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ABSTRACT Malware targeting user privacy has seen a surge in recent times, attributed to evolving
global regulations and the boost of electronic commerce and online services. Moreover, recognizing
privacy malware that employs obfuscation as evasion mechanism presents a major challenge due to its
dynamics, resilience, and polymorphism at runtime, necessitating the application of forensic techniques
such as memory dumping analysis in order to reveal suitable patterns and behaviors that enable its
subsequent detection and classification. In this paper, we present three obfuscated privacy malware
classifiers trained on the CIC-MalMem-2022 dataset. These solutions include a binary classifier to
distinguish benign from malicious samples using logistic regression (LR), a multiclass classifier that
further categorizes benign, spyware, ransomware, and trojan horse obfuscated privacy malware; and a more
detailed multiclass classifier capable of discriminating benign samples from fifteen specific obfuscated
privacy malware families. Multiclass classifiers were built using several traditional machine learning
algorithms and a novel Deep Neural Network (DNN). We applied the Synthetic Minority Oversampling
Technique (SMOTE) to address data imbalances. In particular, our results demonstrate that DNNoutperforms
traditional machine learning algorithms, yielding statistically significant improvements in key metrics.
These achievements reach practical thresholds, suggesting the potential for enhanced malware protection
systems. The dataset and all the coding files required for experiments reproducibility are publicly available
at https://github.com/dcevallossalas/PrivacyMalwareClassifiers.

INDEX TERMS Privacy, malware, obfuscation, classifier, memory dumping, CIC-MalMem-2022, SMOTE,
ransomware, spyware, trojan horse.

I. INTRODUCTION
Privacy in the cyberworld is an inherent right of people that
must be protected through legal and technological efforts.
In this context, several laws, such as the General Data
Protection Regulation (GDPR) in Europe and the Health
Insurance Portability and Accountability Act (HIPAA) in the
United States, seek to protect personal data’s acquisition,
storage, and processing [1].

The associate editor coordinating the review of this manuscript and
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Nevertheless, these legal efforts have been severely
reduced through specializedmalware focused on violating the
privacy of its victims, either through direct attacks against
users themselves or against agents authorized to treat their
personal data [2].

As can be deduced from [3], there are currently three main
categories of malware with specialized families that seek
to violate the privacy of users: spyware, ransomware, and
trojan horses. Spyware uses techniques such as snooping and
eavesdropping to collect data, and it is the type of malware
that most threatens the privacy of users [4]. Ransomware,

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 17481

https://orcid.org/0000-0002-3098-3090
https://orcid.org/0000-0001-6162-3429
https://orcid.org/0000-0002-9568-3224
https://orcid.org/0000-0001-6219-067X
https://orcid.org/0000-0002-7120-281X
https://orcid.org/0000-0001-6389-0221


D. Cevallos-Salas et al.: Obfuscated Privacy Malware Classifiers

FIGURE 1. Memory dumping analysis for obfuscated privacy malware
classification.

in the context of privacy, has a unique feature that allows it to
open command and control communications to an attacker’s
work station in order to exfiltrate data prior to encrypting
them [5]. Finally, trojan horse malware can install backdoors
that allow it to snoop and steal data while deceiving the user
by pretending to be a valid application [6].
Cyber attacks based on these three categories of privacy

malware have been potentially increased due to the rise in
electronic commerce and the provision of online services
[7]. Although each category of privacy malware has its
own working mechanisms and architecture, most current
specialized spyware, ransomware and trojan horses families
share the common feature that, once executed by a legitimate
operating system process, they are likely impossible to
detect by security controls until the malware has entirely or
partially completed its target [8]. The main reason for this
is that they employ obfuscation techniques as an evasion
mechanism. In general, existing privacy malware detection
techniques are mainly oriented to recognize non-obfuscated
privacy malware, and there is no currently a clear and
unified technique to detect and understand the patterns
and behaviors of obfuscated privacy malware at runtime
[3], [9].
As Fig. 1 exposes, after a system has been affected

due to obfuscated privacy malware, dumping the memory
and analyzing it can reveal specific patterns and behaviors
experienced by the system processes to build an obfuscated
privacy malware classifier. For instance, the number of
handlers opened by the operative system on request of the
process, the number of opened sockets for communication
to remote sites; and the number of mutex and semaphores
used are attributes that can help to detect obfuscated privacy
malware categories and even its family sub-classification.
The contributions presented by Lashkari et al. [10] and
Mu et al. [11] detail a complete guide for this procedure.
However, traditional programming methods cannot deduce

a general rule followed by the different categories and
families of obfuscated privacy malware on their patterns
and behaviors. Therefore, machine learning algorithms, and

especially DNNs, are commonly used to analyze obfuscated
privacy malware.

For that reason, this paper presents three obfuscated
privacy malware classifiers capable of achieving comparable
metrics without using advanced techniques proposed by other
researchers.

The first classifier addresses the binary case and allows to
distinguish whether a process presents general patterns and
behaviors of a benign or malicious infection simply using a
logistic regression model.

The second and third classifiers are multiclass. While the
second classifier analyzes four obfuscated privacy malware
categories: benign, spyware, ransomware, and trojan horse,
the third classifier includes sixteen categories: benign and
five specific obfuscated privacymalware families of spyware,
ransomware, and trojan horses, respectively. Deep learning
techniques have been used in this research to address the
problem of multiclass classification.

A. MOTIVATION
Obfuscated malware encompasses malicious software that
relies on concealing its characteristics, functionality, and
actions as its primary technique to evade security mecha-
nisms at runtime. Recognizing obfuscated malware poses
a significant challenge, as it proves resistant to methods
based on signature analysis employed by security controls
such as antivirus, IDS (Intrusion Detection System), and IPS
(Intrusion Protection System) engines [12]. This resistance
results in lower detection metrics compared to those achieved
against non-obfuscated malware. Moreover, the resilience
and the ability of this type of malware to mutate and manifest
itself in different ways once executed (polymorphism) add
to the difficulty of establishing patterns and behaviors
for recognition [13]. In addition, addressing multiclass
classification with obfuscated malware is exceptionally
complex, as it hinders the establishment of features that
enable a clear boundary between different categories and
families of malware [14]. In order to understand the nature
of an attack and implement effective security controls and
countermeasures, it is overriding to know not only the
privacy malware category but also the family causing the
attack [15].

While obfuscation as an evasion technique can be
employed by several types of malware, most specialized
privacy malware extensively utilizes obfuscation exerting a
more significant impact on users and organizations compared
to malware oriented to attack other security tenets such as the
information integrity or its availability [16]. This is due to
its dynamic patterns and behaviors strategically designed to
facilitate the smoothly snoop, theft and extraction of personal
data, ultimately leading to a data leakage [8].

In order to gather information enabling the subsequent
detection and classification of obfuscated privacy malware,
various techniques have been proposed. These include
Domain Generation Algorithms (DGA) analysis [17],
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patterns recognition for command and control sequences
[18], analysis of Domain Name Systems (DNS) patterns
for hosting malware [19], among others. However, memory
dumping analysis stands out as the most promising [8] due to
it enables the examination of postmortem scenarios, offering
insights into the malware’s primary features and behaviors
after it has completed its entire attack sequence [3], [11].
The CIC-MalMem-2022 is a robust and modern dataset

built on memory dumping analysis that exposes general
patterns and behaviors for detecting obfuscated privacy
malware at runtime [20]. In contrast to previous related work
utilizing this dataset to address the challenges of obfuscated
privacy malware through the application of ensemble classi-
fiers or complex DNNs for binary classification, as well as
resource-intensive Convolutional Neural Networks (CNNs)
for multiclass classification, our approach takes a distinct
and innovative route. We employ preprocessing and data
augmentation techniques as input for more suitable models,
deviating from the use of highly intricate architectures
(difficult to interpret, implement, and resource-consuming)
yet achieving comparable metrics. This novel strategy offers
an alternative perspective on tackling the obfuscated privacy
malware detection and classification challenges.

B. CONTRIBUTIONS
This research presents the following major contributions:

• A model of a binary obfuscated privacy malware
classifier based on logistic regression. This model is
able to achieve higher metrics than those reached
by [8] using traditional machine learning algorithms,
and comparable metrics to those achieved by the
same author using complex DNNs. Therefore, our
logistic regression model comprises a good solution for
benign and malicious classification built and trained
without the overhead caused by using advanced DNNs.
Also, in comparison to [3], this logistic regression
model achieves a high metric without using ensemble
classifiers comprising a standalone solution.

• A novel and simplified DNN architecture for multiclass
obfuscated privacy malware classifiers that can achieve
metrics comparable to those reached by advanced DNNs
architectures. In this sense, our multiclass classifiers are
able to achieve comparable metrics to those exposed by
[15] and [21], but without using advanced CNNs nor
ensemble classifiers.

• A comparison of the metrics achieved by multiclass
ensemble classifiers, constructed through a boosting
sequence between the logistic regression binary clas-
sifier and specific multiclass classifiers (excluding the
benign class), with those attained by our proposed
standalone multiclass classifiers.

• A statistical comparison between the metrics values
reached by traditional machine learning algorithms with
our proposed DNN for each multiclass obfuscated
privacy malware classifier.

Overall, the results obtained demonstrate that our DNN
achieves statistically significant higher metrics than those
reached by traditional machine learning algorithms for both
obfuscated privacy malware category and family classifiers.
Furthermore, our multiclass standalone classifiers achieve
better results than ensemble classifiers.

C. PAPER ORGANIZATION
The remainder of the paper is organized as follows.
In Section II is presented the related work that has been
carried out by several researchers. In Section III we explain
the methodology followed in this research. In particular, the
CIC-MalMem-2022 dataset and the materials and tools that
have been used are presented in detail. In Section IV the
results and analysis of the research are described, and a
discussion is carried out in Section V. Finally, the research
conclusions and future work are presented in Section VI.

II. RELATED WORK
Since obfuscated privacy malware detection and classifica-
tion is a relevant area, prior work and contributions have
been made by several researchers. Likewise, various datasets
based on different data-gathering methods have been used for
this purpose, including but not limited to memory dumping
analysis.

Regardless of the dataset used, the methods for data
collection and classification, and the obfuscated privacy
malware categories and families that each classifier aims
to recognize, it is feasible to analyze each contribution and
determine its limitations.

Table 1 presents a comparison of existing contributions
related to obfuscated privacy malware detection and classi-
fication, outlining the key features and limitations of each
contribution.

In general, machine learning algorithms and DNNs are the
preferred solutions for building privacy malware classifiers
on existing datasets.

For example, a classifier that uses Adversarial Machine
Learning (AML) in a Long Short Term Memory (LSTM)
model with theMajestic top 1 million dataset and the Domain
Generation Algorithm Archive (DGArchive) malware fami-
lies repository is presented by Yilmaz et al. [22]. Although
this contribution allows to reach a high accuracy metric, it is
just limited to traditional patterns on domains seen in various
families of malware and dictionary-based attacks.

A similar approach with structural variations has been
proposed in order to improve the classifier’s time of
performance by applying a Bidirectional Long Short-Term
Memory (BiLSTM) method to three different models [18].
The study is focused on analyzing behaviors of dynamic
requests from the Windows API Calls Sequences dataset in
order to detect and classify polymorphic malware.

The contribution presented in [23] is able to detect
Advanced Persistent Threats (APT) that steals user cre-
dentials in just 2.7 minutes, using a Strange Behavior
Inspection (SBI) machine learning model mainly oriented
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TABLE 1. Related work comparison.

to detect long-term spyware techniques. The SBI database
comprises live APT attacks observations directed to three
victims.

A Heterogeneous Deep Neuronal Network (HDNN)
proposed by Yang et al. [17] recognizes malicious DNS
found in volatile memory that lead to malware capable of
executing botnets and trojan horses to perpetrate Distributed
Denial of Services (DDoS) attacks and stealthy exploits,
respectively. This contribution is similar to the one presented
by Yilmaz et al. [22], uses the 360netlab DGA dataset and is
limited to only DNS name recognition generated by malware,
but achieves high accuracy rates for these two types of
threats.

Similar work has been done by Mishra et al. [24], although
with an approach based on traditional machine learning
algorithms applied to a cloud-based services environment,
building a system capable of detecting and classifying
stealthy malware attacks using a dataset built from memory
introspection techniques.

The research carried out by Jones and Wan [25] achieves
excellent results using the Running Window Entropy (RWE)
analysis technique. However, the Malgazer dataset does not
include to spyware (the main malware category against
privacy) from the six malware classification groups analyzed.

In the same way, the contribution of Yang and Guo [26]
presents a self-DNN solution capable of extracting features
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and patterns, but mainly from traffic seen through packet
capture (PCAP) files, that could be used as a baseline for a
future memory dumping analysis approach.

Although not with a focus on data privacy but on the
availability of information, the work presented in [27]
demonstrates the good results that can be obtained applying
deep learning techniques to analyze data from memory
dumping. Therefore, the idea could be extended to other
scenarios.

Reference [28] provides an example of this fact, which is
limited to detecting and classifying cryptomining malware
and special types of ransomware that could be applied in a
privacy context by considering the features of the command
and control sequences that can achieve certain families of
ransomware.

It is also important to mention that there are relevant
contributions that are not just based on machine learning
techniques. For example, in [29] a solution based on chip
multiprocessors is analyzed to validate memory consistency
and detect malware if an inconsistency is discovered.

In the same way, the work carried out by Appello et al.
[30] presents a solution that, although it demands the use of
parallel computing and multi-core architectures, is capable of
analyzing a memory dump that feeds a Value Change Dump
(VCD) analysis tool to find out malware patterns at runtime.
However, the performance achieved does not seem to be
comparable to that of contributions using machine learning
and deep learning techniques.

The CIC-MalMem-2022 dataset has previously been
examined for binary classification challenges using both tra-
ditional machine learning algorithms and DNNs, as demon-
strated by Carrier et al. [3] and Dener et al. [8]. Given the
comprehensive analyses conducted by these authors, show-
casing the dataset’s efficacy in achieving acceptable metrics
with traditional machine learning algorithms, we opted not
to replicate this prior work in our research. Nevertheless,
the study presented by Carrier et al. [3] highlights the
effectiveness of logistic regression when it works together
with those algorithms in ensemble classifiers, achieving
higher accuracy metrics, although still less than DNNs. This
insight led us to focus our research on proposing a novel
logistic regression model capable of attaining comparable
metrics to DNNs without the use of ensemble classifiers.

The multiclass problem in order to detect and distinguish
among obfuscated privacy malware categories and families
is not carried out in [3] nor [8]. However, the authors
emphasize the fact that the CIC-MalMem-2022 dataset’s
observations comprise an analysis of in-memory obfuscated
malware that is extremely complicated to analyze and classify
into various categories with a standalone classifier, which
is why the authors once again suggest using ensemble
classifiers.

Therefore, it can be deduced from these contributions that
any solution built to address the multiclass classification
problem using ensemble classifiers (for instance a strategy
based on taking the output of binary classification for

subsequent malware classification if a malicious sample
is detected using a boosting strategy) will achieve higher
metrics values than a standalone multiclass classifier. In this
sense, our research has focused on tackling the multiclass
classification problem, including the benign class in stan-
dalone multiclass classifiers, which represents a challenge
considering the imbalanced data between the benign class and
each malware category or family.

The multiclass classification problem using the
CIC-MalMem-2022 is analyzed mainly by Shafin et al. [15]
and Mezina and Burget [21], but all the solutions proposed in
these contributions are based on complex CNNs architectures
and in [15] the study is oriented to smart city applications
instead of privacy.

Although CNNs promise to reach high metrics values
in comparison to other deep learning architectures, pooling
layers involve data loss and the neural network requires
a large amount of samples for training [32], which is a
constraint in obfuscated privacy malware classification.

III. METHODOLOGY
In this section is detailed the CIC-MalMem-2022 dataset
(Subsection III-A) and the methods used to carry out
the experiments (Subsection III-B). In the same way, the
performance metrics applied for building and evaluating the
different obfuscated privacymalware classifiers are explained
in Subsection III-C, as well as the materials and tools used
that are mentioned in Subsection III-D.

Fig. 2 illustrates an overview of the methodology followed
in this research, comprising three main stages. Initially, data
acquisition, cleaning and preprocessing set the foundation
for constructing obfuscated privacy malware classifiers in
the second stage. This second step included implementing
a logistic regression-based binary classifier (classifier 1)
and developing multiclass classifiers (classifiers 2 and 3)
using both traditional machine learning algorithms and deep
learning techniques. Lastly, the gathered results underwent
comprehensive statistical analysis, forming the basis for
an in-depth discussion, final research conclusion, and the
reporting of achievements. This systematic approach ensured
a coherent flow from data handling to model creation,
culminating in a robust analysis and meaningful research
outcomes.

A. DATASET
The dataset used in this work was the Malware Memory
Analysis CIC-MalMem-2022 created by the Canadian Insti-
tute for Cybersecurity of the University of New Brunswick
(CIC-UNB). Released in April 2022, this dataset is available
for download at [20] and a complete dataset description is
presented in [3] and [8].

The dataset contains a total of 58,596 balanced observa-
tions with 29,298 benign and 29,298malicious samples. Each
observation corresponds to a memory dump, that is, a set
of values with certain features that describe the patterns and
behaviors of the obfuscated privacy malware once executed.
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FIGURE 2. Methodology overview.

TABLE 2. CIC-MalMem-2022 obfuscated privacy malware classification.

Having balanced benign and malicious observations makes
the CIC-MalMem-2022 suitable for binary classification.

Each malicious observation belongs to one of the three
categories of obfuscated privacy malware (spyware, ran-
somware, or trojan horse) distributed in the following way:
10,020 observations belong to spyware, 9,791 observations
are ransomware samples, and 9,487 observations belong to
trojan horse malware.

The dataset also discriminates among obfuscated privacy
malware families for each malware category, as detailed in
Table 2 which is exposed in [8, Table 3]. The malware
families taken into account by the dataset are those that
exclusively threaten the privacy of users.

In total, the dataset comprises 55 features plus two labels as
explained in Table 3 which has been taken from [8, Table 2]
and is presented here for convenience.

The label Category of the dataset describes whether the
observation is benign or, in case of malware, the family to
which the observation belongs, thus allowing to distinguish
at the same time if the observation belongs to a spyware,
ransomware, or trojan horse category. The last label (Class)
is redundant.

B. METHODS
This research followed a methodology in stages, as described
in Fig. 3. Each stage achieved results that were used to
structure the final research conclusion.

FIGURE 3. Detailed methodology.

In the first stage, the search and acquisition of the
CIC-MalMem-2022 dataset that significantly covers the
patterns and behaviors of the three types of obfuscated
privacy malware were carried out.

In the second stage, data cleaning and splitting were
performed on the acquired dataset.

Data cleaning allowed identifying and distinguish between
the dataset observations corresponding to benign and mali-
cious memory dumps (classifier 1), as well as between
the malicious observations which correspond to the three
categories of obfuscated privacy malware (classifier 2) and
within each category to which specific family it belongs
(classifier 3), achieving a dataset with three more fields
(labels) for malware classification.
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TABLE 3. CIC-MalMem-2022 features and labels.

For each classifier, the dataset was then split taking 80%
of the total data for training and cross-validation and the rest
20% for test. This data splitting was done in a stratified way
among the categories handled by each classifier. On the other
hand, a repeated k-fold stratified cross-validation strategy

was carried out on the 80% of training data using 2 repetitions
and 5 folds (10 iterations in total).

The t-Distributed Stochastic Neighbor Embedding (t-SNE)
technique was used in stage 3 in order to visualize data,
allowing to obtain a clear idea of the complexity of the
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Algorithm 1 Binary classifier pseudocode.
Data: CIC-MalMem-2022 dataset
Result: Test resulting metrics for best logistic

regression model
Execute data cleaning
Execute data splitting
models← get all possible logistic regression′s models
bestModel ← null
bestMetric← 0
for each model do

Train model with the model’s hyperparameters
Obtain mean training metrics using k-fold
cross-validation
if Mean Recall metric > bestMetric then

bestModel ← model
bestMetric← Mean Recall metric

end
end
Retrain best model with all training data
Evaluate model with test data
Tabulate achieved results

problem for each classifier. t-SNE was used with a perplexity
value of 100 for all classifiers.

In stage four, a deep grid search was performed to
optimize the hyperparameters of the logistic regression
binary classifier. The hyperparameters searched were the
polynomial degree (up to degree two), the regularization type
(L1 and L2), and the regularization coefficient. This resulted
in the validation of 20 different models.

For each model, the training data for the respective fold
was standardized and dimensionally reduced to two axes
using Principal Component Analysis (PCA). The logistic
regression models were trained using the saga solver with
a maximum of 200 iterations, which was enough to achieve
high metrics.

Then, the best logistic regression model achieved from the
hyperameter optimization process was evaluated with the test
data.

Algorithm 1 details the pseudocode outlining the steps
taken to construct the binary classifier. The final outcome
of this process comprises the metrics obtained using the test
dataset.

In stage five, SMOTEwas used to address imbalanced data
in multiclass obfuscated privacy malware classifiers; and five
different machine learning algorithms were used for training.
These classifiers considered the benign class and the three
malware categories for classifier 2, as well as the fifteen
malware families for classifier 3.

The machine learning algorithms used for both multiclass
classifiers were:
• Decision Tree (DT): A decision tree with a maximum
depth size equal to 3 was taken as a reference for
classifier 2 and a value equal to 5 for classifier 3. Gini
and entropy criterion were taken as hyperparameters for
optimizing both classifiers.

FIGURE 4. DNN architecture.

• RandomForest (RF):A random forest with the number
of trees and a comparison between the Gini and the
entropy criterion were taken as hyperparameters for
optimization. The number of trees ranged from 100 to
200 in steps of 10 while the maximum depth was taken
with a value equal to 3 for classifier 2 and a value equal
to 5 for classifier 3.

• Support Vector Machine (SVM) Classifier: For this
classifier a value of C equal to 10 was taken for classifier
2 and a value of C equal to 1was considered for classifier
3. The type of kernel between linear and rbf was taken
as the hyperparameter optimization criterion.

• Linear Discriminant Analysis (LDA): No hyperpa-
rameters were considered for this machine learning
algorithm.

• Gaussian Naive Bayes (GNB): Similar to the pre-
vious case, no hyperparameters were needed for this
algorithm.

The hyperparameters optimization process for each
machine learning algorithm and multiclass classifier was
similar to the process for the binary classifier.

The best models achieved for each machine learning
algorithm for classifiers 2 and 3 were taken to evaluate them
with the test data and gather the results.

In order to demonstrate the validity of our results, we also
built ensemble classifiers in this stage. Each ensemble
classifier comprised the previously achieved binary logistic
regression classifier, in sequence with a specific multiclass
classifier trained using the same method but excluding the
benign class. This architecture is helpful for boosting the
metric achieved by the ensemble classifier due to the action of
the strong binary classifier [3]. The experiment encompassed
all the previously mentioned traditional machine learning
algorithms, enabling us to conduct a comprehensive compar-
ison between the results obtained by ensemble classifiers and
those achieved by the standalone multiclass classifiers.

In stage six, a general DNN for both multiclass classifiers
was built. Fig. 4 illustrates the proposed DNN architecture.

The number of hidden layers and the value of the regular-
ization coefficient were taken as criteria for hyperparameters
optimization. In total, 9 different models were validated and
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the best model achieved by each multiclass classifier was
evaluated with the test data.

At each hidden layer, the Leaky-ReLU non-linear activa-
tion function was used with a factor of 0.1. This allowed to
avoid the problem of dead neurons during the training phase.
Also, after the linear response of each neuron and before
its Leaky-ReLU non-linear activation function, a Batch
Normalization stepwas added, which allowed us to accelerate
the learning process. In the same way, after the Leaky-ReLU
non-linear activation function a Dropout step with a factor
equal to 0.01 was added to help avoid overfitting and
memorization of the neural network.

L2 regularization was also used to help avoid overfitting.
In the output layer, the softmax activation function was
used, which allowed to obtain a vector of probabilities for
each category analyzed. Regarding the solver, the Adam
optimizer was used for these models because it showed,
in general, better performance than other optimizers such as
SGD, Adagrad, Adadelta, AdamW, among others [15]. The
sparse categorical cross-entropy was taken as a loss criterion
for analyzing each step.

Each hidden layer was built with 2,048 neurons and a total
of 10 epochs with a mini-batch size of 32 were used for
training. A learning rate equal to 1× 10−3 was used because
this rate was shown to decrease loss during the experiments.

Algorithm 2 outlines the overarching pseudocode
employed in constructing multiclasses classifiers, leveraging
both traditional machine learning algorithms and DNNs.
This process served both for the classification of categories
(classifier 2) and for the classification of families (classifier
3). The ultimate outcome comprises themetrics obtainedwith
the test data.

As in the previous stage of our methodology, the cor-
responding ensemble classifiers were constructed as the
sequence of the binary classifier followed by the multiclass
classifier trained with the same method but without consider-
ing the benign class following a boosting strategy.

Table 4 provides an insightful overview of the key design
criteria underpinning our research for both binary and
multiclass classifiers. Each criterion has been meticulously
chosen to align with and optimize the proposed architectures
of our models. The table elucidates the specific reasons why
these criteria are instrumental in enhancing the effectiveness
and performance of our classifiers.

In stage seven, the unidirectional Wilcoxon rank sum test
was used at a significant level of 0.01 to perform a statistical
analysis between the metrics achieved by the traditional
machine learning algorithms and the proposed DNN for each
multiclass classifier.

For this, the classifier that achieved the best cross-
validation metric among the different evaluated folds
was taken as a pivot to compare it with the remaining
classifiers. The calculated p-value allowed us to discern
whether the observed difference was statistically signif-
icant. We also conducted a performance comparison on
the test data for each multiclass classifier, utilizing both

Algorithm 2Multiclass classifiers pseudocode.
Data: CIC-MalMem-2022 dataset
Result: Test resulting metrics for each best machine

learning (ML) and DNN model
Execute data cleaning
Execute data splitting
for each ML and DNN algorithm do

models← get all possible algorithm′s models
bestModel ← null
bestMetric← 0
for each model do

Train model with the model’s hyperparameters
Obtain mean training metrics using k-fold
cross validation
ifMean Accuracy metric > bestMetric then

bestModel ← model
bestMetric← Mean Accuracy metric

end
end
Retrain best model with all training data
Evaluate model with test data
Tabulate achieved results

end

traditional machine learning algorithms and our proposed
DNN.

The final stage of our methodology involved defining
the research conclusion and reporting the results, making
possible the reproducibility of our experiments.

C. PERFORMANCE METRICS
The mean recall was used as the metric for hyperparameter
optimization for the binary case in order to achieve a classifier
capable of reducing false negative rates. The malicious
category was taken as positive class to calculate the metrics.

Precision, recall, F1-score, accuracy, and the Area Under
the Curve (AUC) were used to evaluate the best binary
classifier with the test data.

A complete guide to calculate these metrics from an
information security perspective can be found in [36].

On the other hand, the mean accuracy was taken as a
reference for hyperparameter optimization for bothmulticlass
classifiers.

The best multiclass classifiers achieved were evaluated
with the test data using the precision, recall, F1-score,
accuracy and AUC metrics. The overview provided by [37]
explains in depth how these metrics can be calculated for
multiclass scenarios.

These same metrics for cross-validation and evaluation at
test were applied to the ensemble classifiers. However, the
ultimate test metric achieved by the ensemble classifier was
derived as a compound value by assigning equal weight to
both the binary classifier metric and the multiclass classifier
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TABLE 4. Design criteria explanation.

metric, as Equation 1 suggests.

ECM = 0.5× LRM + 0.5×MCM , (1)

where ECM (Ensemble Classifier Metric) denotes the final
ensemble classifier metric achieved, LRM (Logistic Regres-
sion Metric) denotes the metric reached by the binary logistic
regression classifier, and MCM (Multiclass Metric) refers
to the metric achieved by the multiclass classifier without
considering the benign class. Even though interpreting the
final result of an ensemble classifier is a difficult task due to
the complexity of defining the contribution and importance
of each component, this compound metric can be considered
fair enough for the purpose of comparing results [38].

D. MATERIALS AND TOOLS
This research was carried out using the Google Colaboratory
platform (Google Colab) and the Python programming
language. The Google Colab environment provided up to
12.7 GB of RAMmemory and 78.2 GB of disk capacity with
NVIDIA T4 GPU processing.

The Sci-kit Learn: Machine learning in Python framework
(best known as sklearn) [39] was used to clean and preprocess
data, as well as to build the different machine learning models
and evaluate them.

Google TensorFlow and its API Keras [40] were used to
build DNNs, which were embedded in sklearn pipelines using
the technique described in [41].

Furthermore, the DNNs of this research were implemented
using the Keras Wrapper solution for Python described
in [42], which allowed the models achieved with TensorFlow
to be adapted and integrated into data structures supported by
sklearn.

The statistical analysis of this paper was performed using
the software R.1

IV. RESULTS AND ANALYSIS
In this section we present and analyze the results obtained
with the proposed methodology. In Subsection IV-A the
visualization pictures of t-SNE data are displayed, whereas
in Subsections IV-B, IV-C and IV-D are exposed the results
achieved for the binary case, the obfuscated privacy malware
category classifier and the obfuscated privacymalware family
classifier, respectively.

A. T-SNE DATA VISUALIZATION
The visualization of t-SNE data with dimension reduction to
two components and a perplexity value of 100 demonstrates
that the CIC-MalMem-2022 dataset is capable of clearly
distinguishing between benign and malicious observations,
as Fig. 5a suggests.
However, when trying to discriminate between different

categories of malware, it is not feasible to find such a clear
border as in the binary case, as illustrated in Fig. 5b.
This demonstrates the difficulty that currently exists in

distinguishing between different categories of obfuscated
privacy malware. As suggested by [43], many ransomware
families have patterns similar to trojan horses and several
behaviors that resemble spyware attacks.

Similarly, Fig. 5c suggests that the classification of
different malware families is even a more difficult task due
to the fact that each family shares common properties with
others, more likely if they are of the same malware category.

To effectively tackle obfuscated privacy malware detection
and classification at a granular level, employing a diverse set
of features aligned with the problem’s complexity is crucial.
The number of features required increases with the growing
number of classes, contributing to reaching enhancedmetrics.
Hence, applying dimensionality reduction techniques is not
advisable for the multiclass problem. Conversely, for binary
classification, optimizing feature space by reducing dimen-
sionality is an insightful strategy. This is attributed to the
limited number of classes, where common and overlapping
patterns and behaviors predominantly exist within malware
categories and families.

1The CIC-MalMem-2022 dataset and all the Python and
R files for experiments reproducibility are available at
https://github.com/dcevallossalas/PrivacyMalwareClassifiers
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FIGURE 5. t-SNE data visualization (a) Binary case (b) Obfuscated privacy
malware categories (c) Obfuscated privacy malware families.

B. OBFUSCATED PRIVACY MALWARE BINARY CLASSIFIER
The hyperparameter values that allowed us to obtain the
best logistic regression model among the 20 possible binary
classifiers analyzed were a regularization parameter equal to
1 × 10−3 with L2 regularization and a polynomial degree
equal to 1.

Therefore, the results suggest that it is not necessary to
generate polynomial features to obtain a high metric for
binary classification with the CIC-MalMem-2022.

FIGURE 6. Binary classifier’s test confusion matrix.

These hyperparameters allowed us to reach a mean recall
cross-validation score of 0.997 ± 0.002.
The metrics achieved with the test data were a precision

of 0.996, recall of 0.999, F1-score of 0.997, accuracy of
0.997 and AUC of 0.997.

Fig. 6 presents the resulting confusion matrix for the
binary classifier’s evaluation with the test data. As the figure
suggests, 26 observations were classified as false positive
whereas just 8 observations were classified as false negative
cases, which demonstrates that the binary classifier built is
able to reduce the false negative cases in order to achieve a
high recall metric.

The achievement of high metrics is attributed to the
PCA technique and the balance maintained in the dataset
between benign and malicious observations which facilitates
the classification problem considering both classes on equal
terms.

The results achieved are comparable to those reached by
[3] using ensemble classifiers and to those achieved by [8]
using DNNs. However, our model comprises a standalone
classifier based solely on logistic regressionwithout requiring
the computational processing of DNNs.

C. OBFUSCATED PRIVACY MALWARE CATEGORY
CLASSIFIERS
The best models for the standalone category classifiers were
achieved with the following hyperparameters:
• For the DT algorithm, a maximum depth of 3 with the
Gini criterion.

• For the RF algorithm, 120 trees with a maximum depth
of 3 and the Gini criterion were used.

• For the SVM classifier, a value of C equal to 10 and the
rbf kernel achieved the best metrics.

• ForDNN, the best hyperparameter values were a number
of hidden layers equal to 3 and a value of regularization
coefficient equal to 1× 10−6.

Table 5 details the values of the mean accuracy metrics
achieved by each best model of the machine learning
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TABLE 5. Best models comparison for standalone category classifiers.

FIGURE 7. Box plots for best models of standalone category classifiers.

algorithm and deep learning. The best classifier obtained was
the proposed deep learning model, reaching a mean accuracy
value of 0.769 ± 0.012.

The obtained results demonstrate that our proposed DNN
architecture leverages data preprocessing and SMOTE tech-
niques, strategically incorporating deep learning concepts
like batch normalization, leaky-ReLU, and dropout layers.
This surpasses traditional machine learning algorithms that
lack these principles by default in their architecture.

In Fig. 7 are detailed the box plots for the best models
of standalone category classifiers, which corroborate that the
best mean accuracy was reached by the DNN followed by the
RF classifier.

Taking the DNN mean accuracy value as pivot and a
significance level of 0.01, the unidirectional Wilcoxon rank
sum test through the obtained p-values demonstrates that
the differences observed between the pivot with the rest of
algorithms are statistically significant.

Table 6 presents the metrics achieved with the test data
for both standalone multiclass category classifiers and the
ensemble classifiers built on top of the logistic regression
binary classifier. The best results in test are for both
classification strategies achieved by DNNs, demonstrating
the capability of our proposed architecture even without the
use of the benign class, in which the imbalance between

TABLE 6. Test resulting metrics for obfuscated privacy malware category
classifiers.

the malware categories is not so pronounced and therefore
the SMOTE technique is not taken full advantage of.
Furthermore, it should be taken into account that half of
the metric of each ensemble classifier is defined by the
classification of the strong binary classifier, an advantage that
the standalone classifiers do not have. Even so, we believe
it is reasonable and fair to make a comparison in order
to demonstrate the validity of the results achieved in this
research.

Fig. 8 shows a comparison of the metrics achieved among
the standalone category classifiers proposed in this research.
For all the considered metrics, the higher values are achieved
by our proposed DNN surpassing even the RF algorithm
popularly known for its great classification capacity in
multiclass problems [44].

Fig. 9 presents a comparison of the standalone DNN clas-
sifier and the ensemble LR+DNN classifier, demonstrating
the feasibility of obtaining good results for the multiclass
classification problem using our proposed standalone classi-
fier. The metrics achieved with test data by the standalone
DNN classifier are comparable and, for practical purposes,
the same as those achieved by the ensemble LR+DNN
classifier. Even the standalone classifier achieves a higher
AUC value because by integrating the benign class it takes
better advantage of the SMOTE technique.

In order to demonstrate the effect and importance of the
SMOTE technique, Figs. 10a and 10b expose the Receiver
Operating Characteristic (ROC) curves achieved for the
standalone category classifier without and with SMOTE in
the test dataset, respectively.

Overall, the AUC metric for each obfuscated privacy
malware category increases when SMOTE is applied mainly
for the ransomware and trojan horse categories. The AUC
reached for the benign category classification is excellent for
practical purposes.

Although this classifier just considers four categories, the
effect of SMOTE can be clearly seen due to the ROC curves
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FIGURE 8. Test metrics comparison for standalone category classifiers.

FIGURE 9. DNN test metrics comparison for standalone category
classifier and ensemble classifier.

cover a larger area compared to the scenario in which SMOTE
is not used.

D. OBFUSCATED PRIVACY MALWARE FAMILY CLASSIFIERS
In this section are presented the results achieved for the
obfuscated privacy malware family classifiers. As in the
previous section, this is a multiclass scenario and the best
standalone models where achieved with the following
hyperparameters:
• For DT algorithm a maximum depth of 5 with the
entropy criterion.

• For RF algorithm 160 trees with a maximum depth of
5 and the entropy criterion were used.

• For the SVM classifier, a value of C equal to 1 and the
linear kernel achieved the best metrics.

• As in the previous section, for the DNN the best
hyperparameters values obtained were a number of
hidden layers equal to 3 and a value of the regularization
coefficient equal to 1× 10−6.

The mean accuracy metrics achieved by each machine
learning algorithm and the proposed DNN are presented in
Table 7. Our proposed DNN achieved the best mean accuracy
with a value of 0.683 ± 0.030.

FIGURE 10. Standalone DNN category classifier’s ROC curves (a) Without
SMOTE (b) With SMOTE.

Given that the classification problem addressed by this
multiclass classifier is much more granular and complex,
the metrics achieved by the standalone DNN classifier are
even more highly noticeable than those reached by the
considered traditional machine learning algorithms due to it
takes optimal advantage of the SMOTE technique.

Fig. 11 shows the box plots for the best models achieved
by each one of the standalone family classifiers analyzed. The
DNN reaches the higher mean accuracy followed by the RF
classifier.

Taking the DNN mean accuracy value as pivot, the
unidirectional Wilcoxon rank sum test at a significance level
of 0.01 demonstrates that the differences observed between
our proposed DNN and the rest of the algorithms analyzed
are statistically significant.

In Table 8 the metrics achieved by each one of the
best models with the test data for both standalone family
classifiers and ensemble classifiers built using the logistic
regression binary classifier are presented. For both types of
classifiers, the best metric values were again obtained using
the DNN solution.
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TABLE 7. Best models comparison for standalone family classifiers.

FIGURE 11. Box plots for best models of standalone family classifiers.

FIGURE 12. Test metrics comparison for standalone family classifiers.

A comparison between the metrics achieved by the
standalone family classifiers with the test data is presented
in Fig. 12. As can be seen, our proposed DNN architecture
presents a better result compared to the rest of algorithms, and
even more so compared to the previous multiclass category
classifier, it shows that it is capable of achieving better
metrics values than traditional machine learning algorithms
as the complexity of the problem is greater.

TABLE 8. Test resulting metrics for obfuscated privacy malware family
classifiers.

Fig. 13 presents a comparison between the metrics
achieved for classifying obfuscated privacy malware families
with the test data using both the standalone DNN classifier
and the ensemble LR+DNN classifier. The metrics obtained
by the standalone DNN classifier are comparable and even
slightly superior to those reached by the ensemble classifier.
This is because the benign class takes more advantage of
the SMOTE technique, given that the obfuscated privacy
malware families solely without the benign class are not
strongly imbalanced. These results demonstrate the validity
of our research by corroborating the ability of the proposed
DNN architecture to address the multiclass classification
problem, not only for obfuscated privacy malware categories
but also for families.

Finally, Figs. 14a and 14b expose the ROC curves achieved
by our DNN obfuscated privacy malware family classifier
without and with SMOTE in the test dataset, respectively.

In contrast to the multiclass category classification prob-
lem of the previous subsection, the distinctions between the
ROC curves are more pronounced, resulting in more arched
and grouped curves within each family. This ultimately led to
the attainment of a high AUC metric.

Unlike the contributions presented in [15] and [21], the
results exposed for the category and family classification
problem have been achieved without using advanced CNNs
nor ensemble classifiers.

V. DISCUSSION
Obfuscated privacy malware detection and classification is a
complex problem that depends to a large extent on the quality
of the data to be solved.

The obfuscated nature of the memory dumps observations
of the CIC-MalMem-2022 dataset allows to achieve high
metrics for the binary classification problem, but limited
values for the multiclass classification scenario.

With regard to the binary classification the contribution of
this research has been to achieve through a logistic regression
model metrics values comparable to those achieved with
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FIGURE 13. DNN test metrics comparison for standalone family classifier
and ensemble classifier.

DNNs. For multiclass classification, the major contribution
of this research has been to expose several preprocessing and
data augmentation techniques, as well as a DNN architecture
that can overcome the metrics reached by traditional machine
learning algorithms when using this dataset and reach
values comparable to those achieved using CNNs by other
researchers. All our proposed models comprise standalone
solutions and no ensemble classifiers that can be difficult to
implement and interpret.

While prior studies have conducted experiments on diverse
baseline datasets with different categories and families of
obfuscated privacy malware, employing varied types of
features, different numbers of observations, and varying
methods of data division and evaluation across distinct
applications, we would like to conduct and present a quite
fair and reasonable comparison of the classifiers developed
in this research with those presented in the major prior works
with similar methodology and target, utilizing a common
test metric as comparison criterion, and not just limited
to solutions based on memory dumping analysis for data
gathering. This metric encompasses accuracy for binary
classification and F1-score for multiclass classification. The
selection of F1-score for multiclass classification comparison
is driven by the common imbalance scenario faced by most
contributions.

However, it is important to highlight that a direct compar-
ison with related works may not be strictly fair, considering
the diversity of criteria, different contexts, and unique focuses
that each research endeavor has in addressing the obfuscated
privacymalware detection and classification problem. Table 9
summarizes the comparison of the results achieved in this
research with other major contributions.

In the case of the binary classifier, the best test accuracy
score of 0.970 achieved by Carrier et al. [3] using a
RF classifier is lower than the 0.997 presented in this
work, achieved through logistic regression and the PCA
preprocessing technique. Our reached metric is comparable
to the score of 0.990 achieved by the same authors when using
ensemble classifiers for boosting several weak classifiers

FIGURE 14. Standalone DNN family classifier’s ROC curves (a) Without
SMOTE (b) With SMOTE.

with a strong logistic regression model, which may be a
practical limitation [25]. In the same way, logistic regression
has also been applied by Dener et al. [8] reaching exactly the
same accuracy score of 0.970 as [3] with the RF classifier.
Our logistic regression classifier comprises a lightweight

model capable of achieving metrics values comparable to
those achieved through a DNN (which reach practically a
perfect accuracy score of 1 [8]), avoiding investing high
computational resources in training complex DNNmodels or
costly computational tasks.

For example, the overall accuracy value achieved in this
research is greater than the one reached by Yang et al.
[17] equal to 0.9773 without using parallel computing
techniques, even when this last contribution uses another
malware classification technique based on the DGA dataset
with 500,000 observations.

We strongly encourage that our proposed logistic regres-
sion model be used with other datasets that address the
problem of binary obfuscated privacy malware classification.

With regard to multiclass classification, the SMOTE
technique used to address the imbalanced scenarios to

VOLUME 12, 2024 17495



D. Cevallos-Salas et al.: Obfuscated Privacy Malware Classifiers

TABLE 9. Comparison of results with other obfuscated privacy malware classification contributions.

distinguish between obfuscated privacy malware categories
and families is not enough on its own to achieve better metrics
values, given that only by combining this oversampling
technique with the proposed DNN it was feasible to obtain
statistically significant higher metrics compared to those
achieved by traditional machine learning algorithms.

The results suggest that metrics achieved by our proposed
DNN architecture with the exposed preprocessing data
techniques are higher than those achieved by traditional
machine learning algorithms as there are more classification
categories, that is, by addressing an even more complicated
classification problem. Furthermore, the proposed DNN has
been able to achieve comparable and even better metrics than
multiclass obfuscated privacy malware classifiers based on
other detection techniques.

For example, the testing F1-score achieved in this research
of 0.754 for the obfuscated privacy malware categories is
slightly less than the achieved by Vinayakumar et al. [31]
(0.769) although their research focuses on classifying threats
spread through uniform resource locators (URLs) and/or
email and subject to only three categories.

In the case of the obfuscated privacy malware family
classifier, SMOTE helped to reach better metrics, including
AUC values. The metrics reached were even better than
those achieved by Vinayakumar et al. [19], who conducted a
pretty similar research (in the same way restricted to malware
identified by malicious domain names) achieving metrics
for different scenarios with testing F1-score ranging from
0.590 to 0.622 in comparison to the value of 0.682 achieved
in this research.

Finally, the metrics reached by the multiclass classifiers of
this work are comparable to those presented in [15] and [21]
using the CIC-MalMem-2022 dataset. Our F1-score metric of
0.754 is the same as that achieved by Mezina and Burget [21]
equal to 0.750 using CNNs to tackle the obfuscated privacy
malware category classification problem.

On the other hand, the best F1-score for the classification
of obfuscated privacy malware families of 0.720 reported by
Shafin et al. [15] using the solution named ‘‘RobustCBL’’ is
slightly greater than the 0.682 value achieved in this research,
but our proposed solution does not use complex CNNs.

VI. CONCLUSION AND FUTURE WORK
The CIC-MalMem-2022 dataset based on memory dumping
observations is suitable for recognizing between benign and
malicious samples, allowing to reach high metrics in the
building of classifiers for this purpose. Traditional machine
learning algorithms and deep learning techniques can be
used with this dataset to successfully tackle the binary
classification problem. However, the results reached in this
research suggest that traditional machine learning algorithms
are limited in their ability to detect and classify multiclass
obfuscated privacy malware based on memory dumping
observations due to the challenge that its complex patterns
and behaviors pose.

For that reason, deep learning is currently being extremely
used, and novel data preprocessing techniques and architec-
tures such as those exposed in this research will be proposed
in the future to tackle multiclass obfuscated privacy malware
classification and its applications. As long as new techniques
are developed to detect and classify obfuscated privacy
malware, new categories and families will also appear, further
increasing the importance of research in this field.

For this reason, as future work, the datasets to be developed
(based on memory dumping analysis or another technique)
will need to manage a substantial improvement in the quality
of the data to achieve effective controls aimed at safeguarding
users’ personal data, which constitutes a real challenge due
to the complexity of the malware structure and the similar
patterns and behaviors at runtime between categories and
families.
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