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ABSTRACT The collision-free movement of a mobile robot in the presence of dynamic obstacles remains
a significant challenge. In addition to self-localization, we also need to worry about the location of the
moving obstacles, taking into account the noise in the sensors and the uncertainty in the movement of these
obstacles. In this paper, we propose an approach for omnidirectional robot maneuvering in a 2D workspace
that combines a particle filter for the estimation of the obstacles from LiDAR laser sensor data and a variation
of the Velocity Obstacles (VO) reactive motion planning method. The position and the velocity vector of the
obstacles, as well as the uncertainty degree is estimated by the particle filter. These outputs are combined
with the VO algorithm to achieve motion planning that takes into account the current level of uncertainty as
well as a cost function that expresses the risk tolerance of the user. We validate the approach in simulation
and in experiments with a physical robot.

INDEX TERMS Collision avoidance, motion planning, particle filter, state estimation, velocity obstacles.

I. INTRODUCTION
Collision-free navigation of a robot in a dynamic environment
requires not only self-localization and path planning but
also the ability to track and avoid mobile obstacles. This is
complicated by the noise and limited accuracy of sensors, and
obstacles being occluded by landmarks or other obstacles.
Most reactive motion planning algorithms focus on finding
the fastest trajectory to the goal [1], [2], [3], while the
primary objective of the state estimation techniques is
the self-localization of the robot [4], [5], [6]. In contrast,
estimating the uncertain state of mobile obstacles and
accordingly adapting the path received significantly less
attention.

In this paper we develop a technique that estimates
the position and velocity of mobile obstacles, tracks the
uncertainty of this estimate and uses this information to plan
a path with a risk level that can be specified by the user. The
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technique builds on a combination of particle filters and an
extension of the velocity obstacle method.

The contributions of this paper can be summarized as
follows:

• We successfully developed and implemented a novel
state perception method that accurately estimates the
position and velocity vectors of obstacles that occur
within the workspace of an agent, utilizing data received
from LiDAR sensor measurements with a particle filter.

• We developed and validated a cost-function-based
velocity selection method that uses a calculated uncer-
tainty degree from the estimates of the particle filter to
achieve collision-free motion planning.

• We compared the introduced algorithm with other
motion planning methods and presented that our method
outperforms the baseline approaches.

• A real environmental test is also executed on an
omnidirectional robot.

The structure of this paper can be described as: Section II
reviews existing methodologies in state estimation, global
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and reactive motion planning methods. Following that,
Section III outlines the main algorithms such as the particle
filter and the Velocity Obstacles method, which serve as
the basis of our novel approach. Subsequently, Section IV
introduces the proposed Particle Filter Velocity Obstacles
method. Section V presents both the simulation and exper-
imental results. Finally, Section VI summarizes the main
contributions of the study.

II. RELATED WORK
This section presents the state of the art state estimation
methods and motion planning algorithms in the field of
Robotics.

A. STATE ESTIMATION METHODS IN ROBOTICS
Estimating the state variables, such as the position and
velocity of the agent is a critical requirement for many tasks
in the field of robotics. One of the most popular approaches
is variations of Bayesian filtering [7], [8], [9]. The original
Kalman filter algorithm [10], [11], [12] is usable under the
assumption of a linear system. The Extended Kalman Filter
(EKF) linearizes the model at each time step, allowing state
estimation for non-linear systems as well [13], [14]. This
property made it very useful for the localization problem in
mobile robotics [4], [11], [15], [16], [17]. The Unscented
Kalman Filter (UKF) offers an alternative to EKF which can
offer a more accurate solution by avoiding the linearization
step [18], [19], [20]. The Kalman Filter assumes Gaussian
noise.

The particle filter algorithm, introduced initially in 1955
[21], estimates system state by simulating numerous particles
or ‘‘molecules.’’ The algorithm was later renamed as the
Bootstrap filter in 1993 [22], upon its implementation as
a recursive Bayesian filter. The fundamental premise of
this algorithm is to construct a posterior distribution using
differently weighted samples, which are calculated and
updated at each sampling interval based on measurement
data. For nonlinear systems, this form of Bayesian filter has
been shown to outperform the EKF and UKF, even when the
number of particles is constrained [23].

The Collision Avoidance with Localization Uncertainty
(CALU) algorithm, designed for multi-robot collision
avoidance, leverages the particle filter to solve the local-
ization problem of mobile robots. This novel method inte-
grates the Optimal Reciprocal Collision Avoidance (ORCA)
approach [24] to reach a collision-free solution. The central
aim of this method is to constrain the inherent error within
the localization process.

The Simultaneous Localization and Mapping (SLAM)
methodology has two main steps: revision of an environ-
mental map, and calculation of the position of the mobile
agent in the environment [5], [25], [26], [27]. The SLAM
methodology has been applied in combination with both
the Kalman filter [28] and the particle filter [28], [29].
It is important to note that the original SLAM algorithm
did not possess the capability to segment obstacles from

the overall environment, and was restricted to defining the
position information within the map. Contrasting with this,
our proposed approach also enables the computation of
velocity vectors considering the obstacles, that occur in the
agent’s workspace.

The algorithm termed ‘Collision Avoidance under
Bounded Localization Uncertainty’ (COCALU) [30] pro-
poses a novel method of convex hull peeling, with an aim to
reduce the error associated with localization. This approach
presents superior performance when compared with the
preceding ‘Multi-robot CALU algorithm [31].

B. MOTION PLANNING METHODS IN ROBOTICS
The motion planning methods can primarily be separated
into global and local approaches, considering the depth of
environment knowledge.

Global motion planning algorithms, often categorized
as offline, assume comprehensive, prior knowledge about
the environment. This level of information is usually
available in a static environment. Some well-known global
motion planning methods are the hybrid A* [32] and the
Rapidly-exploring Random Tree (RRT) [33], [34], [35].

Conversely, reactive motion planning methods focus on
local environmental information, typically received through
the robot’s onboard sensors. All of the remaining motion
planning algorithms are reactivemotion planningmethods for
mobile robots.

The Dynamic Window Approach (DWA) is an often
used motion planning method for mobile robots, capable
of generating real-time, collision-free paths, considering
non-holonomic constraints like limited turning ability [36],
[37]. Recently, DWA has been employed to resolve the
motion planning problem for forklift-automated guided
vehicles [38].
The Artificial Potential Field method is also a well-known

reactive motion planning algorithm, where obstacles generate
repulsive virtual forces, and the target generates an attractive
virtual force. The sum of these forces results in the
computation of the robot’s velocity vector at each sampling
time [39], [40], [41], [42], [43]. Originally, APF was
developed for static environments, the algorithm has also
been adapted for dynamic obstacles too, used also by robotic
soccer applications [43].
The velocity obstacle (VO) algorithm, another localmotion

planning technique, computes those velocity vectors, that
potentially result in a collision in the future between the
agent and obstacles [44]. Every sampling step involves
the selection of a collision-free velocity vector following
specific strategies. These strategies range from ‘To Goal’
(TG), which prioritizes the largest velocity vector towards the
goal, to maximum velocity (MV) strategy, which identifies
the maximum velocity within a certain angle to the path
towards the goal. The VO approach has been extended to
diverse scenarios, including differential-driven robots [45],
[46], UAVs (unmanned aerial vehicles) [47], ships [2], and
multi-robot collision avoidance [48], [49], [50]. Although its
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primary development is for mobile robots, the VO method
can also be implemented for robotic manipulators [51].
Furthermore, an energy-efficient algorithm was developed
for UAVs with limited battery capacity in multi-robot
contexts [1], [3].

The probability-based motion planning for mobile robots
has been a highly researched topic for a long time. The Prob-
abilistic Velocity Obstacles (PRVO) algorithm [52], an aug-
mented variant of the Reciprocal Velocity Obstacles (RVO)
methodology [53], includes probabilistic principles alongside
time scaling mechanisms and Bayesian decomposition. This
technique outperforms bound-based methods in terms of
running times. The efficiency of the algorithm has been
validated through a series of simulation results [54]. In [55],
a pyramid structure was used that provided conditional
probabilities for every pixel considering the uncertainty of
the environment. The Probabilistic FoamMethod (PFM) [56]
was introduced to guarantee a safe path for the agent.
In this method, the environment is structured with bubbles
and uses a breadth-first search to generate the optimal
solution. The probabilistic representation of the uncertainty
was used in [57] that planned the future probabilistic
distribution of the state of the agent and also the collision’s
probability. The solution is provided by solving the linear pro-
gram considering linear chance constraints. A probabilistic
method [58] was also introduced to calculate the probability
of human motion for the agent’s motion planning method.
To solve this task, a probability grid was introduced from the
observation.

As can be seen, all of the introduced state estimation
methods focused on the self-localization problem in the field
of Robotics, but the SLAM, and the main goal of the reactive
motion planning methods was to reach the goal position as
fast as it is possible. In our work, we combined the state
estimation for the environment with the motion planning
method. The state estimation method provides not only the
perceived states of the obstacles but also an uncertainty
degree that can be used by the introduced motion planning
method.

III. BACKGROUND
Two well-known algorithms, the Velocity Obstacle method,
and the particle filter method are used as the basic of our
introduced algorithm. This section presents these algorithms
in detail.

A. THE PARTICLE FILTER ALGORITHM
In this section, we offer an in-depth explanation of the steps
required to execute the particle filter algorithm [23]. The
particle filter is an approach for approximating a system’s
posterior distribution using a discrete density. Among its
benefits over other recursive Bayesian filtering techniques is
the capacity to manage nonlinear dynamic models, as well
as linear ones. Furthermore, the particle filter is applicable to
systems that have non-Gaussian noise.

The particle filter algorithm employs a weighted set of
points (Sk ) to approximate the posterior distribution. This set
consists of pairs < x(i)k ,w(i)

k >, where x(i)k corresponds to
the state of the ith particle at time k , and w(i)

k indicates the
probability (weight) of that state. The number of particles,
denoted by N , can vary throughout the iteration. The weight
vector, represented as wk , is subject to the constraint that its
elements’ sum equals 1 (

∑N
i=1 w

(i)
k = 1).

Before executing the particle filter algorithm, the filter
must be initialized. This involves specifying the state
transition function, the resampling approach, and the number
of particles, represented as N . The state transition function
can be expressed mathematically using equation (4).

xk+1 = f (xk ,uk ) + ξk (1)

where f denotes a linear or nonlinear function, xk means the
actual state at time k , uk represents the control input, and ξk
means the system noise.

During the initialization phase of the particle filter
algorithm, a random set of points, represented as x(i)1 ,
is produced by sampling from the prior distribution Px0. Each
particle is initially assigned a weight of w(i)

1 = 1/N . In the
absence of initial measurement data, the weight is set to 1/N .
The particle filter algorithm’s steps, as described in [23],
include the following:

1) Step of Measurement update
The crucial task of updating particle weights in the
Particle filter algorithm is essential for precise state
estimation. This is achieved by integrating sensor
measurements (zk ) into the weight update equation
for every particle. It is important to note that the
measurements are noisy.

w(i)
k =

w(i)
k−1 P(zk |x

(i)
k )∑N

j=1w
(j)
k−1 P(zk |x

(j)
k )

(2)

2) Estimation
The estimated state can be determined:

x̂k =

N∑
i=1

w(i)
k x(i)k (3)

3) Resampling
Typically, N samples are chosen from the particle
set with replacement, taking into account the particle
weights. Various resampling techniques have been
explored in past research, as highlighted in [59].

4) Time update
In this step, prediction can be formulated:

x(i)k+1 = f (x(i)k ,uk ) + ζ (4)

where ζ means a random variable with a given
deviation. Equation (4) can be employed during the
time update step for non-linear models. After that, the
iteration continues with 1).
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FIGURE 1. An example of the VO method for a robot at position pA
navigating an environment consisting of a moving obstacle B1 at position
pB1 with velocity vB1 and a static obstacle B2 at pB2. The gray area
illustrates VO = VO1 ∪ VO2.

B. THE VELOCITY OBSTACLES METHOD
Our methodology is based on the Velocity Obstacles (VO)
algorithm [44], which aims to find a velocity vector that
ensures the agent remains in collision-free states, given
the measurement or estimate of the obstacles’ position and
velocity data during the decision-making process.

The set of velocity vectors for agent A, represented by the
velocity obstacle cone VOi, includes all velocities that would
lead to a future collision with obstacle Bi.

VOi = { vA | ∃ t : A(pA + vAt) ∩ Bi(pBi + vBit) ̸= 0} (5)

In the given equation, A(p) and Bi(p) represent positions the
robot and obstacle i, respectively. Equation (5) presents that
selecting a robot velocity vector vA ∈ VOi will lead to a
collision between A and Bi at time t , assuming the velocities
of the obstacles and robot remain constant until t . Conversely,
choosing a velocity vA /∈ VOi guarantees that A and Bi will
avoid collision as long as their velocities vA and vBi are not
changed.

Taking into account all obstacles, the final velocity
obstacle, denoted as VO, is formed by combining the
individual VOi sets:

VO =

m⋃
i=1

VOi (6)

where m means the number of obstacles.
The set of reachable velocities, RV , includes all possible

velocity vectors vA that the robot can attain by the sampling
time, given its motion capabilities (such as limited inputs).
An important aspect of the VO method involves computing
the set of reachable avoidance velocities (RAV ), which can
be achieved by subtracting the VO set from the RV set,
resulting in the robot velocities that are both reachable and
will not result in collisions. These velocities allow the robot
to follow a collision-free path. A common technique involves
discretizing the RAV set by introducing a grid on the RAV set.
Figure 1 demonstrates the implementation of the VO

method for a robot navigating through an environment
containing both a static and a moving obstacle. For the static,
disk-shaped obstacle B2, the VO2 is a cone in the plane, with
its vertex at pA and its sides tangent to the obstacle’s circle.

FIGURE 2. Data acquisition via a LiDAR sensor, with the autonomous
agent situated at the origin (depicted by a red circle). The sensor’s
distance measurements are illustrated with black lines. Within the
workspace, two obstacles occurred, each denoted by a black circle, and
the actual measurement points on the obstacles are presented by red x-s.

In the case of the moving obstacle B1, the cone must be
shifted by the velocity vector vB1 of the obstacle to define the
corresponding VO1 set. The introduced algorithm assumes
disk-shaped robots and obstacles. In the first step, the radii
of the obstacles are increased by the radius of the agent
resulting in a point as the robot. Using this assumption, the
velocity selection and collision avoidance can be calculated
better for the autonomous mobile robot. There are two well-
known strategies, the To Goal strategy (VOTG) method,
which selects always the velocity vector resulting in the
fastest solution for the agent, and the Maximum Velocity
(MV) strategy which selects the velocity vector from a pre-
defined angle. In our scenario, we use the VOTG method as
a baseline strategy to compare the results.

IV. THE PARTICLE FILTER VELOCITY OBSTACLES
METHOD
In this research, we assume noisy LiDAR measurement data
about the disk-shaped obstacles occurring in the workspace
of the agent (if the obstacle is not disk-shaped, a circle
bounding the obstacle can be substituted). The segmentation
must be solved for these obstacles using the Least Square
method for circle fitting. Figure 2 presents the results of the
measurement of LiDAR sensor in a simulated environment.
The sensor has a maximum range of 12 meters and an angular
resolution within the interval [0◦, 1◦], selecting a resolution
of 0.5◦ for the current situation. The LiDAR measurement
data is displayed in Figure 2. Obstacle locations in the
workspace can be identified by segmenting the acquired
data by calculating the center point and the radius of the
obstacle using the Least Square estimation. Additionally, the
simulation includes measurement noise in the environment.
The assumption is made that all obstacles within the
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workspace assume a disc-like form. These computations take
placewithin a global coordinate framework. The center points
of the obstacles, denoted by black x-s, can be computed
through the application of the Least Square (LS) method. The
obstacle measurement approach utilized in this research is
thoroughly explained in our earlier work [60].

A. PERCEPTION METHOD WITH THE PARTICLE FILTER
This section details the particle filter approach, which
employs a weighted collection of particles to present the
potential states of a system at a particular sampling interval.
These states can be denoted by the particles matrix, having
dimensions of 2 rows representing the number of the
obstacles and N columns, and the weight vector, symbolized
as w. Prediction of obstacle states is achieved using
measurement data received from the LiDAR sensor, using
both the deviation of the system and the measurement noise.
The process for implementing the algorithm is summarized
in Section III-A, where the primary steps are repeated in an
iterative manner.

1) CALCULATING THE WEIGHTS OF THE PARTICLES
Assuming that the workspace only contains disk-shaped
obstacles, we can compute the center point using the LiDAR
sensor’s measurement data. Here, a measured x center (zpx )
and estimated y center (zpy ) are derived through a Least
square error estimation, accounting for every data point
measured by the sensor.

Each particle represents the obstacle’s real center point.
The deviation of the distance’ measurement noise is repre-
sented by (MNd ). Each particle contains data on the x position
(ẑ(i)px ) and the y position (ẑ(i)py ).
Initially, the x position is taken into account when

computing the weights:

w(i)
px =

1
√
2π MNd

exp(
−(zpx − ẑ(i)px )

2

2MNd
) (7)

The x position weights should be normalized:

w(i)
px =

w(i)
px∑N

j=1 w
(j)
px

(8)

In this instance, the total weight of the particles sums up to 1.
Subsequently, we can compute the weights while taking

the y position into consideration:

w(i)
py =

1
√
2π MNd

exp(
−(zpy − ẑ(i)py )

2

2MNd
) (9)

Normalization is also required for the y position weights:

w(i)
py =

w(i)
py∑N

j=1 w
(j)
py

(10)

The ultimate weights of the particles can be calculated by
using the x and y position weights:

w(i)
= w(i)

px · w(i)
py (11)

The final weights should also be subjected to normalization:

w(i)
=

w(i)∑N
j=1 w

(j)
(12)

2) THE STATE PERCEPTION ALGORITHM
For the state perception of the obstacles, the calculated
weights of the particles can be used. In this scenario,
Equation (3) is applied. The velocity estimation of the
obstacles is calculated from the estimated positions (because
the sensor measurement data is available only for the position
of the obstacles).

3) RESAMPLING ALGORITHM AND STATE TRANSITION
METHOD
In this step, the systematic resampling algorithm was
employed for particle selection [60].

The state of the dynamic obstacle model is composed of
two coordinates (px , py), indicating its position. Following
the perception of the position, the velocity vector (vx , vy)
can be calculated. The state transition model takes both the
perceived position and velocity into account.

4) CALCULATION OF THE UNCERTAINTY DEGREE
At every time step, an uncertainty degree (α) can be also
calculated which can be useful in the motion planning
algorithm for the mobile agent. First, the maximum change
of the velocity must be calculated:

1v = max||vk (i) − vk−1(i)|| (13)

where k means the actual time step, k−1 is the previous time
step, and i represents the ith obstacle in the workspace of the
agent.

Also, the saturated deviation of the particles can be
determined:

dp = min (1,max(std(particles))) (14)

In this equation, std denotes the standard deviation calculated
for both the x and y positions of the obstacles, with the larger
value being chosen as the uncertainty degree. The maximum
value is capped at 1.

Finally, the uncertainty degree (α) can be calculated:

α = max
(
1v, dp

)
(15)

A larger value for the uncertainty degree indicates a higher
degree of uncertainty regarding the precision of the current
perception.

B. COLLISION AVOIDANCE WITH PARTICLE FILTER
VELOCITY OBSTACLES METHOD
In the introduced Particle Filter Velocity Obstacle method,
the velocity decision for the agent is focused on two
key elements: speed and safety. Both of these factors are
simultaneously taken into account by employing a weighted
objective function that can be calculated in accordance with
the actual uncertainty degree at the specific sampling time.
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FIGURE 3. Result of the first example. The left and center figures represent the absolute error in the position and the velocity and the
right figure shows the uncertainty degree.

The speed element, denoted as GO, can be calculated as:

GO(vi) =
ri cos1θi

vmax
(16)

In this context, vmax means the maximum velocity achiev-
able by the agent, given the constraints of its kinematic
characteristics. The term 1θi = θrg − θrvi represents the
difference between the angle towards the goal (θrg), the angle
of the velocity vector (θrvi ) and i represents the i

th velocity
vector on the grid, which is a discretized set of the velocities.
Additionally, ri =|| vi || denotes the magnitude of the
velocity vector.

The safety element (SA) in the objective function denotes
the safety. It is typically sufficient to consider just the closest
Velocity Obstacle (VO). Also, if the robot can’t approach
the nearest obstacle within a given time span, it’s considered
entirely safe, and additional distance wouldn’t improve this
safety status. Thus, we formulate the expression as follows:

SA(vi) = min

1,
min

vVO∈VO
∥vi − vVO∥

vmax · Tmax

 (17)

In the above expression, Tmax is a predefined parameter,
representing the maximum time interval taken into consider-
ationwhile themotion of the agent and vVO is the closest point
in the VO cone considering the distance between the VO cone
and the investigated velocity vector (vi).
Additionally, the speed and safety components of the

objective function (OF) are combined using a weightedmean,
in which the parameter α denotes the previously calculated
uncertainty degree. In scenarios where the uncertainty grows,
the significance of the safety component within the objective
function must be correspondingly increased. The primary
objective of the algorithm is to determine the velocity vector
for the agent that maximizes the value of the objective
function.

OF(vi) =

{
α SA(vi) + (1 − α) GO(vi) if vi ∈ RAV
0 otherwise

(18)

V. EXPERIMENTS AND RESULTS
In this section, the simulation and experimental results are
presented using the Particle Filter Velocity Obstacle method.

A. SIMULATION RESULTS
All of the presented examples were compared with the
fastest solution (VOTG method), which was presented in
Section III-B, and with one of our previously introduced
motion planning algorithms (SVO method) [61], where there
is a predefined constant safety parameter.

1) FIRST EXAMPLE: OBSERVABLE OBSTACLES
In the initial illustrative case, the agent’s workspace consists
of both stationary and dynamic obstacles. The robot receives
the sensor information at each sampling time. Figure 3
presents the absolute error considering the positions and
velocities for both types of obstacles, in addition to the change
of the uncertainty degree throughout the movement. In the
referenced figure, ‘IE-SO’ means the Inertial Estimation
for stationary obstacle, while ‘IE-MO’ denotes the Inertial
Estimation for the moving obstacle. It is notable that the
estimation accuracy considering the obstacle positioning is
about 0.02 m and the velocity estimation error is 0.04 m/s
using N=10000 particles; velocity estimation maintains a
substantial degree of precision and usability. The estimation
accuracy for stationary obstacles has a better performance
than at the dynamic obstacle.

In Figure 4, the trajectory of the autonomous agent towards
the target position is depicted (the start position is at the
origin, and the target position is at [14, −1]). Under these
conditions, the trajectory results in the same solution for
both the VOTG and Particle Filter Velocity Obstacle (PFVO)
methodologies. The uncertainty degree remains small during
the whole motion because the agent can reach the sensor
measurement data at every sampling time. Conversely, the
Safety Velocity Obstacle (SVO) approach navigates toward
the target along a more spacious trajectory, considering a
higher safety parameter.

2) SECOND EXAMPLE: VARIABLE VELOCITY MOVING
OBSTACLE
In the second experiment, we consider a scenario with
two moving obstacles. One obstacle maintains a constant
velocity vector, while the other demonstrates a change
in velocity during its movement. The variability in the
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FIGURE 4. Path of the mobile agent to the goal in the first example.

FIGURE 5. The changes of the uncertainty degree in the second example.

uncertainty degree, as presented in Figure 5, is noteworthy.
The uncertainty degree experiences an increase when the
obstacle changes its velocity vector. However, once the agent
perceives this new information over time, the uncertainty
degree subsequently decreases.

One obstacle starts its motion in the position of [4;−3] and
has a velocity vector of [0.8; 0] m/s until 10 s when it changes
the velocity vector to the opposite direction and continues
the motion with the velocity of [−2; 0] m/s. The agent’s
path to the goal position is illustrated in Figure 6 (the start
position is at the origin, and the target position is at [14, -1]).
Analyzing the agent’s paths under different strategies reveals
that even if the uncertainty degree is higher, the PFVO and
VOTG strategies result in quite similar path. This leads to
the fastest goal attainment as none of the moving obstacles
impact the robot’s trajectory. Conversely, the SVO strategy
(with parameter α = 0.5), due to its higher constant safety
parameter, results in a more evasive path, offering a wider

FIGURE 6. Result of the motion of the agent in the second example.

maneuver from the obstacle that exhibits a change in velocity
during its motion.

3) THIRD EXAMPLE: OBSTRUCTED OBSTACLE
In the third experiment, the environment contains a static
obstacle and a dynamic obstacle that, during its trajectory,
becomes covered by the former. As the dynamic obstacle dis-
appears from detection, the autonomous agent cannot receive
any real-time sensory input regarding it. Consequently, the
agent has to estimate the object’s position and velocity vector
based on historical data.

In Figure 7, the left part illustrates the absolute error in
estimating the position within this scenario (in this scenario,
the errors are presented considering the x coordinates but
the result is similar in y coordinates). ‘IE-SO’ and ‘IE-MO’
retain their meanings as outlined in the preceding examples.
It becomes evident that as long as the LiDAR sensor
provides the agent with sensor measurement data, the error
in estimation decreases. However, when the moving obstacle
is covered by the static one (between about 4s and 8s), a rise
in the estimation error for the position is observable, and
this continues to increase until the agent can receive sensor
information again.

This increasing error can largely be connected with the
elimination of the resampling phase in the Particle Filter
Velocity Obstacle (PFVO) algorithm. In such instances,
the particles disperse, influencing the estimation, and the
algorithm can only rely on the data from the latest perception.
Despite the growing estimation error during the period of
sensor information unavailability, it is notable that the error
remains comparatively smaller than the scenario where the
obstacle disappears, it becomes hidden behind the static
obstacle. This is illustrated in the center segment of Figure 7.,
where ‘LS-MO’ denotes the moving obstacle as last seen,
implying the case when the obstacle halts upon disappearing.

The uncertainty degree (UC) is depicted alongside the
absolute error in the right part of Figure 7. A clear correlation
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FIGURE 7. Result of the third example. The left and the center figures represent the absolute error of the positions and the right
figure shows the absolute errors and uncertainty degree.

is observed between the uncertainty degree and the estimation
error. The uncertainty degree reaches its highest value when
the sensor information becomes unavailable, and as depicted,
it reaches its peak value (1) during this period. It begins to
decrease as the sensor information is available again.

Figure 8 visually represents the temporal transformation
in the spread of particles. At the beginning of the motion, the
particles are evenly distributed (using uniform distribution)
across the entire workspace, as depicted in the figure’s left
segment. The particles are symbolized by red x-marks, while
blue x-marks indicate the resampled particles. The black
circlemarks the estimated current center point of the obstacle.

As the agent begins to receive sensor information regarding
the obstacle, a contraction in the particle distribution becomes
smaller, as illustrated in the figure’s center segment. However,
upon the obstacle’s disappearance, the particle distribution
begins to expand once more, an effect clearly observable in
the figure’s right segment. During this period, considering
the missing of LiDAR measurements, the resampling part is
missing in the PFVO algorithm.

The comparative analysis of diverse motion planning
strategies is the focus of this section. Figure 9 illustrates the
spatial relationship between the agent and obstacles in terms
of distance. The VOTG strategy results in the fastest solution
as it selects the quickest velocity vector, despite the potential
risks of collision this may pose for the agent during motion.
As evidenced by the figure, this strategy results in a trajectory
that with tangential movement to the obstacles (where Rr
represents the radius of the robot), reducing the distance to
null. Notably, however, the uncertainty inherent in the sensor
measurementsmakes this tangential motion prone to collision
in almost all instances, thereby collision-free motion cannot
be always reached.

In the case of the Particle Filter Velocity Obstacle (PFVO)
strategy, the agent-obstacle distance diminishes quickly as
long as sensor information is available. Yet, during periods
of data unavailability (around the 6-second mark), the
increasing uncertainty degree prompts a more safer trajectory
that distances the agent from the nearest obstacle. Once
sensor data is reacquired (around the 9-second mark), the
agent quickly converges on the goal, achieving it slightly
faster than the Safety Velocity Obstacle (SVO) strategy.

TABLE 1. Running times of the PFVO algorithm considering the number
of the particles.

The SVO strategy, on the other hand, consistently priori-
tizes safety during motion planning due to its constant safety
parameter (0.5). Consequently, it formulates a smoothly safe
path, unaffected by the change of sensor data. However,
it requires the most time and results in the longest path to
the goal.

Figure 10 presents the generated paths for each strategy
(the start position of the agent is at the origin, and the target
position is at [11, -0.5]).

Table 1 presents the relationship between the number
of particles, corresponding running times, and the average
position error occurred during execution. It is noteworthy
that an increase in particle count corresponds to an increase
in running time and a decrease in average error. Notably,
with particle numbers 100 and 500, the average error seems
extremely high (1.25m and 0.45m respectively). Beyond the
particle count of 100000, the running time exceeds 0.1s,
thereby exceeding the boundary for real-time feasibility.
An appropriate trade-off between running time and the
average error is achieved by selecting a particle number
within the range of 1000 to 50000. In our presented scenarios,
we adopt a particle count of 10000, an approach that
effectively reduces the average error while maintaining a fast
computational process.

B. ROBOT SETUP
An omnidirectional mobile robot equippedwith a LiDARwas
built for the demonstration of the introduced algorithm that
can be seen in Figure 11.

ROS2 (Robot Operating System) [62] is a flexible and dis-
tributed framework for building robotic systems that provides

VOLUME 12, 2024 16863



Z. Gyenes et al.: Motion Planning for Mobile Robots Using Uncertain Obstacle Estimation

FIGURE 8. Changes in the distribution of the particles during the motion of the agent.

FIGURE 9. Minimum distances between the agent and the obstacles
considering the different strategies.

FIGURE 10. Result of the motion of the agent in the third example.

a set of tools and libraries for efficient communication
and development of complex robot software. The Slamtec
company provides a simplified BSD licensed ROS2 package
alongside the purchased LiDAR.

FIGURE 11. Omnidirectional mobile robot.

The ROS2 network consists of three nodes as can be seen
in Figure 12. The node named ‘‘sllidar_node’’ handles the
LiDAR by controlling its motor and forwarding incoming
data to the selected communication interface through the
‘‘scan’’ topic. We used the provided C++ file in its original
state without modification for this project. The scan topic
delivers messages of type ‘‘sensor_msgs/LaserScan’’ to the
subscribers. It can be observed that the orientations are
mapped to the (−π; π ] rad range and stored in a separate
array along with the corresponding distance values. The
node called ‘‘base_station’’ subscribes to the scan topic
and is created under the MATLAB-based user interface.
The message received from the scan topic contains the
minimum and maximum angles, the size of the increments
between them, and the distance values. Each distance value
corresponds to a specific angle. Using this data, elementary
mathematical operations can be used to generate Cartesian
coordinates in the Descartes coordinate system. Due to the
placement of the laser scanner on the robot, corrections,
rotations, and reflections were required to ensure that
the resulting image has the appropriate orientation in the
coordinate system used in the application, where the forward
direction corresponds to the positive direction of the y-axis.
The ‘‘base_station’’ node sends pulse width values for
controlling the motors to the ‘‘control_client’’ node through
the ‘‘control’’ topic. We transmitted the published data in
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FIGURE 12. Connection of the ROS2 nodes.

FIGURE 13. Structure of the mobile agent.

the ‘‘std_msgs/UInt8MultiArray’’ format. The MultiArray
message type is quite flexible, allowing the developer to
freely determine the type and amount of data contained in the
homogeneous array. In this case, the data package contains
an eight-element, unsigned, eight-bit integer array, specifying
the movement of the three motors in different directions. The
‘‘control_client’’ node receives control signals from the user
interface and forwards them to the motor controllers through
the Raspberry Pi GPIO connectors. We used the PIGPIO
library to access the GPIO pins. It was important to ensure
that if the connection between the robot and the controlling
computer is interrupted due to any malfunction, the system
should stop quickly, within 200ms in this case. We achieved
this using software-based timed interrupts. Launch files assist
in the configuration and launch of the nodes. These files can
be in Python, XML, or YAML format. The configuration
file was created for this project based on the project launch
files published by Slamtec mentioned earlier. In this file,
we parameterized the ‘‘sllidar_node’’ to send the LiDARdata
to the scan topic via UDP port, and we also initialized the
‘‘control_client’’ node.
The different parts and the connections of the mobile agent

can be seen in Figure 13.

C. EXPERIMENTAL RESULTS
The Particle Filter Velocity Obstacle (PFVO) algorithm was
subjected to real-world testing using the robot specified in
Section V-B. As an obstacle within the robot’s workspace,
a differential-driven robot was employed. This obstacle
was programmed to follow a black line on the ground.

FIGURE 14. Real test.

An extension, termed a ‘hat,’ was added to the
differential-driven robot to ensure the LiDAR sensor’s
laser measurements were reflected appropriately; initially,
the robot’s height was insufficient for this purpose. This
modification enabled the agent to consistently obtain
information about the obstacle at every time step, thus
facilitating accurate estimation of the obstacle’s position and
velocity vector and ensuring collision-free goal attainment.
To distinguish the obstacle from the environment, the seg-
mentation method previously described was utilized, which
effectively differentiates the obstacle from its surroundings.

Figure 14 illustrates both the obstacle and the agent’s
trajectory. Of note is the agent’s ability to execute an evasive
maneuver in close proximity to the obstacle, owing to the
continuous reception of sensor measurement data from the
obstacle. This capability is highlighted in the central part of
Figure 14.

VI. CONCLUSION
In conclusion, this study has successfully introduced a novel
state perception technique for mobile robots, using a Particle
Filter. This method has shown its capability to accurately
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perceive the position and velocity vectors of obstacles within
the agent’s workspace. The calculated uncertainty degree,
derived from the distribution of particles and changes in
velocity vectors, has proven effective when applied in an
objective-function-based velocity selection method. Testing
through various simulations and real-time experiments has
validated the robustness and effectiveness of the proposed
algorithm. When compared with two alternative motion
planning algorithms, the proposed method has demonstrated
better performance.

This research opens up new opportunities for further
exploration and refinement in the domain of state estimation
algorithms and collision-free motion planning for mobile
robots in dynamic environments. In the future, we plan to
extend the algorithm for differential-driven mobile robots too
and the introduced method could also be used in multi-agent
scenarios.
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