergence rate. In [16], a new
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adaptive terminal sliding mode reaching law was introduced
and applied to continuous fast terminal sliding mode control.
Although chattering reduction, convergence speed improve-
ment, and finite time convergence have been individually
achieved in the references mentioned above, they have not
been simultaneously considered. Therefore, it is a subject of
research interest that they are improved at the same time.

In addition, the acquisition of the rotor position in the
PMSM speed regulation systems is important. The rotor
information can be obtained by applying an arctangent to
the back electromotive force (back EMF), which eliminates
the need for mechanical sensors [17]. This method not
only eliminates the adverse effects of the environment on
mechanical sensors but also reduces the application cost.
Therefore, sensorless driving methods have been proposed
and developed for middle-speed and high-speed estimations,
including extended Kalman filter (EKF) [18], model refer-
ence adaptive system (MRAS) [19], [20] and sliding mode
observer (SMO) [21], [22]. Although the effectiveness of
the EKF in noisy environments is achieved, its calculations
are complex, while the MRAS can deliver high accuracy
but demands precise models and parameters. Unlike the two
methods, the SMO is insensitive to parameter changes and
owns strong robustness. Therefore, the SMO has been widely
studied and preferred due to its good performance. In [23],
a sigmoid function was proposed to suppress chattering,
based on which a SMO was designed. In [24], a super-
twisting functionwas designed to replace the signum function
to reduce switching amplitude and increase robustness.
In [25], a fuzzy adaptive algorithmwas proposed to reduce the
observation error. In the aforementioned references, although
chattering reduction and observation accuracy improvement
have been achieved, the design complexity is overlooked.
In other words, it makes more sense to simultaneously study
the reduction of chattering and observation errors without
complicating the design process.

This paper aims to study the speed control performance
of permanent magnet synchronous motor speed regulation
systems. Firstly, a new sliding mode reaching law (NSMRL)
is proposed. Based on this, a new sliding mode controller
(NSMC) is designed to ensure that finite time speed regu-
lation is achieved for PMSM systems even in the presence
of bounded disturbances. Additionally, a new sliding mode
observer (NSMO) is designed to observe the back EMF.
Finally, the effectiveness of the designed controller and
observer is verified by simulations. The main contributions
of this paper are summarized as follows:

1) A new reaching law is designed in which a system
state-dependent variable gain is introduced. To demon-
strate finite time convergence, a new practical stability
criterion is proposed.

2) To address the speed regulation of PMSM systems
with perturbations, a NSMC is designed based on
our proposed NSMRL and an extended state observer.
According to the developed practical stability criterion,
it is proven that the speed regulation error can be

constrained to a bounded set containing zero in a finite
time.

3) The speed estimation problem is further solved by
designing a NSMO based on the NSMRL for PMSM
systems. By simulation analysis, it is seen that our
established method demonstrates better performance
in suppressing speed fluctuations and improving
estimation accuracy in comparison to the [23].

This article is organized as follows. In Section II, the
NSMRL is designed and analyzed. Combined with the
PMSM mathematical model, the NSMC is designed and a
finite time stability proof is given in Section III. In Section IV,
a NSMO is designed to estimate motor speed for PMSM
systems. In Section V, the effectiveness of NSMRL and
NSMO is verified by the simulation studies. Finally, the
conclusion is summarized in Section VI.
Notation.R denotes the set of real numbers.Rn denotes the

real N-dimensional space. ∥ · ∥ denotes the usual Euclidean
norm of ‘‘·’’. sgn denotes the signum function. sup[X ] denotes
an upper bound of a set X .

II. NEW REACHING LAW DESIGN
SMC is a widely used control method due to its several advan-
tages, such as insensitivity to disturbances, fast response
speed, and low number of adjusting parameters. However,
SMC suffers from a chattering problem caused by repeated
traversals on the sliding mode surface. To inhibit chattering,
the traditional exponential reaching law (TERL) is proposed,
which can be expressed as [26]

ds
dt

= −ϵ sgn(s) − ks, ϵ > 0,k > 0, (1)

where s shows a sliding mode surface function, ϵ sgn(s)
shows the isokinetic reaching law and ks shows the
exponential reaching law.

However, since the parameters of TERL cannot be changed
once they have been determined, the reduction of chattering
and the convergence speed improvement cannot be achieved
simultaneously. In [8], an improvement of TERL was defined
as

ds
dt

= −ε∥x∥α sgn(s) − k |s|h sgn(|s|−1) s,

lim
t→∞

∥x∥ = 0, ε > 0, k > 0, 0 < α < 1, 0 < h < 1.

(2)

To simplify the following description, (2) is referred to as Ref.
Although the designed controller based on (2) indeed can

suppress chattering and accelerate the system convergence
speed [8], finite time convergence is not guaranteed when
the system is disturbed. To solve this problem, a new sliding
mode reaching law is designed as follows

ds
dt

= −ϵQ(s) |s|ν sgn(s) − k∥x∥h sgn(∥x∥−1)s− ℓs,

Q(s) = |s| − (|s| − 1)e−χ |s|,

(3)

VOLUME 12, 2024 24063



H. Wang et al.: Speed Regulation of PMSM Systems Based on a New Sliding Mode Reaching Law

where x represents the system states, ϵ > 0,k > 0, χ >

0, 0 < ν < 1, 0 < h < 1, Q(s) > 1
eχ and ℓ ≥ 0.

A brief analysis of (3) is made. From (3), when |s| ≥ 1,
there are two variable reaching laws ϵQ(s) |s|ν with Q(s) ≥

1 and k∥x∥hs+ ℓs. Thus a faster reaching speed is provided.
In other words, the farther the system states are from the
sliding mode surface, the faster the reaching speed will be
ensured. On the contrary, when |s| < 1, the decay rate of |s| is
faster than |s|ν . Therefore, ϵQ(s) |s|ν plays a main role. As |s|
tends to 0 and Q(s) decreases to 1, the sliding mode gain is
gradually reduced. It is effective for reducing chattering.
Remark 1: Unlike (1), a variable gain is introduced to (3).

Therefore, a larger gain is provided to increase reaching
speed when the system states are away from the sliding mode
surface, but also a smaller gain is needed to reduce chattering
when the system states are close to the sliding mode
surface. Compared with (2), an additional variable gain is
introduced in (3), which further improves convergence speed
without increasing the chattering phenomenon. Additionally,
an invariant gain is introduced to address the unknown
disturbances.

A. THE NSMRL SIMULATION ANALYSIS
To better show the effectiveness of (3), we now use an
example by comparing it with (1) and (2). Let us consider
a typical second-order system, which is expressed as{

ẋ1 = x2,
ẋ2 = −30x2 + 140µ(t) + 10 sin(π t).

(4)

For easy calculation, choose the sliding-mode surface
function s as

s = cx1 + x2, (5)

where c > 0. Substituting (4) into the derivative of (5), which
can be shown as

ṡ = cẋ1 + ẋ2 = cx2 − 30x2 + 140µ(t) + 10 sin(π t). (6)

Depending on the (3), the control law is obtained as

µ(t) = −
1

140
[cx2 − 30x2 + 10 sin(π t)

+ ϵQ(s) |s|ν sgn(s) + k∥x∥b sgn(∥x∥−1)s+ ℓs]. (7)

Choosing Lyapunov function V =
1
2 s

2, we get

V̇ = s[−ϵQ(s) |s|ν sgn(s) − k∥x∥b sgn(∥x∥−1)s− ℓs]. (8)

Defining 1
eχ = r , (8) is rewritten as

V̇ + 2
1+ν
2 ϵrV

1+ν
2 ≤ 0. (9)

According to [29], the (4) convergence time Ts is

Ts ≤
1

2
1+ν
2 ϵr(1 − ν)

V (0)
1−ν
2 . (10)

From (10), the system states converge to the sliding mode
surface within a finite time has been rigorously proven.

FIGURE 1. Performance comparison of TERL, Ref and NSMRL. (a)Phase
trajectory. (b)Controller output.

To prove the effectiveness of NSMRL, the controllers
designed according to (1) and (2) are

µ1(t) = −
1
140

[cx2 − 30x2 + 10 sin(π t) + ks+ ϵ sgn(s)],

µ2(t) = −
1
140

[cx2 − 30x2 + 10 sin(π t)

+ ϵ∥x∥α sgn(s) + k |s|b sgn(|s|−1) s]. (11)

To draw the simulation results, the parameters are selected as
follow: c = 15, ϵ = 30, b = 0.4, ℓ = 0, ν = 0.35, k =

10 and χ = 500. The initial state of this system [x1, x2] is set
to [2,2]. Fig. 1 shows the performance comparison between
TERL, Ref and NSMRL. From Fig. 1 (a), we conclude that
the system states converge to the sliding surface at the fastest
speed through our proposed NSMRL. Fig. 1 (b) shows the
controller output. Obviously, the chattering of the controller
designed by our method is minimized.

III. THE SPEED CONTROLLER DESIGNED BASED ON
NSMRL
A. MATHEMATICAL MODEL OF PMSM
Considering the complexity of the internal electrics of

PMSMs, this paper makes some assumptions to simplify the
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analysis. Ignoring the PMSM iron sore saturation and the
eddy current and hysteresis, hence the mathematical model of
the PMSM in the d-q rotating coordinate is expressed as [27]

did
dt

= −
Rs
Ld
id + pnwiq +

1
Ld
ud ,

diq
dt

= −
Rs
Lq
iq − pnwid +

1
Lq
uq −

pnψf
Lq

w,

dw
dt

=
3pnψf
2J

iq −
B
J
w−

TL
J
,

(12)

where ud , id and Ld are the stator voltage, stator current and
inductance of d axes; uq, iq and Lq are the stator voltage and
stator current, and inductance of q axes; Rs represents the
stator resistance, pn and w are the pole number of PMSMs
and the mechanical angular velocity, respectively; TL , ψf ,
J and B represent load torque, flux linkage, moment of
inertia and viscosity coefficient, respectively.

B. DESIGN OF NSMC
In this subsection, the NSMC will be designed by a NSMRL
to solve speed regulation for PMSMs.

Considering the parameter uncertainties and external
disturbances, which are collectively referred to as lumped
disturbances, from (12) the motor dynamic equation is
rewritten as

ẇ = 3iq + d, (13)

where 3 =
3pnψf
2J and d represents the lumped disturbances.

Then, the motor speed tracking error is defined as{
x1 = w∗

− w,
x2 = ẇ∗

− ẇ,
(14)

where w∗ is the given reference speed. Substituting (13)
into (14), we get

x2 = ẋ1 = ẇ∗
− ẇ

= ẇ∗
−3iq − d . (15)

In this paper, the nonsingular terminal slidingmode surface
is chosen as follows [27]

s = x1 +
1
ȷ

∫ t

0
x
p
q
1 dt, (16)

where ȷ > 0, p and q are positive odd integers with
0 < p/q < 1.

The derivative of (16) is computed as

ṡ = ẋ1 +
1
ȷ
x
p
q
1 = ẇ∗

−3iq − d +
1
ȷ
x
p
q
1 . (17)

Combining (3) and (17), iq is easily deduced as

iq =
1
3
[ẇ∗

− d +
1
ȷ
x
p
q
1 + ϵQ(s) |s|ν sgn(s)

+ k∥x∥h sgn(∥x∥−1)s+ ℓs]. (18)

Since d is unknown, the designed iq in (18) is unavailable.
Based on the PMSM system, an extended state observer
(ESO) given as follows is applied to estimate d [28]{

ż1 = z2 − h1(z1 − w) +3iq,
ż2 = −h2(z1 − w).

(19)

In the above formula, the lumped disturbance is estimated
by z2. On this basis, we can complete the feed-forward
compensation of the speed regulation of PMSM systems. The
(18) is redesigned as

iq =
1
3
[ẇ∗

− z2 +
1
ȷ
x
p
q
1 + ϵQ(s) |s|ν sgn(s)

+ k∥x∥h sgn(∥x∥−1)s+ ℓs]. (20)

C. STABILITY ANALYSIS
Before giving the main result, some useful lemmas are
proposed at first.
Lemma 1: [29]: Consider the system

ẏ(t) = f (y(t)), (21)

where f : D → Rn is continuous on an open neighborhood
D of the origin and f (0) = 0. Let V : D → R, k > 0 and
a ∈ (0, 1). A neighborhood U ⊂ D of the origin such that
V is positive definite, and V̇ + kV a is negative semi-definite
on U . The system (21) is stable at origin and the stable time
satisfies T ≤

1
k(1−a)V (0)

1−a.

Lemma 2: [30]: Consider the following nonlinear system

ẋ = g(x, u). (22)

Assume the existence of a continuous function V (x) such that

V̇ (x) ≤ −kV a(x) + ð, (23)

where k > 0, 0 < a < 1 and 0 < ð < ∞. The trajectory
of system (24) is practical finite time stable. In other words,
the trajectories of the closed-loop system converges toO in a
finite time T such that

T ≤
V 1−a(x(0))
kh̄(1 − a)

,

O =

{
x|V a(x) ≤

ð
(1 − h̄)k

}
,

(24)

where 0 < h̄ < 1.
Lemma 3: Consider system (22). Assume that there is a

continuous function V (x) satisfying

V̇
q
p (x) ≤ −kV

q+p
2p (x) + ð, (25)

where p < q are positive odd, k > 0 and 0 < ð < ∞.
The system (22) converges to a bounded region within a finite
time.

Proof: By choosing ζ ∈ (0, 1], the inequality (25) is
expressed as

V̇
q
p (x) ≤ −ζkV

q+p
2p (x) − (1 − ζ )kV

q+p
2p (x) + ð. (26)
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Case 1: When x ∈ O2 =

{
x|V

q+p
2p (x) > ð

(1−ζ )k

}
, there

exists

(V̇ )
q
p ≤ −ζkV

q+p
2p , (27)

which is equivalent to

V̇ ≤ −(ζk)
p
qV

p+q
2q . (28)

By Lemma 1, The trajectory of the system converges toO1 ={
x|V

q+p
2p (x) ≤

ð
(1−ζ )k

}
within a finite time T ≤

V
1− q+p

2q (x(0))

(ζk)
p
q (1− q+p

2q )
.

Case 2: When x ∈ O1 =

{
x|V

q+p
2p (x) ≤

ð
(1−ζ )k

}
,

by Case 1, x(t) will always stay in O1.
In conclusion, the system state of (22) converges to O1 in

a finite time T.
Theorem 1: When the parameters are met the following

selection conditions, ϵ > 0, k > 0, ℓ ≥
1
2 , χ > 0,

0 < p/q < 1, 0 < ν < 1 and 0 < h < 1, the speed regulation
of PMSM systems is stable within a finite time.

Proof: First, we prove that the (16) converges to a
bounded region in a finite time. Choose the Lyapunov
function

V =
1
2
s2. (29)

By substituting the equation (17) into the time derivative
of (29), it is shown as

V̇ = sṡ = s(ẋ1 +
1
ȷ
x
p
q
1 )

= s(ẇ∗
−3iq − d +

1
ȷ
x
p
q
1 ). (30)

Substituting the equation (20) into (30) yields

V̇ = s{ẇ∗
− [ẇ∗

− z2 +
1
ȷ
x
p
q
1 + ϵQ(s) |s|ν sgn(s)

+ k∥x∥h sgn(∥x∥−1)s+ ℓs] − d +
1
ȷ
x
p
q
1 }. (31)

Assuming |d − z2| ≤ η, one obtains

V̇ = −s[ϵQ(s) |s|ν sgn(s) + ℓs+ z2 − d

+ k∥x∥h sgn(∥x∥−1)s]

≤ −ϵe−χ |s|ν+1 sgn(s) − k∥x∥h sgn(∥x∥−1)s2

− ℓs2 + η |s|

≤ −2γ ϵe−χV γ − [k∥x∥h sgn(∥x∥−1)
+ ℓ−

1
2
]s2 +

η2

2
,

(32)

where γ =
1+ν
2 . By choosing ℓ ≥

1
2 , (32) is written as

V̇ ≤ −2γ ϵe−χV γ +
η2

2
. (33)

By Lemma 2, the (16) converges to D in a finite time Ts in
which

Ts ≤
V 1−γ (s(0))

(1 − γ )2γ ϵe−χð
,

D =

s|V (s) ≤

[
η2

(1 − ð)21+γ ϵe−χ

] 1
γ

 .
(34)

Then we prove the speed tracking error is bounded. Define

M =
∫ t
0 x

p
q
1 dt , D̄ = sup[D]. Consider a Lyapunov function

V =
1
2

[∫ t

0
x
p
q
1 dt

]2
=

1
2
M2. (35)

Combining (16), we get

V̇ = (s−
M
ȷ
)
p
qM . (36)

According to Young’s inequality, the equation (36) is
rewritten as

V̇
q
p ≤

∣∣D̄∣∣ |M |
q
p −

1
ȷ

|M |
q+p
p

≤ G(τ )
∣∣D̄∣∣n + τ [|M |

q
p ]m −

1
ȷ

|M |
q+p
p , (37)

where τ > 0, m =
p+q
q , n =

p+q
p and G(τ ) =

(mτ )−
n
m

n .
Therefore, (37) becomes

V̇
q
p ≤ −2

q+p
2p (

1
ȷ

− τ )V
q+p
2p + G(τ )

∣∣D̄∣∣n . (38)

Let 1
ȷ
> τ . By Lemma 3, we get the variableM converges to

W in a finite time T in which
T ≤

V 1− q+p
2q (M (0))

[ζ2
q+p
2p ( 1

ȷ
− τ )]

p
q (1 −

q+p
2q )

,

W =

M |V (M ) ≤

[
ȷG(τ )

∣∣D̄∣∣n
(1 − τȷ )(1 − ζ )2

q+p
2p

] 2p
q+p
 .

(39)

Define W̄ = sup[W ]. From (16), we have

x1 = s−
1
ȷ

∫ t

0
x
p
q
1 dt = s−

M
ȷ
. (40)

Based on (40) one has

x21 ≤ D̄2
+
W̄ 2

ȷ2
+ 2

D̄W̄
ȷ
.

Hence, the speed tracking error reaches a bounded region in
a finite time Ts + T . When the individual parameters are
determined, the speed tracking error and convergence time
are determined.
Remark 2: In [8], the errors of disturbances observation

and actual disturbances were ignored. Such a scenario
is highly illogical in real-world applications. Hence, this
paper addresses the scenario where non-zero errors between
disturbances observations and actual values are considered.
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IV. THE NSMO DESIGNED BASED ON NSMRL
In speed regulation of PMSM systems, accurately detecting
the rotor position through mechanical sensors is crucial for its
normal operation. However, traditional mechanical sensors
are usually affected by external factors such as temperature
and humidity, leading to inaccurate detections. Furthermore,
it affects the overall performance of the systems. To solve
this problem, the SMO is designed to replace the mechanical
sensor. In industrial applications, the SMO is often used to
estimate the stator current to obtain the back EMF [23].
To improve the dynamic performance of PMSM systems,
a NSMO is presented to obtain the back EMF information
more accurately. It is worth noting that the rotor position
and speed information can be obtained using the arctangent
function with the aid of the estimation of the back EMF.

A. DESIGN OF NSMO
Using the Clark transform, the mathematical model of
PMSMs in the α-β coordinate axes is obtained as [22][

uα
uβ

]
= Rs

[
iα
iβ

]
+ Ls

d
dt

[
iα
iβ

]
+

[
eα
eβ

]
, (41)

where [uα uβ ]⊤, [iα iβ ]⊤ and [eα eβ ]⊤ represent the
stator voltage, stator current and back EMF components on
the axis α-β; Rs and Ls are the stator resistance and stator
inductance, respectively. Back EMF force satisfies[

eα
eβ

]
= weψf

[
− sin θe
cos θe

]
, (42)

where we is electrical angular speed, θe is electrical angle.
To obtain the state equation for the stator current, from (41)

there holds

d
dt

[
iα
iβ

]
= −

Rs
Ls

[
iα
iβ

]
+

1
Ls

[
uα
uβ

]
−

1
Ls

[
eα
eβ

]
. (43)

Define îα and îβ as the observation value of the stator current.
Let ĩα = îα − iα and ĩβ = îβ − iβ . According to (43) and (3),
the NSMO is designed to observe the stator current as follows

d
dt

[
îα
îβ

]
= −

Rs
Ls

[
îα
îβ

]
+

1
Ls

[
uα
uβ

]
−

1
Ls

[
vα
vβ

]
, (44)

where vα and vβ denote the sliding mode control law defined
as

vα = ϵ1Q(ĩα)
∣∣∣ĩα∣∣∣ν sgn(ĩα) + ℓ1 ĩα,

vβ = ϵ1Q(ĩβ )
∣∣∣ĩβ ∣∣∣ν sgn(ĩβ ) + ℓ1 ĩβ .

Then we have

d
dt

[
ĩα
ĩβ

]
= −

Rs
Ls

[
ĩα
ĩβ

]
+

1
Ls

[
eα − vα
eβ − vβ

]
. (45)

Through the NSMO designed above, the initial estimation
of back EMF that named êα and êβ are obtained by vα and
vβ . In order to obtain more accurate rotor information, a back
electromotive force observer (BEFO) is introduced to further

process the initial estimation of back EMF information. The
derivative of êα , êβ and we with respect to (42) is obtained as

dêα
dt

= −weêβ ,

dêβ
dt

= weêα,
dwe
dt

= 0.

(46)

The sampling frequency in the actual system is far greater
than the rate of speed change rate. Therefore, it is assumed
that the speed of PMSMs is a constant valuewithin a sampling
cycle. Define Êα , Êβ and ŵe as the result of further processing
of êα , êβ and electrical angular speed. Let Ẽα = Êα − êα ,
Ẽβ = Êβ − êβ and w̃e = ŵe − we. A BEFO is constructed
based on (3) and (46) as follows

dÊα
dt

= −ŵeÊβ − ϵ2Q(Ẽα)
∣∣∣Ẽα∣∣∣ν1 sgn(Ẽα),

dÊβ
dt

= ŵeÊα − ϵ2Q(Ẽβ )
∣∣∣Ẽβ ∣∣∣ν1 sgn(Ẽβ ),

dŵe
dt

= Êβ Ẽα − ÊαẼβ .

(47)

According to (46) and (47), it is deduced that

dẼα
dt

= −ŵeÊβ − ϵ2Q(Ẽα)
∣∣∣Ẽα∣∣∣ν1 sgn(Ẽα) + weêβ ,

dẼβ
dt

= ŵeÊα − ϵ2Q(Ẽβ )
∣∣∣Ẽβ ∣∣∣ν1 sgn(Ẽβ ) − weêα,

dw̃e
dt

= Êβ Ẽα − ÊαẼβ ,

(48)

where ϵ2 > 0 and 0 < ν1 < 1.
Since the back EMF estimation information (47) is usually

contaminated by various noises, we then use a low-pass
filter [31] to eliminate them. The estimation value of the
speed of PMSMs is calculated by

ŵe =

√
Ê2
α + Ê2

β

ψf
. (49)

The estimation information of rotor position is preliminarily
obtained

θ̂eqe = arctan

(
−Êα
Êβ

)
. (50)

Since a low-pass filter is introduced, phase compensation is
required. Therefore, the final formula for calculating the rotor
position information of the motor is expressed as

θ̂e = θ̂eqe + arctan
(
ŵe
wc

)
, (51)

where wc is the cut-off frequency of the low-pass filter.
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B. STABILITY ANALYSIS
Theorem 2: When the parameters are chosen as ϵ1 > 0,

ϵ2 > 0, ℓ1 ≥
1
2 , χ > 0, 0 < ν < 1 and 0 < ν1 < 1, the

observation error of the NSMO and the BEFO are convergent.
Proof: Letting V1(ĩα) =

1
2 ĩ

2
α and V2(ĩβ ) =

1
2 ĩ

2
β , the

Lyapunov function is constructed as

V (ĩα, ĩβ ) =
1
2
ĩ2α +

1
2
ĩ2β = V1(ĩα) + V2(ĩβ ). (52)

Substituting the equation (45) into the time derivative
of (52), one has

V̇ (ĩα, ĩβ ) = ĩα[
1
Ls

(−Rs ĩα + eα − vα)]

+ ĩβ [
1
Ls

(−Rs ĩβ + eβ − vβ )]. (53)

Substituting the vα and vβ into (53), we can get

V̇ = ĩα[
1
Ls

(−Rs ĩα + eα − vα)]

+ ĩβ [
1
Ls

(−Rs ĩβ + eβ − vβ )]

=
ĩα
Ls

[eα − ϵ1Q(ĩα)
∣∣∣ĩα∣∣∣ν sgn(ĩα) − ℓ1 ĩα]

+
ĩβ
Ls

[eβ − ϵ1Q(ĩβ )
∣∣∣ĩβ ∣∣∣ν sgn(ĩβ ) − ℓ1 ĩβ ]

−
Rs
Ls

(ĩ2α + ĩ2β )

= V̇1 + V̇2. (54)

Assuming γ =
1+ν
2 , it holds

V̇1 ≤
1
Ls

[−ϵ1e−χ
∣∣∣ĩα∣∣∣ν+1

− ℓ1 ĩ2α +

∣∣∣ĩα∣∣∣ |eα|]
≤ −

1
Ls

[2γ ϵ1e−χV
γ

1 −
1
2
e2α + (ℓ1 −

1
2
)ĩ2α]. (55)

By Theorem 1, the observation error of stator current on the
axis α converges to D1 in a finite time Tsα in witch

Tsα ≤
LsV

1−γ
1 (ĩα(0))

(1 − γ )2γ ϵ1e−χð1
,

D1 =

ĩα|V (ĩα) ≤

[
e2α

(1 − ð1)21+γ ϵ1e−χ

] 1
γ

 .
(56)

Similarly, similar results can be obtained by analyzing V2.
To prove that the observation error of the BEFO is

convergent, the Lyapunov function is defined

V =
1
2
Ẽ2
α +

1
2
Ẽ2
β +

1
2
w̃2
e . (57)

Substituting the equation (48) into the time derivative of (57),
we have

V̇ = −ϵ2Q(Ẽα)
∣∣∣Ẽα∣∣∣ν1+1

− ϵ2Q(Ẽβ )
∣∣∣Ẽβ ∣∣∣ν1+1

. (58)

TABLE 1. Parameters of the motor.

FIGURE 2. The block diagram of PMSM speed regulation system.

FIGURE 3. Simulation waveforms of speed change.

When ϵ2 > 0, there is V̇ ≤ 0. Based on Lyapunov stability
theory, the BEFO observation error system is stable.

V. SIMULATION AND RESULT
In this section, to draw the simulation results, we use vector
control id = 0. The Table 1 shows motor parameters in
this paper and the Fig. 2 is a block diagram of the speed
regulation of the PMSM system. In order to illustrate
the effectiveness of our proposed method in this paper, the
developed NSMC is compared with the traditional sliding
mode controller (TSMC) and the reference sliding mode
controller (RSMC) designed by TERL and Ref, respectively.
The TSMC and RSMC are written as

iq1 =
1
3
[ẇ∗

− z2 +
1
ȷ
x
p
q
1 + ϵ sgn(s) + ks],

iq2 =
1
3
[ẇ∗

− z2 +
1
ȷ
x
p
q
1 + ϵ∥x∥α sgn(s)

+ k |s|h sgn(|s|−1) s].
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FIGURE 4. Load change speed simulation diagram.

FIGURE 5. Simulation results of ESO.

FIGURE 6. Simulation waveforms of motor speed and rotor position
angle error. (a) NSMO. (b) TSMO. (c)NSMO+BEFO.

The NSMO is compared with traditional sliding mode
observer (TSMO) designed in [23], which is expressed as

d
dt

[
îα
îβ

]
= −

Rs
Ls

[
îα
îβ

]
+

1
La

[
uα
uβ

]
−

1
Ls

[
H (ĩα)
H (ĩβ )

]
,

where

H (ĩα) =
2

1 + e−ĩα
− 1,H (ĩβ ) =

2

1 + e−ĩβ
− 1.

Some parameters are chosen as follow: p = 3, q = 5,
ν = 0.3, ν1 = 0.001, h = 0.4, ϵ = 100, ϵ1 = 420,
ϵ2 = 40000, ȷ = 10000, χ = 1, k = 30, and ℓ1 = 10000.
The simulation time T and reference speed are 0.4s and
1000 r/min, respectively.

Fig. 3 shows the PMSM speed waveform. When adopting
NSMRL, Ref and TERL, the time for motor speed to reach a
given value is 0.019s, 0.05s and 0.115s, respectively. At 0.15s
the reference speed decreases to 800 r/min suddenly, the
adjustment time under NSMRL, Ref and TERL are about
0.01s, 0.04s and 0.065s. Obviously, ours is the best among
these methods. When the load torque changes, the motor
speed is shown in Fig. 4. The speed drop under NSMRL,
Ref and TERL is 62r/min, 75r/min and 81r/min, respectively.
This implies that our proposed method exhibits stronger
robustness. From Fig. 5, it is seen that z2 accurately and
quickly track the disturbances. It is obviously shown in Fig. 6
that the speed estimation error of TSMO is bigger than that
of NSMO and NSMO+BEFO. And the estimation error for
rotor angle based on NSMO, TSMO and NSMO+BEFO
are about 0.014rad, 0.04rad and 0.003rad, respectively.
Obviously, our method is more effective.

VI. CONCLUSION
In this paper, a NSMRL has been proposed to improve the
system convergence speed without serious chattering. Under
the NSMRL, a NSMC has been designed to decrease the
adjustment time and motor speed chattering for the speed
regulation of PMSM system. In addition, a NSMO based
on NSMRL has been constructed to obtain more accurate
information of back EMF. Simulation results have verified
the feasibility of this paper proposed methods.
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