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ABSTRACT The Internet of Things (IoT) is gaining immense popularity in executing automation activities
via wireless connectivity in the modern era. The IoT networks are designed using mostly low-power IoT (LP-
IoT) devices that are battery-operated and have limited computational power. The wireless communication
amongst these LP-IoT devices is affected due to the undesirable factors affecting the wireless channel,
such as physical obstructions, the distance between devices, wireless network interference, and power
limitations of IoT devices. These factors result in attenuation, distortion and phase-shift of the signals
arriving at the receiver device. To encounter the effects of the factors affecting the wireless channel in
LP-IoT communication, we estimate the wireless channel at the transmitter device before transmission.
An effective channel estimation guarantees reliable transmission, improves the throughput rate, and extends
the life of the entire IoT network. This study presents two models relevant to LP-IoT communication in IoT
networks. The first model is the LP-IoT communication model, which provides a theoretical representation
of the wireless channel for the LP-IoT network. The second model is the channel estimation model, where
we apply the Least Squares (LSE) and Maximum Likelihood (MLE) techniques to estimate the LP-IoT
wireless channel. We analyse the squared error obtained through the LSE and minimise it to reach a Target
Error Threshold (TET), where the estimation results are considered accurate. We developed a novel outlier
removal method (OUT-R) to eliminate outliers in LP-IoT wireless channel data to achieve this. After outlier
removal, we implement the Kalman Filter (KF) method to further improve the channel estimation accuracy.
The observation data needed for this investigation has been obtained from real-time measurements in a
controlled Line of Sight (LoS) indoor setting using LP-IoT devices. The findings of this study indicate that
the suggested method may meet the specified error threshold TET, yielding accurate channel estimation for
LP-IoT communication in IoT networks.

INDEX TERMS Wireless channel estimation, low-power IoT devices, RSSI estimation, waspmote, least
squares, Kalman filter.

I. INTRODUCTION
The Internet of Things (IoT) has reached a level of enormous
potential that qualifies it as a future-enabling technology.
Researchers have defined IoT as a network of devices (known
as things) connecting people and things via the Internet
by incorporating device-specific information such as iden-
tification, intelligence, sensing and acting capabilities [1].
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IoT has undeniably revolutionised civilisation through its
automated connectivity and ability to assist individuals and
industries in automating daily tasks. Smart cities, smart
homes, public safety and environment monitoring, smart
healthcare, industrial operations, and agriculture are among
the most notable IoT applications [2]. A recent study in [3]
predicted that by 2030, there would be 29 billion IoT devices
worldwide, up from 9.7 billion in 2020. The sensing devices
used in IoT communication often have low power, minimal
storage, and limited processing power. These limitations
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FIGURE 1. Channel behaviour of an actual implemented LP-IoT
communication scenario.

impose restrictions on the network architecture, making it
difficult for IP networking technologies to communicate
reliably. Due to these limitations, IoT devices are often known
as constrained devices, and therefore, their communication
process is distinguished from cellular or mobile communica-
tion [4].

The LP-IoT devices communicate under certain low-power
wireless protocols such as Bluetooth, Sigfox, ZigBee and
LoRaWAN for data transmission [5]. Efficient and reliable
wireless communication amongst LP-IoT devices is critical in
any environment. After all, unreliable communication might
cause an interruption in automation tasks performed by IoT
systems [6]. A vital element for reliable communication is the
wireless channel through which the data is transferred from
one node (LP-IoT device) to another.

The wireless signal propagating through the wireless
channel varies with time due to environmental factors such
as objects, walls, floors, electromagnetic interference, and
external noise in an indoor environment. These factors influ-
ence the wireless signal, which causes reflection, diffraction,
scattering, and refraction [7]. These circumstances hamper
communication reliability and data rate. Figure 1 illustrates
the wireless channel’s general behaviour representing the
channel’s randomness. To maintain optimal communication
in LP-IoT devices, the wireless channel parameters must
be modelled and estimated before transmission to predict
the current channel condition. Such parameters are received
signal strength indicator (RSSI), signal-to-noise ratio (SNR),
packet delivery ratio (PDR), and link quality indicator (LQI)
[8]. The RSSI [9], [10] is a fundamental metric utilised to
evaluate the wireless channel for LP-IoT communication.
It measures received power by the receiving node (LP-IoT)
device. It can be described as ‘‘a metric for power received by
a radio frequency node device from a sender node or access
point’’. Most LP-IoT devices contain the RSSI register, which
indicates the signal strength of the received packet. It can
be estimated using certain parameters of LP-IoT wireless
channel, such as the time of sent and received packets, the
distance between LP-IoT devices, the Time of Signal Arrival
(ToA), and the Angle of Arrival (AoA) [11].
Researchers have investigated many estimation techniques

to estimate the wireless channel for cellular and IoT com-
munication, such as Least Squares Estimation (LSE) [12],
Maximum Likelihood Estimation (MLE) [13], Minimum

Mean Squared Error Estimation (MMSE) [14], and Kalman
Filter (KF) method [15]. Each technique has different
assumptions and requirements. The LSE method is used to
estimate the parameters of a linear regression model [16].
In contrast, the MLE method finds the parameter values that
maximise the likelihood function, which is the probability of
the observed data [17]. Alternatively, the MMSE approach
minimises theMean Squared Error (MSE) between the actual
and predicted data [18].

Similarly, another efficient technique for channel estima-
tion is KF, which estimates the unknown variables based on
a series of measurements obtained over a period using two
phases: predict and update [19]. Despite the fact that these
techniques have positive and negative aspects, we aim to
investigate some of them to estimate the wireless channel
specifically for LP-IoT devices and minimise the estimation
error. Based on the energy restrictions in LP-IoT devices,
we selected LSE, MLE, and KF for LP-IoT channel estima-
tion. This paper utilises real-time data to estimate the wireless
channel specifically for LP-IoT devices using the LSE, MLE,
and KF estimation techniques. Also, this research develops
an outlier removal method combined with KF to improve the
estimation accuracy. The channel metric this research utilises
is RSSI, considered as a time-series LP-IoT channel data. For
the data collection, the low-power communication protocol
utilised in this research is Zigbee [20] because it is widely
used in LP-IoT indoor communications. Thus, this paper
consists of two models: the LP-IoT wireless communication
model and the LP-IoT wireless channel estimation model.
The first model describes the theoretical representation of
the LP-IoT wireless channel. The second model describes
our implemented method to estimate the LP-IoT wireless
channel. Following the estimation techniques LSE and MLE
implementation, we minimise the squared error acquired
from these methods using the outlier removal (OUT-R) and
KF methods. Key contributions of this study are listed below:

• Presented analytical derivation of key parameters for
channel estimation techniques (LSE and MLE) for
the LP-IoT channel estimation (see Sections IV-B1
and IV-B2).

• Developed a new outlier detection and removal method
OUT-R for channel estimation and applied Kalman
Filter to minimise estimation error (see Sections IV-B4
and IV-B5).

• Designed an experimental test-bed to collect real-time
data for channel characteristics using Waspmote (LP-
IoT device) in Line of Sight (LoS) indoor conditions (see
Section V).

The remainder of the study is partitioned into the following
sections: Section II illustrates the study that has been
conducted related to this research. Section III depicts the
estimation techniques utilised in this research. Section IV
describes the communication and channel estimation models
adopted for this study. Section V explains the experimental
setup designed to collect real-time data for implementing the
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designed system model. Section VI illustrates the results and
discussion about this investigation study. Finally, Section VII
presents the conclusion of this study and outlines some future
work directions.

II. RELATED WORK
This section presents the synopsis of recent studies on
wireless channel characterisation for LP-IoT communication.
A study conducted in [7] evaluated thirty-four path loss
models for wireless IoT technologies based on their charac-
teristics and performance conditions. This study concluded
with suggestions for future research areas on wireless channel
modelling and estimation.

To further examine the behaviour of wireless IoT technolo-
gies, several articles have been written on RSSI in various
ways. For instance, the authors in [9] compared the perfor-
mance of RSSI in different wireless IoT technologies and
discussed its challenges and limitations for IoT localisation.
In another paper [21], the authors investigated the effect of
obstacles on RSSI in wireless sensor networks and proposed
solutions to mitigate the impact on localisation and tracking.
Alternatively, the authors in [22] presented a bounded-error
estimation method based on RSSI and CSI for estimating
the distance between wireless sensor devices. In contrast, the
authors of [23] proposed an intelligent ZigBee technique to
intensify IoT networks’ energy efficiency and link quality.

Building on the significance of RSSI in wireless IoT
technologies, it is crucial to examine conventional methods
for RSSI estimation, such as Least Squares Estimation (LSE).
The LSE method has played a fundamental role in improving
the efficiency and reliability of IoT systems by reducing
the estimation error. One of its applications can be seen
in [24], where the authors developed an adaptive RSSI-based
ranging system for IoT networks in an outdoor environment.
The efficacy of the proposed system was analysed and
evaluated under various conditions, including the effect of
environmental conditions such as humidity and temperature.
The results of experiments and simulations demonstrated the
accuracy and reliability of the designed scheme, concluding
that it offers improved performance compared to traditional
approaches and is a promising solution for outdoor wireless
sensor networks. In another study [25] based on the LSE
method for channel estimation in NB-IoT downlink systems,
the authors have mitigated the channel estimation errors
incurred by the standard LSE method without requiring
additional frequency-band resources. Through comprehen-
sive simulations, authors have demonstrated the superiority
of the proposed model to conventional LSE; however, despite
emphasising its low complexity, the stringent computational
complexity analysis still needs improvement. In addition, the
algorithm’s applicability to various NB-IoT scenarios must
be strengthened further. Also, the absence of the data sets
restricts opportunities for further investigation. In [26], the
use of RSSI data for modelling the path loss in a Long Range
(LoRa) network was investigated. In this paper, the authors

presented a method for collecting and analysing the RSSI
data in a LoRa network and used this data to develop a
path loss model. The detailed outcomes of the experiments
and simulations demonstrated the proposed model’s validity,
accuracy, and reliability. The authors also discussed the
implications of the proposed model for the design and
deployment of LoRa networks.

One of the effective uses of RSSI is estimating the location
and tracking objects in wireless sensor networks. Many
researchers have used the KFmethod for estimating locations
and tracking such as [27] and [28]. In [27], the author
designed a system that uses the RSSI values to estimate the
location of objects in the network and track their movements
over time using the KF. The results of experiments and
simulations are presented to assess the practicability and
precision of the designed method. In [28], the KFmethod was
used to establish a link quality estimation technique. In this
paper, the author demonstrated that wireless networks are
susceptible to mobility, making predicting the occurrence and
stability of linked and transitional areas more challenging.
The author estimated link quality fluctuation by combining
the RSSI values of arriving (ACK) packets with the Packet
Delivery Ratio (PDR) using a KF to encounter this issue. The
KFmethod improved the accuracy of the predictions by 12%.

Similarly, the authors in [29] presented more findings
on reducing the estimation error in IoT channel estimation
by proposing a group sparsity estimation method. This
method exploits the sparsity pattern in data transmissions
while permitting concurrent detection of active devices and
estimates their channels. This approach shortens the duration
of the required signature sequence length, improving IoT
access efficiency. Furthermore, the authors have presented
a smoothing method to efficiently manage high-dimensional
structured estimations while balancing estimation precision
and computational cost. However, in practice, the imple-
mentation may be complicated by environmental factors
and device diversity. Moreover, the practical applicability
of this study may also be affected by computational costs,
particularly in large IoT networks.

Currently, there is a significant interest among scientists
pertaining to the integration of Machine Learning (ML)
approaches in the domain of channel estimation as evi-
denced by various studies [30], [31], [32], [33]. However,
it is essential to acknowledge the persistent benefits of
traditional approaches, characterised by their simplicity
and transparency, as they are built on well-established
relationships and assumptions. This transparency enables
a more straightforward process of interpretation and trou-
bleshooting, which is a crucial feature in the intricate field of
channel estimation. On top of that, conventional approaches
demonstrate practicality in situations where limited data is
available since they require fewer data points for reasonable
forecasts. This attribute is particularly desirable in practical
contexts where obtaining substantial ML training data
might be arduous. Additionally, conventional techniques
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exhibit stability and robustness, ensuring reliable channel
estimates despite fluctuations in input data, hence reducing
vulnerability to outliers and noise.

These findings contribute to the comprehension of wireless
channel behaviour. However, a research gap emerges when
directly estimating wireless channels using only RSSI with-
out incorporating independent features. These limitations
are due to the lack of practical applicability in real-world
environments, inadequate datasets for reproducible results,
and high estimation errors [33]. Given the existing gaps
in research, in this paper, we propose a model to estimate
the wireless channel with RSSI as a primary metric using
various existing estimation techniques. Additionally, we have
developed a new outlier removal method, particularly for
reducing the estimation error of wireless channels in LP-IoT
devices. The outcome of our model exhibits much lowerMSE
than the MSE reported in [33] for various datasets.

III. PRELIMINARIES
This section presents the preliminary concepts utilised in
the design of this study. These include LSE, MLE, outlier
removal, and KF method. These techniques are often used
for estimating wireless channels; thus, we aim to implement
these techniques for LP-IoT wireless channels.

A. LEAST SQUARES ESTIMATION (LSE)
The LSE method is one of the basics of the estimation
theory [34]. It is used for identifying an unknown param-
eter or signal from a measurement or observation in the
presence of uncertainty or noise. It is an approach seen
in regression analysis to get the Best Fit Line (BFL) that
accurately portrays the correlation between an independent
and dependent variable. The BFL is stretched across a scatter
plot of data points to reflect the relationship between those
data points. This estimation method is among the most
successful for determining the BFL. Further explanation and
implementation of LSE for LP-IoT channel estimation can be
found in Section IV-B1.

B. MAXIMUM LIKELIHOOD ESTIMATION (MLE)
The MLE is a statistical technique for calculating the optimal
mean or standard deviation of the distribution of given
data. It maximises the log-likelihood function to estimate
the channel parameters and compares model fits using
information theory. MLE’s objectives are to discover the best
estimate of unknown parameter values based on observations
and evaluate different model parameters to pick the model
that fits the channel data the best [35].

C. OUTLIERS REMOVAL
The outliers are the number of observations that deviate
greatly from most data points. They can result from
measurement variability, data entry errors, or extreme values
not typical of the data set. The removal of these outliers
can significantly improve the estimation accuracy. Literature
mentions numerous methods for detecting and removing

TABLE 1. Symbols and notations from Section IV-A to IV-B2.

outliers, such as the Z-Score method, the Interquartile Range
(IQR) method, and Tukey’s fences method [36]. In this study,
we utilise IQR and Tukey’s fences technique to detect and
eliminate the outliers in the measured data.

D. KALMAN FILTER (KF)
The KF is an algorithm that uses measurements and
predictions to estimate the state of a system over time. It is
utilised in various applications, including navigation, control
systems, and signal processing, where there is uncertainty
in the data. The main principle underlying the KF is to use
a combination of predictions and measurements to estimate
the system’s true state, considering the uncertainty in both
measurements and predictions. The algorithm updates its
estimate of the state over time as new measurements become
available, leading to a more accurate estimate of the true state
of the system. The KF provides an advantage in that it is light
on memory because it does not need to keep any history other
than the previous state. This quality suits real-time estimation
for wireless sensor networks, especially LP-IoT applications,
which can not tolerate complex calculations [37].

IV. SYSTEM MODEL
This section presents two models: the first reflects the
theoretical model of the LP-IoT communication for decen-
tralised network architecture, while the second depicts the
implementation of certain channel estimation approaches
along with the process to reduce estimation error in the
presented IoT communication model. Readers are referred to
Table 1 to understand the symbols and notations used in this

17898 VOLUME 12, 2024



S. Arif et al.: Wireless Channel Estimation for Low-Power IoT Devices Using Real-Time Data

FIGURE 2. Generalised model for the communication of LP-IoT devices with M transmitters and N receivers.

FIGURE 3. An experimental implementation schematic of two IoT devices
(LoS Communication).

study from Section IV-A to Section IV-B2. Table 2 defines
the rest of the symbols and notations.

A. LP-IoT WIRELESS COMMUNICATION MODEL
Let us assume an LP-IoT network where there are M
number of total transmitter LP-IoT devices such that Dt =

{d1, d2, d3, · · · , dM } and N number of total receiver LP-IoT
devices such that Dr = {d1, d2, d3, · · · , dN } in the network.
The transmitting and receiving nodes have a Line of Sight
(LoS) communication within 3m communication range as
shown in Figure 2. Let us consider m as any transmitter from
the set of transmitter devices Dt , and n as any receiver from
the set of receiver devices Dr that are communicating at any
time instant. The transmitter device dm sends the signal vector
x to the receiver dn at the current time step through channel
hmn. The signal received at device dn can be written as:

yn = hmnx + vn, (1)

where x(M×1), and vn represent the transmitted signal and the
thermal noise respectively. Furthermore, the thermal noise vn
at device dn can be modelled as a Gaussian random variable.
Now, let us define the wireless channel between the LP-IoT

device pair (dm, dn) as a complex number hmn(1×N ) which can

mathematically be written as:

hmn = α + jβ, (2)

where both α and β are Gaussian random variables with each
havingN (0, 1) distribution. Since both α and β are assumed
as real Gaussian random variables (RVs), using [38] we can
write PDF of α and β as

pα(a) =
1√
2πσ 2

α

exp
[

−
(a− α)2

2σ 2
α

]
, (3)

and the pdf of β can be written as:

pβ (b) =
1√
2πσ 2

β

exp
[

−
(b− β)2

2σ 2
β

]
, (4)

where α ≜ E{α} and β ≜ E{β} are the statistical means,
whereas σ 2

α and σ 2
β are the variances of α and β respectively.

We assume that all the channels in the system are fading
channels that fade independently. By assuming the wireless
channel as a complex random variable, it can be represented
by ‘Euler’s formula’ [39] in terms of its amplitude A and
phase φ as:

hmn = Amnejφmn ,

where Amn and φmn represent the variations in the amplitude
and the direction of the signal between the device m and
n respectively, and ejφmn can be represented as (cosφmn +

jsinφmn). The hmn can now be represented as:

hmn = Amn[cos(φmn) + jsin(φmn)],

where Amn is multiplied to cos(φmn) and jsin(φmn) and is
represented as:

hmn = Amncos(φmn) + jAmnsin(φmn),
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which leads to the same representation of channel param-
eters as defined in equation 2. The magnitude of the wireless
channel between two LP-IoT devices, denoted by hmn can be
represented as:

|hmn| =

√
(α)2 + (β)2, (5)

whereas the phase φmn between transmitter and the receiver
device is given as:

φmn = tan−1
(

β

α

)
. (6)

In an ideal condition, the magnitude of hmn should equal 1,
whichmeans the received signal is the same as the transmitted
signal without creating any distortion in the received signal,
i.e. y = x. However, in the practical scenario, hmn is a time-
variant complex-valued number estimated at the transmitter
before transmitting the signal. Assuming the noise to be 0 i.e.
vn = 0, the received signal yn with the estimated channel ĥmn
between the two LP-IoT nodes can be represented as:

yn = ĥmnx. (7)

Overall, the primary goal of this study is to estimate
the LP-IoT channel hmn between dm and dn for the next
time steps using the current time steps. A specific scenario
that represents the communication between dm and dn is
illustrated in Figure 3, wherem and n denotes any transmitter
and receiver from the set of transmitter devices Dt and
receiver devices Dr respectively. To estimate the LP-IoT
wireless channel, we consider RSSI as an LP-IoT channel
metric collected by the practical deployment of LP-IoT
devices. To estimate RSSI, we investigate techniques that
minimise the sum of squared error (SSE) between the actual
and predicted LP-IoT channel values. A detailed explanation
of the process is described in the subsequent subsection.

B. LP-IoT WIRELESS CHANNEL ESTIMATION MODEL
In this section, we provide the model that uses several
estimation techniques to estimate the LP-IoT RSSI-based
wireless channel. First, the LSE andMLEwere implemented,
and their squared errors were obtained. These squared errors
were employed to establish the target error threshold (TET)
at which the implemented technique offers the most accurate
estimation. The (OUT-R) outlier removalmethodwas devised
and applied to satisfy the TET value. The maximum squared
error (via the LSE method) of the preserved channel values
after the OUT-R method was compared with TET. The
highest squared error measured by OUT-R did not correspond
to the TET. Then, we applied the KF method to the measured
channel data and compared its maximum squared error to
TET, which was near the TET value. Lastly, we combined the
Out-Filter method with KF. For this, we utilised the retained
channel values from the OUT-R method to implement KF
and compared its maximum squared error to the TET.
The combination of OUT-R and KF demonstrated that the
best estimation could be obtained by combining these two

methods. While initially designed for a specific scenario, this
method can be implemented within a distributed IoT network,
as depicted in figure 2. Notably, its implementation is viable
due to its minimal requirements in terms of execution time
and memory resources. For implementing this model, we use
the real RSSI-based LP-IoT channel data acquired from the
practical implementation in an indoor environment. Figure 4
illustrates the estimation model that highlights the process of
this designed model.

1) LEAST SQUARES ESTIMATION (LSE) FOR LP-IoT
WIRELESS CHANNEL
Consider the LP-IoT channel estimation problem where γ

represents the RSSI-based LP-IoT channel. The RSSI is one
of the wireless channel metrics utilised in wireless channel
assessment. Thus, we aim to estimate RSSI as a time-series
observation by the LSE method. The basic formulation of the
LSE approach consists of a set of K pairs of observations
(τk , γk ) that are used to determine a function that relates
the value of the dependent variable γ to the values of the
independent variable τ . we consider only one dependent
variable γ , with a linear function. The general equation of
the estimated BFL using the LSE method is given as:

γ̂ = ρ0 + ρ1τ, (8)

where γ̂ denotes the variable representing the estimated
LP-IoT channel values, τ denotes the variable which is
time-series in this case, ρ0 denotes the y-intercept and
ρ1 denotes the slope of the BFL. We assume that there
are some estimation errors between the measured and
the estimated channel values, which can be represented
mathematically in a generalised form as:

ϵ = γ − γ̂ , (9)

which can also be represented as:

γ = ρ0 + ρ1τ + ϵ, (10)

The variable ϵ represents the estimation error such as ϵ ̸=

0. Ideally, the estimation error ϵ should equal 0. However,
in practical implementation, there is always some estimation
error, which can be either positive or negative. The positive
error raises the estimated value to the actual value, which
needs to be lower. Similarly, the negative error decreases the
estimated value to the value that must be risen to get closer
to the actual value, thus decreasing the estimation error. The
ρ0 and ρ1 are called coefficients of regression that specify
the estimation parameters, which are fed into the LSE model
equation to get the BFL. Therefore, we must estimate the
parameters ρ0 and ρ1. The acquired BFL minimises the sum
of the squared errors between the actual and the estimated
LP-IoT channel values. The sum of squared error can be
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FIGURE 4. A LP-IoT wireless channel estimation model incorporates a number of estimating methods.

represented mathematically as [40]:

Sϵ =

K∑
k=1

(γk − γ̂k )2

H⇒

K∑
k=1

(γk − (ρ0 + ρ1τk ))2, (11)

where Sϵ denotes the sum of squared error between the actual
and estimated data, which needs to beminimised. This sum of
squared error Sϵ represents the closeness between the actual
and the predicted channel values [40]. To reduce the sum of
squared error, we take the derivative of Sϵ with respect to
ρ0 and ρ1 and setting them to zero gives the estimated values
of parameters ρ0 and ρ1 of BFL equation. To calculate ρ0,
we write the derivative of estimation error with respect to
ρ0 as:

∂Sϵ

∂ρ0
=

K∑
k=1

∂Sϵ

∂ρ0
(γk − (ρ0 + ρ1τk ))2.

To get the partial derivative with respect to ρo, we apply
the power rule and chain rule to get:

∂Sϵ

∂ρ0
= −2

K∑
k=1

∂Sϵ

∂ρ0
(γk − (ρ0 + ρ1τk )),

which can also be written as:

∂Sϵ

∂ρ0
= 2Kρ0 + 2ρ1

K∑
k=1

τk − 2
K∑
k=1

γk .

By setting the partial derivative of Sϵ with respect to ρo
equal to 0, and solving the equation gives the estimation

parameter ρ0 (y-intercept) of BFL as:

2Kρ0 + 2ρ1
K∑
k=1

τk − 2
K∑
k=1

γk = 0,

ρ0 =
1
K

(
K∑
k=1

γk − ρ1

K∑
k=1

τk

)
,

which can also be represented as:

ρ0 = γ̄k − ρ1τ̄k , (12)

where γ̄k denotes the mean of measured RSSI values, and τ̄k
denotes the mean time.

Next, we calculate ρ1 by taking the derivative of estimation
error with respect to ρ1 and set them to 0 as:

∂Sϵ

∂ρ1
= 2ρ1

K∑
k=1

(τk )2 + 2ρ0
K∑
k=1

τk − 2
K∑
k=1

γkτk ,

2ρ1
K∑
k=1

(τk )2 + 2ρ0
K∑
k=1

τk − 2
K∑
k=1

γkτk = 0,

which is then solved to get the second estimation parameter
ρ1 as a slope of BFL, and can be represented mathematically
as:

ρ1 =

∑K
k=1(γk − ( 1K

∑K
k=1 γk ))(τk − ( 1K

∑K
k=1 τk )))∑K

k=1(τk − ( 1K
∑K

k=1 τk ))2
,

which can also be written as:

ρ1 =

∑K
k=1(γk − γ̄k )(τk − τ̄k )∑K

k=1(τk − τ̄k )2
. (13)

The estimated data points illustrating the estimated LP-IoT
channel at each time instant can be formed using the LSE
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equation as:

γ̂k = ρ0 + ρ1τk + ϵk , (14)

where γ̂k denotes the variable representing the observed
LP-IoT channel values at k th instant, and τk denotes the
variable which is time-series in this case. The greater the
deviation between these data points and the anticipated BFL,
the more error is added. Thus, the LSE technique is founded
on the principle that the square of the acquired errors must
be as little as feasible. We consider the squared error against
each value of γ for the estimation analysis. The estimation
error at any time τk is defined as:

ϵk = γ̂k − γk , (15)

where γk denotes the actual acquired RSSI (LP-IoT channel
value), and γ̂k represents the estimatedRSSI at each time step.
To reduce the possibility of inaccuracy due to negative errors,
the LSE error equation is represented in the form of squared
error as:

ϵ2k = (γ̂k − γk )2, (16)

which leads to calculating the sum of squared error as
shown in equation 11. Next, we aim to estimate RSSI-based
wireless channel γ in matrix form. We take the vector
parameter ρ of dimension w× 1, representing the estimation
parameter ρ0 and ρ1. As we tend to estimate the BFL with
two estimation parameters, ρ0 and ρ1, we take w = 2. For the
estimated LP-IoT channel γ̂ = [γ̂1, γ̂2, . . . , γ̂k ]T to be linear
in the unknown parameters, the best approximate solution
to get the estimated channel values of γ̂ through LSE using
matrix notation is written in closed form as:

γ̂ = Xρ, (17)

where X is a known K × w matrix (K > w) of full rank w.
The matrix X is referred to as the observation matrix without
the noise PDF assumption. The open form of matrix notations
for γ̂ , X , and ρ can be written as:

γ̂1
γ̂2
...

γ̂k

 =


τ1 1
τ2 1
...

...

τk 1


[
ρ1
ρ0

]
. (18)

The LSE solution Sϵ(ρ) minimises the sum of the squares
of the entries of vector γ̂ − Xρ which represents the
error between the actual and estimated values as shown in
equation 11. The vector ρ represents the estimator vector. The
LSE solution of estimator ρ is found by minimising the sum
of squared error Sϵ(ρ) in matrix form. The Sϵ(ρ) in matrix
form is represented as:

Sϵ(ρ) =

K∑
k=1

(γk − γ̂k )2

= (γ − Xρ)T (γ − Xρ),

which is expanded, and solved mathematically to get:

Sϵ(ρ) = γ T γ − γ TXρ − ρTXT γ + ρTXTXρ. (19)

By taking the derivative of equation 19 with respect to ρ,
we can write as:

∂Sϵ(ρ)
∂ρ

=
∂

∂ρ
(γ T γ − γ TXρ−ρTXT γ +ρTXTXρ). (20)

By solving the derivative shown in equation 20, the term
γ T γ is eliminated because it does not involve ρ. As ρT has
dimensions 1×ω andXT is aω×K matrix, the multiplication
of these matrices gives the matrix having dimension 1 × K
which is then multiplied to γ having dimensions K × 1.
Therefore, the term ρTXT γ is reduced to scalar value and is
eliminated from the equation. Now, the equation 20 becomes:

∂Sϵ(ρ)
∂ρ

= −2XT γ + 2XTXTρ.

Setting the derivative of Sϵ(ρ) equal to zero as:

−2XT γ + 2XTXTρ = 0,

which is then solved and gives the LSE estimator as:

ρ = (XTX)−1XT γ , (21)

which provides the two estimation parameters ρ0 and ρ1 to
draw the BFL. The estimator values ρ are fed into equation 17
to get the estimated LP-IoT channel values. Next, another
estimation technique MLE is applied to the LP-IoT channel
values described in the subsequent subsection.

2) MAXIMUM LIKELIHOOD ESTIMATION (MLE) FOR LP-IoT
WIRELESS CHANNEL
We aim to apply MLE using the LSE method by assuming
the given vector of LP-IoT wireless channel observations
as γ1, γ2, . . . , γk . For this, we consider a previously used
LSE model as shown in equation 9. Using the LSE equation,
we target to estimate ρ0 and ρ1 utilising the MLE method.
We assume that all the estimation errors ek at any time instant
are independently identically distributed (IID) and follows
the normal distribution as ek ∼ N (0, σ 2). In this model,
we have ek as a random variable; therefore, the probability
density function (PDF) of the error ek can be written as:

f (ϵk ) =
1

√
2πσ 2

e−
1

2σ2
(ϵk−0)2

, (22)

where f (ϵk ) represents the PDF of the estimation error ϵk
at k th instant. We first need to determine the likelihood
function (LF) for MLE. The LF of ϵk is the Joint Probability
Distribution (JPDF) of all the random variables. As we have
assumed that estimation errors in this model are IID having
normal distribution, we can write the LF as the product of all
PDFs of estimation error as:

L(ϵ) =

K∏
k=1

f (ϵk ), (23)
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where L(ϵ) represents the LF of all estimation errors.
By substituting the equation 22 into equation 23, We can
represent LF as:

L(ϵ) =

K∏
k=1

1
√
2πσ 2

e−
1

2σ2
(ϵk )2 , (24)

which is simplified by product rule as:

L(ϵ) =

(
1

√
2πσ 2

)K
e−

1
2σ2

∑K
k=1(ϵk )

2
.

The LF can also be written using the equation 14 as:

L((ρ0, ρ1, σ 2)|τ ) =

(
1

√
2πσ 2

)K
e−

1
2σ2

∑K
k=1(γk−ρ0−ρ1τk )2 ,

The objective of MLE is to determine the model parameter
values ρ0 and ρ1 that maximise the LF over the parameter
space. Since we know that the log function is a monotonically
increasing function, it is easier to handle the log-likelihood
functions rather than dealing with the LF. Therefore, the
log-likelihood function of the model is expressed by taking
the natural logarithm on both sides as:

lnL((ρ0, ρ1, σ 2)|τ )

= ln
(

1
√
2πσ 2

)K
e−

1
2σ2

∑K
k=1(γk−ρ0−ρ1τk )2 .

Using the properties of logarithms, we can then simplify
the expression by splitting the logarithm of the product into
the sum of the logarithms of the factors as:

lnL((ρ0, ρ1, σ 2)|τ )

= K
{
ln
(

1
√
2πσ 2

)}
−

1
2σ 2

K∑
k=1

(γk − ρ0 − ρ1τk )2. (25)

Simplifying the first term of equation 25 by using the
logarithm rule to get:

lnL((ρ0, ρ1, σ 2)|τ )

=−K
{
ln σ +ln(

√
2π )

}
−

1
2σ 2

K∑
k=1

(γk−ρ0−ρ1τk )2. (26)

By rearranging the terms in equation 26, we can write as:

lnL((ρ0, ρ1, σ 2)|τ )

=K
{
− ln σ −ln(

√
2π )

}
−

1
2σ 2

K∑
k=1

(γk−ρ0−ρ1τk )2. (27)

By simplifying the logarithm of the product of the first term
in equation 27, the equation of log-likelihood can be written
as:

ln(L(ρ0, ρ1, σ 2
|τ ))

=−
K
2
ln(2π)−

K
2
ln(σ 2)−

1
2σ 2

K∑
k=1

(γk−ρ−ρ1τk )2. (28)

To find out the maximum likelihood estimators, we obtain
the partial derivatives of equation 28 with respect to each of
the three parameters ρ0, ρ1, and σ 2 as:

∂

∂ρ0
ln(L) = −

1
σ 2

K∑
k=1

(γk − ρ0 − ρ1τk ), (29)

∂

∂ρ1
ln(L) = −

1
σ 2

K∑
k=1

(γk − ρ0 − ρ1τk )τk , (30)

∂

∂σ 2 ln(L) = −
K
2σ 2 +

1
2σ 4

K∑
k=1

(γk − ρ0 − ρ1τk )2. (31)

To maximise the log-likelihood, we set the partial deriva-
tives with respect to ρ0, ρ1, and σ 2 equal to 0. Since we are
only concerned with the estimation parameters ρ0 and ρ1, the
equation 29 and 30 will be utilised for the estimation of these
parameters. For ρ0, we can write as:

1
σ 2

K∑
k=1

(γk − ρ0 − ρ1τk ) = 0,

which is then solved to get the estimated ρ0 as follows:

ρ0 = γ̄k − ρ1τ̄k .

Similarly, the estimated ρ1 is calculated by setting the
derivative with respect to ρ1 as shown in 32.

1
σ 2

K∑
k=1

(γk − ρ0 − ρ1τk )τk = 0, (32)

By solving equation 32, we get the estimated ρ1 which is
represented as:

ρ1 =

∑K
k=1(γk − γ̄k )(τk − τ̄k )∑K

k=1(τk − τ̄k )2
.

3) DETERMINING TARGET ERROR THRESHOLD (TET)
After implementing the linear estimation techniques (LSE
and MLE) on RSSI-based LP-IoT channel estimation,
we analyse the squared error acquired from LSE estimation.
At this stage, we are not considering the squared error
acquired fromMLE as it gives the approximate same squared
error as LSE. There is a need to determine the acceptable
squared error limit, referred to as the target error threshold
(TET), that gives us the maximum estimation accuracy to
minimise the estimation error. For this, we first calculate the
confidence interval of LP-IoT channel data to acquire the
TET. We assume that the LP-IoT wireless channel follows
the Gaussian distribution. Therefore, we set the interval of
µ±2σ from the PDF of LP-IoT channel data, which becomes
a 95.44% confidence interval. By using equation 33 and 34,
we get the confidence interval that lies between LCI =

−39.2108dBm andUCI = −39.0893dBm. This interval gives
the squared error interval between ϵL = 0.0287dBm and
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FIGURE 5. Determination of target squared error threshold (TET).

ϵU = 0.3277dBm as shown in Figure 5.

LCI = ρ0 +

{
0.9544(σ/

√
(K ))

}
, (33)

UCI = ρ0 −

{
0.9544(σ/

√
(K ))

}
, (34)

where LCI represents the lower boundary of confidence
interval, UCI represents the upper boundary of confidence
interval, ϵL denotes the lower limit squared error correspond-
ing to LCI , ϵU denotes the upper limit of squared error
corresponding to UCI , ρ0 denotes the estimated y-intercept
parameter of BFL, σ denotes the standard deviation of the
measured data, and K denotes the number of measurements.
We set the upper limit of the squared error, i.e. 0.3277dBm,
as the TET. After identifying the TET, we aim to remove
the outliers in the observed data described in the subsequent
subsection. The symbols and notations utilised from Sec-
tion IV-B3 to Section IV-B5 are explained in Table 2.

4) OUT-R METHOD
The next step to reduce the estimation error is to remove the
outliers. The general outliers are considered as the number
of observations outside the range of the other observations
closer to the mean value [41]. In the LP-IoT wireless channel
estimation scenario, we need to develop a method of outliers
removal that significantly reduces the estimation error and
reaches up to the TET, even if the data points are not too
far from the mean value. We aim to find the data points γk
that do not occur frequently. For this, we divide the data into
a group of 46 data points. As we have 262 LP-IoT channel
samples, we get 5.69 by dividing 262 samples by 46. Adding
a constant of 2 becomes 7.69, and rounding off the result
provides number 8. This value is the basis for identifying the
outlier for LP-IoT channel data. The equation of the outlier
detection method can be mathematically expressed as:

OutD =
K
G

+ 2, , (35)

FIGURE 6. A visual representation of major and minor outliers
boundaries with the range of retained RSSI after OUT-R method.

where K indicates the number of data samples and G denotes
the quantity of data samples in each group. We assume that
the γ values at which the number of data points are less than
8, we consider it as an outlier in our case and will remove it.
This method retains the 93.5199% of the data points, which
will be used further to reduce the estimation error.

Using this method, we detect the retained γ between
−40.8 dBm ≤ γ ≤ −37.6 dBm which yields 93.5199%
data. We select this range of γ values because it excludes γ

values at which the number of data points is lower than or
equal to 8, calculated using equation 35. The retained values
of γ can be achieved by calculating major outliers’ upper
and lower fences. The major outliers fences can be calculated
by using equations 36 and 37 and the minor outliers fences
are calculated by using equations 38 and 39 respectively. The
minor outliers can also be used to remove the outliers in some
cases. However, we do not consider minor outliers at this
stage.

Umj = Q3 + {a(IQR}, (36)

Lmj = Q1 − {b(IQR)}, (37)

where Q1 and Q3 denotes the 25th and 75th percentile,
while IQR represents the interquartile range which has
been acquired through subtracting Q1 from Q3. The filter
parameter a and b is set to 0.6857 and 0.1425 respectively. For
calculating the upper Umn and lower Lmn minor boundaries,
the following equations have been formulated:

Umr = Q3 + {f (IQR)}, (38)

Lmr = Q1 − {g(IQR)}, (39)

where f and g denotes the filter parameter which has been set
to 0.6857 ∗ 2 and 0.1425 ∗ 2 respectively. Figure 6 shows the
graphical representation of major andminor fences of outliers
acquired from equation 36, 37, 38 and 39. Figure 12a shows
the LSE implementation after removing the major outliers,
significantly improving the BFL and reducing the squared
error between the measured and estimated values as shown
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TABLE 2. Symbols and notations from Section IV-B3 to IV-B5.

in Figure 12b. The minor outliers do not significantly impact
the squared error compared to the major outliers. Therefore,
we do not considerminor outliers in this case.We are still a bit
far away from achieving our TET. As retained data points still
do not meet the TET, we investigate the KF method to reduce
further squared error and improve the estimation accuracy.

5) KALMAN FILTER (KF) METHOD FOR LP-IoT CHANNEL
ESTIMATION
KF is used to estimate the current state of any system
based on the previous state. It is an online technique and
thus considered to be computationally efficient for state
estimation, and hence is suitable for estimation in LP-IoT
devices [42]. KF provides an analytical solution for linear and
Gaussian models by recursively computing predicted density
(in the prediction step) and updated posterior density (in the
update step) [37]. In the prediction step, KF computes the
prediction step as:

p(sτ |z1:τ−1) = N (sτ : ŝτ |τ−1,Pτ |τ−1),

where sτ is the state vector at time τ , z1:τ−1 is the
measurement vector from time 1 to τ − 1, p(sτ |z1:τ−1) is
the predicted density of the state sτ given the measurements
z1:τ−1. Due to the assumption of linear and Gaussian
model for process and measurement, the predicted density
is Gaussian centred at the predicted mean state, ŝτ |τ−1 and
Pτ |τ−1 as the covariance. In the update step, the posterior

density is updated by taking new measurements into account
as:

p(sτ |z1:τ ) = N (sτ : ŝτ |τ ,Pτ |τ ),

where z1:τ is the measurement from time 1 to τ (current mea-
surement also included), p(sτ |z1:τ ) is the updated posterior
density of the state vector sτ given the measurements vector
z1:τ . The updated density is also Gaussian, centred at updated
mean state denoted by ŝτ |τ and covariance denoted by Pτ |τ .
Since the Gaussian distribution is completely defined by its
mean and covariance, ŝτ |τ−1, Pτ |τ−1, ŝτ |τ and Pτ |τ are only
required to be computed in each recursion.
Let us consider the LP-IoT system as a dynamic system

that changes its state over a reasonable time. For imple-
menting the update and prediction steps, we take the LP-IoT
wireless channel measurements retained after removing the
identified outliers by the OUT-R method (explained in
Section IV-B4) in the system. The number of data samples
retained after the OUT-R method is 246. We aim to estimate
the retained channel values (denoted by γ ) by the KF method
(using the update and prediction step). The LP-IoT channel
data is estimated in terms of RSSI measurements. Also,
the measurements include some random noise due to the
surrounding environment, which affects the wireless channel
data. In the experiment scenario, the location l1 and distance
between transmitter d1 and receiver d2 (at l1) are fixed.
Figure 7 depicts the prediction and update steps of KF’s
implementation. The process model equation for the LP-IoT
system (considered linear and Gaussian) is defined as:

sτ = Aτ−1sτ−1 + qτ−1,

where sτ is the state vector (denoted by vector notation,
however scalar in two-device communication case) at time
τ , representing the estimated RSSI value, Aτ−1 denotes
the state transition matrix having dimension 1 × 1, sτ−1
denotes the state at the previous time, and qτ−1 indicates the
process noise vector (scalar for two-device communication).
In this case, Aτ−1 is the identity matrix and qτ−1 has
the Gaussian distribution such that qτ−1 ∼ N (0,Qτ−1).
Now, the measurement model equation, which is linear and
Gaussian, can be represented as:

zτ = Hτ sτ + rτ ,

where, zτ is the measurement at time τ , Hτ denotes
the measurement model matrix having dimension 1 ×

1, rτ represents the measurement noise vector such that
rτ ∼ N (0,Rτ ) and Rτ represents the measurement noise
covariance matrix. Next, we aim to calculate the predicted
mean and covariance for the prediction step, followed by
the updated mean and covariance for the update step. The
predicted mean, and the predicted covariance for the LP-IoT
channel are computed as follows:

ŝτ |τ−1 = Aτ−1ŝτ−1|τ−1,

Pτ |τ−1 = Aτ−1Pτ−1|τ−1AT
τ−1 + Qτ−1,
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FIGURE 7. A standardised illustration of the KF technique used to
estimate the LP-IoT wireless channel.

where Qτ−1 represents the process noise covariance matrix,
and T denotes the transpose operation. To calculate the
updated mean and covariance, we first need to acquire the
innovation at time τ , innovation covariance at time τ , and
Kalman gain. The innovation can be defined as the difference
between the predicted and actual measurements. This differ-
ence may result from various factors, such as measurement
noise, modelling errors, and unmodeled disturbances. The
innovation is utilised by the KF to update the state estimate
and covariance matrix to minimise the prediction error.
Specifically, the KF employs the innovation to calculate
the Kalman gain matrix, which determines the balance
between the prediction and the measurement in the state
update step. A large innovation (i.e., a significant discrepancy
between the predicted and actual measurement) will lead
to a greater Kalman gain, which gives the measurement
more weight in the state update step. In contrast, a small
innovationwill produce a smaller Kalman gain, increasing the
prediction’s weight during the state update step. The equation
for predicting the measurement using the state estimate is
written as follows:

ẑτ = Hτ ŝτ . (40)

KF assumes that measurement noise is distributed normally
having zero-mean, with a known covariance matrix Rτ .
As a result, the KF predicts the expected measurement value
based on the state estimate alone, without considering the
measurement noise, as mentioned in equation 40. Utilising
the predict measurement equation, the equation of innovation
at time τ can be written as:

vτ = zτ − ẑτ

H⇒ zτ − Hτ ŝτ |τ−1,

where vτ denotes the innovation vector at time τ . The
innovation covariance matrix is written as:

Sτ = HτPτ |τ−1HT
τ + Rτ ,

where Sτ represents the innovation covariance at time τ . Now,
using the innovation covariance matrix, the Kalman gain can
be determined as follows:

Kτ = Pτ |τ−1HT
τ S

−1
τ ,

TABLE 3. General characteristics of Waspmote platform [43].

where Kτ denotes the Kalman gain at time τ . After
calculating the Kalman gain, we aim to calculate the updated
mean state and covariance. The updatedmean and the updated
covariance can be obtained from the following equations,
respectively:

ŝτ |τ = ŝτ |τ−1 + Kτvτ ,

Pτ |τ = Pτ |τ−1 − KτSτKT
τ .

This implementation is a scalar version of the KF used
for communication between two LP-IoT devices. However,
vectors and matrices have been used in the equations because
the vector and matrix notation facilitates us to convey the
equations briefly and efficiently. In the scalar variant of the
KF, both the state and the measurements are uni-dimensional,
so the vectors andmatrices are simplified to scalar values. For
example, the state vector s becomes a scalar value s, whereas
the measurement matrix H becomes a scalar value h.

V. EXPERIMENTAL SETUP
This section describes the required hardware and its setup
to conduct this investigation study, along with a detailed
explanation of data collection by setting up the scenarios in
an indoor CSU laboratory environment.

A. PLATFORM FOR DATA COLLECTION
The experimental test-bed was established utilising Wasp-
mote sensor devices [45]. Waspmote, an IoT sensor device
platform, supports multiple sensor technologies, expansion
boards, and communication protocols. Its comprehensive
and well-documented codebase has shown field-proven
reliability and stability. It is currently extensively used in IoT
research [46], [47], [48], [49]. The hardware architecture of
Waspmote has been specifically developed to operate with
minimal power. Table 3 provides technical specifications
for a Waspmote device. It explains the detailed power
consumption specifications across various operational states,
encompassing ‘On,’ ’Sleep,’ ‘Deep Sleep,’ and ‘Hibernate’
modes. It also highlights the platform’s I/O capabilities,
featuring seven analog inputs and eight digital I/O pins, along
with essential communication interfaces, including UARTs
(Universal Asynchronous Receiver-Transmitter), I2C (Inter-
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TABLE 4. XBEE PRO communication parameters [44].

Integrated Circuit), SPI (Serial Peripheral Interface), and
USB (Universal Serial Bus). Furthermore, it emphasises the
onboard sensors, specifically the embedded accelerometer
sensor, which can measure multi-axis acceleration across
different ranges. It outlines the available sampling rates in
low-power and normal modes. Finally, the table mentions
the key electrical characteristics, covering battery voltage,
USB charging parameters, and solar panel compatibility. This
comprehensive information is of great value to researchers
seeking to choose an appropriate IoT platform for experimen-
tation, considering the diverse range of IoT devices and their
corresponding applications.

Numerous communication technologies are used to com-
municate between IoT devices. ZigBee is the most widely
used technology for short-distance and indoor communi-
cation. It is used in most IoT applications that require
short-range communication [50] [51]. XBee-Pro S1, a variant
of ZigBee, has a centre frequency of 2.4GHz, and it
supports the requirements of LP-IoT networks. This radio
frequency module has been designed according to the IEEE
802.15.4 standards [52]; hence, it has been used for this
preliminary experiment with the Waspmote sensor device.
Table 4 demonstrates the parameters for XBEE PRO S1
utilised in this research.

B. CONFIGURATION AND SETUP
The XBee-Pro S1 was configured by XCTU (an open-source
multi-platform for powerful wireless network configuration
options and architecture) [53] for configuring XBee-Pro S1.
The main configuration settings include setting up the operat-
ing modes of XBee-Pro S1. The XBee-Pro S1 was configured
by XCTU (an open-source multi-platform for powerful
wireless network configuration options and architecture) for
configuring XBee-Pro S1. The main configuration settings
include setting up the operatingmodes of XBee-Pro S1. XBee
can be operated in transparent (AT) and Application Pro-
gramming Interface (API) modes. The AT mode facilitates
serial communication between the transmitter and receiver,
and the data is immediately transferred to the identified
destination address. The API mode provides the structured
interface and is used to communicate with multiple devices at
a time by organising the packets in a frame-based structure;
hence, it assists in establishing complex communication [54].
At this stage, we set the devices in AT mode as we are
considering a basic two-device setup that does not involve

TABLE 5. Five RSSI observations γ1(τ ) to γ5(τ ) and its mean γ (τ ) for
initial twenty seconds.

complex communication. It is also required to configure the
devices by simultaneously updating the value of the first
module’s DH and DL parameters to the values of the second
module’s SH and SL parameters. The channel values based
on RSSI over a certain time were collected using the Python
libraries.

C. TEST-BED DESIGN
The designed experimental test-bed for this research is based
on the basic two-device setup where one Waspmote IoT
device acts as a transmitter d1 while the other acts as
a receiving node d2 having LoS communication between
them. Using customised source code, the packet information
was received using Waspmote’s open-source IDE (Integrated
Development Environment). Figure 8 illustrates the lab
layout of the experiment in the laboratory. The collected
data includes the timestamps, sent packets, transmitter ID,
transmitter power level and RSSI represented by (γ ) at the
receiver. However, we are interested only in RSSI at each
timestamp because this data will be used to model h later
in this research. The timestamp has been inserted before
receiving each packet on the receiver device d2. The transmit
power Pt ofWaspmote is 18dBm. ChannelC was used for the
ZigBee (XBee-PRO S1) communication.

1) EXPERIMENT SCENARIO - RSSI VS TIME
In this scenario, the Waspmote transmitter d1 and the
Waspmote receiver d2 were placed at a fixed distance
of 2.75m in the CSU research laboratory having LoS
communication. The transmitter was placed on the centre
table in the room, and the receiver was placed on a chair
having different heights of table and chair. Both devices
are connected to the laptop. The surrounding environment
has computers, chairs, a centre table, and a whiteboard,
as shown in Figure 8. We collected five readings of the RSSI
till 262 seconds using this setup. Then, we calculated the
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FIGURE 8. Experimental lab layout (fixed distance and varying location scenarios).

FIGURE 9. RSSI for four different locations (l1, l2, l3, l4) - Fixed distance between transmitter and receiver.

arithmetic mean of all five readings at each timestamp to
observe the fluctuations in RSSI having stationary devices till
262 seconds, which can be mathematically represented as:

γ (τ ) =
1
r

r∑
q=1

γq(τ ), (41)

where r represents the number of readings for each time slot,
and the summation is taken over all the individual readings
γq(τ ) at timestamp τ , where q ranges from 1 to r . Table 5
represents the RSSI data-set of initial 20 secs collected at the
first location in a laboratory environment as explained earlier
in subsection V-C1. The complete data sets can be acquired
on request.

Next, we tend to extend the existing experiment scenario.
For this, we moved the receiver to three more locations,
such as (l1, l2, l3, l4), and recorded the RSSI data having a
fixed distance of 2.75 m between the transmitter and receiver
device having LoS communication. Then, we processed the
data using the same procedure as represented in equation 41.
The behaviour of RSSI for all four locations can be seen in
Figure 9.

VI. RESULTS AND DISCUSSION
In this work, conventional estimation techniques have been
implemented to estimate the LP-IoT wireless channel. For
this, we investigated the implementation of LSE and MLE
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FIGURE 10. LSE and MLE methods for LP-IoT wireless channel.

FIGURE 11. Squared error acquired by implementing LSE and MLE for LP-IoT wireless channel.

FIGURE 12. Least square estimation and its squared error for LP-IoT wireless channel followed by the OUT-R method.

to acquire the squared error for analysis. In other systems,
the BFL acquired by LSE and MLE minimises the sum of

squares of estimation error and is the most likely function
to produce the observed data. However, the squared error
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FIGURE 13. LP-IoT channel estimation by KF using real measurements.

FIGURE 14. LP-IoT channel estimation by KF using the measurements retained after implementing OUT-R
method.

FIGURE 15. The squared error representation by the implementation of Kalman filter method with and without OUT-R method.

analysis in our implementation between the measured and
estimated channel (RSSI) data indicates that the squared error
must be greatly reduced to increase the estimation accuracy.

There are established procedures to minimise squared errors,
but our goal is to obtain the most accurate estimation
with the least processing time. Therefore, we applied LSE
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FIGURE 16. Visual representation of squared error and sum of squared error minimisation by implemented estimation techniques.

and MLE methods for LP-IoT channel estimation as seen
in Figures 10a and 10b, which yield an estimate with a
maximum squared error of approximately 6.94 dBm (from
LSE and MLE) as shown in Figures 11a and 11b. This
squared error is significantly high and may not provide
an accurate estimation. An outlier removal method named
OUT-R was developed and applied to reduce this squared
error. This method reduced the maximum squared error of
6.94 dBm acquired fromLSE andMLE to 4.06 dBm. The BFL
representing the estimation after implementing the OUT-R
method and its squared error representation can be seen in
Figures 12a and 12b.
Next, the KF method was applied to the data retained

after the OUT-R method to minimise the squared error
further and achieve the TET as shown in Figure 14. The
squared error acquired through implementing the KF (after
the OUT-R method) gives the maximum squared error
of 0.32 dBm approximately equal to the upper fence of
pre-set error threshold (TET) of 0.32 dBm with a negligible
difference as depicted in Figure 15b. The illustrative rep-
resentation of squared error and the sum of squared errors
using the five techniques (LSE, MLE, OUT-R, KF and
KF with OUT-R method) can be seen in a bar graph
in Figures 16a and 16b.

Next, we investigated the direct implementation of KF
using real measurements without implementing the OUT-R
method. The straightforward implementation of KF without
OUT-R (as shown in Figure 13) provides the maximum
squared error of 0.39 dBm (as shown in Figure 15a) and the
sum of squared error that is 10.46 dBm. However, the KFwith
OUT-R method gives the maximum squared error of 0.32
dBm (as shown in Figure 15b) and the sum of squared error
of 8.21 dBm. The comparison between the implementation
of KF with and without the OUT-R method indicates that the
estimation accuracy of the LP-IoT wireless channel can be

TABLE 6. The representation of LP-IoT channel estimation by KF method
with OUT-R, evaluated at varying receiver locations (scenario 2).

improved by combining the OUT-R method with KF instead
of implementingKF straightaway. Subsequently, we analysed
the implementation of OUT-R at different locations, which
led to the retention of all the data points (no outliers detected)
according to the range of RSSI defined in the OUT-Rmethod.
Table 6 displays the outcomes of RSSI estimation conducted
at different locations. The summarised estimation results for
two experiment scenarios are presented in table 7. Finally,
the results are compared to the findings reported in [33]. The
study demonstrates that the MSE of RSSI prediction in [33]
is significantly higher when compared to KF with the OUT-
R method. The MSE values reported in [33] exhibit a range
between 38.3dBm and 45.54dBm for all datasets. However,
when employing the OUT-R approach with the KF, the
MSE values range from 0.01dBm to 0.03dBm. Nevertheless,
it is acknowledged that the datasets utilised in our research
scenario are constrained, with intentions to expand them in
future research. Furthermore, it is imperative to enhance the
OUT-R technique by improving the LP-IoT RSSI ranges,
considering diverse scenarios, such as fluctuating distances
between LP-IoT devices and a mixed mobility environment.
Furthermore, we intend to apply this channel estimate model
in scenarios without direct LoS, known as Non-Line-of-
Sight (NLoS) conditions. In doing so, we will include
additional channel characteristics to assess and confirm the
model’s resilience and ability to be applied across many
scenarios.
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FIGURE 17. LP-IoT channel estimation by KF with OUT-R method at locations l2,l3, and l4.

TABLE 7. The summerised result of two experiment scenarios for KF with
OUT-R method.

VII. CONCLUSION AND FUTURE WORK
This study demonstrated the wireless channel estimation for
low-power IoT devices based on RSSI. The LP-IoT wireless
channel data was acquired by deploying two Waspmote

LP-IoT devices with LoS communication in an indoor envi-
ronment. The system model provided in this paper consists
of a theoretical communication model and an estimation
model for the LP-IoT wireless channel. The traditional
estimation techniques (LSE and MLE) were utilised for the
LP-IoT channel estimation to estimate the wireless channel.
By implementing these estimation techniques, we analysed
the squared and sum of squared errors and obtained the target
error threshold (TET) by calculating the confidence interval.
A novel outlier removal approach for estimating the LP-IoT
channel named OUT-Rwas developed to meet the TET value.
Using this strategy, we could reduce the estimation error but
could not reach the TET value. Next, following the OUT-
R method, the KF technique was applied to the retained
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LP-IoT channel data to reduce further estimation error and
achieve the TET. According to the KF estimation results, the
squared error was 0.32 dBm, closer to the TET squared error
of 0.32 dBm. The conclusion of this study shows that the
combination of the OUT-R technique and KF can produce
reliable estimations for LP-IoT wireless channels.

While the OUT-R method with KF demonstrates favorable
results across different experiment scenarios, its performance
in a dynamic indoor environment where LP-IoT devices
relocate arbitrarily has yet to be examined. This inves-
tigation is necessary to enhance the model’s versatility,
generalisability, and robustness. Our future research plans
also include exploring specialised algorithms tailored to IoT
environments, integrating additional channel parameters, and
assessing their applicability across diverse communication
devices. It is important to note that the LP-IoT wireless
channel data utilised in this study is derived from a
limited dataset. Nevertheless, conducting evaluations on
more extensive datasets is imperative to investigate the
effectiveness of the employed technique.

An interesting aspect of this work is to integrate Machine
Learning (ML) with the extensive datasets in LP-IoT
wireless channel estimation, particularly in various indoor
experimental scenarios. This aspect is also planned for future
studies.
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