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ABSTRACT High-resolution (HR) optical remote sensing images are typically small in swath and, due to
cloud cover, their revisit period, mosaic error, and other problems, it is often infeasible to obtain a large
range of remote sensing images for a study area. Meanwhile, low-resolution (LR) satellite images suffer
from insufficient spatial and texture information for ground objects. Therefore, classifying a study area with
high spatial resolution, large area, and no cloud occlusion using optical remote sensing imagery is very
difficult. In recent years, the rapid development of super-resolution reconstruction (SRR) technology has
made high-quality spatial resolution reconstruction possible. The SRR of real images is usually accompanied
by problems such as sensor spectral range differences, cloud occlusion in the research area, and the SRR
algorithm sacrificing a lot of the original information. In this study, with an improved PGGAN, we use
only a small number of samples, the wide-swath medium-resolution satellite was restored to the same
resolution as the high-resolution satellite, a newmethod for SRRmulti-spectral optical remote sensing image
classification based on texture reconstruction information is proposed, and a wide range of high-precision
feature classifications are achieved in the study area. In order to solve the problem of spectral distortion
in the process of multi-spectral image SRR and the weak generalization of optical remote sensing image
ground object classification due to the difference between temporal and spatial features, we combine the
idea of ground object classification with texture features obtained after super-resolution reconstruction.
We used the support vector machine (SVM) and random forest (RF) classification methods to evaluate
the classification effect of each texture spectral feature combination, with the overall accuracy (OA) of the
SVM and RF classifiers reaching 98.93% and 98.51%, respectively. The land-use and land-cover (LULC)
classification accuracy of the SRR images combined with texture features is much higher than that when
directly classifying the original GaoFen-1 and Sentinel-2 images. The obtained results imply that the method
of superimposing texture features allows for better classification results in the Liaohe estuary area, providing
a new technical idea for the study of LULC classification.

INDEX TERMS Super-resolution, deep learning, generative adversarial network, land use and land cover,
multi-spectral remote sensing.

I. INTRODUCTION
As the cornerstone of remote sensing image analysis, remote
sensing image feature classification plays a very important
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role in precision agriculture [1], military reconnaissance,
urban land planning [2], and topographic map updating [3].
Crucial challenges in using optical remote sensing imagery
for analysis relate to the temporal and spatial resolution, cost,
and availability of the data. High-resolution(HR) images have
higher resolution, smaller pixels, and richer details, but are
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often not freely available, cloudy weather and stitching errors
further limit the practical application of HR optical satellite
images.

To solve these problems, special attention is paid to
Sentinel-2A/B data, which is an excellent choice for rapid
earth observations due to its high temporal resolution (about
5 days). However, the Sentinel-2’s red, green, blue, and near
Infrared(RGBN) bands have a spatial resolution of only 10m.
Super-resolution reconstruction(SRR) is an image processing
technology that restores high-resolution images by applying
algorithms to multiple sequential low-resolution(LR) images
with complementary information or a single LR image [4].
In order to provide a large area of high-resolution cloud-free
imagery (2.5 m per pixel) of the study area, we adopt an SRR
method based on style transfer, comprising an improvement
of the PGGAN model proposed by NVIDIA in 2017 [5],
which is able to achieve 4× cross-sensor super-resolution of
Sentinel-2 multi-spectral images.

To date, numerous studies have focused on improving
remote sensing image resolution and enhancing the accuracy
of various visual tasks by combining image reconstruction
methods. In contrast, some existing studies have improved
the detection accuracy by combining the SRR and target
detection tasks, or the super-resolution and segmentation
tasks, in order to improve the segmentation results [6], [7].
However, there have been relatively few studies focused
on improving the classification accuracy of remote sensing
images. We aim to solve the problem that images cannot
be accurately classified after SRR. The first challenge is
the limited availability of SRR data sets for specific areas.
Although many open-access data sets [8], [9] can establish
identification from satellite data, migration from one study
area to another site may not be applicable due to differences in
ground features and spatial information. Therefore, we focus
on collecting a unique data set for SRR and classification
evaluation in the Liaohe planting area.

In our study, we demonstrate the possibility of classify-
ing HR reconstructed images, and integrate texture spatial
information to compensate for the misclassification of recon-
structed images due to differences in spectral information.
The use of remote sensing data with a spatial resolution of
10 meters leads to the identification of two or more features
with unclear classification boundaries, such that the resolu-
tion accuracy is also low. We aim to use free, easily available,
and wide-coverage medium-resolution optical remote sens-
ing data—such as those from Sentinel-2A/B—for accurate
classification after reconstruction. If associated paired data
sets can be obtained, our method can also be applied to
classification tasks in other regions. In summary, the key
contributions of this paper are as follows:

• We used a modified PGGAN called PGGAN-MSR,
which made it more suitable for multispectral remote
sensing image SRR in engineering by trimming the
generator and adding skip connections, Our method
achieved resolution enhancement and good style transfer
between different satellite sensors.

• Through a small number of SRR datasets, we have
achieved accurate classification of remote sensing
images in the study area with a larger width, higher
resolution, and no clouds.

• A new classification method based on resolution recon-
struction combined with texture features is proposed,
including the super-resolution of satellite imagery from
different sources. In particular, Sentinel-2 satellite
imagery was reconstructed to 2.5 m resolution using
GaoFen-1 (GF-1) images.

II. RELATED WORK
A. REMOTE SENSING IMAGE SUPER-RESOLUTION
RECONSTRUCTION
1) TRADITIONAL METHODS
Traditional SRR methods for remote sensing images can be
divided into three main categories: Frequency domain meth-
ods, spatial domain methods, and frequency domain–spatial
domain combination methods. Frequency domain methods
can be mainly divided into spectrum unaliasing algorithms,
recursive least square methods, and so on. As the theoreti-
cal premise of such methods is too idealized, making them
unable to be effectively applied in many scenarios, this kind
of method is no longer a mainstream subject of research.
Although spatial domain methods have good flexibility, they
involve a lot of factors such as fuzzy motion, optical fuzzi-
ness, and other complex loss models. As a result, relevant
optimization methods are complicated and the calculation
cost is high; thus, they cannot become mainstream meth-
ods. Although frequency–spatial [10] combination methods
combine the advantages of frequency and spatial domain
methods [11], they cannot become mainstream methods due
to their high computational complexity, requiring a large
amount of computation [12].

2) DEEP LEARNING METHODS
The first image SRR method based on deep learning was
proposed by Dong et al. in 2016 [13]. Deep learning meth-
ods break the limitations of traditional methods, while also
greatly improving the reconstruction effect. First, LR and
HR remote sensing images are input into the deep learn-
ing method for learning and training, and the mapping
relationship between LR and HR remote sensing images
is obtained. Then, LR remote sensing images are input
into the trained depth model, through which the recon-
structed super-resolution remote sensing images are obtained.
At present, themost commonly used SRRmethods for remote
sensing images based on deep learning are based on convo-
lutional neural networks (CNNs) and generative adversarial
networks (GANs).

In terms of remote sensing image SRR, the threemost com-
monly used CNN architectures are SRCNN, VDSR [14], and
EDSR [15]. These three methods have achieved good results
for the SRR of natural images. SRCNN was the first method
to apply a CNN for super-resolution. Based on SRCNN,

VOLUME 12, 2024 16831



H. Han et al.: Remote Sensing Image Classification

VDSR introduces a residual network and expands the func-
tion of SRCNN, while EDSR is one of the best methods for
general image SRR.

A generative adversarial network (GAN) is a deep model
that contains at least two modules—a generative model
and a discriminant model—through which the mutual game
learning of these two models produces high-quality results.
An image SRR method based on GAN was first proposed
by Ledig et al. [16]. Subsequently, many researchers have
used GANs for SRR of optical remote sensing images
and designed different module combinations for different
super-resolution tasks on remote sensing images. Haut et
al. have focused on the generative model and proposed an
hourglass-type generation network architecture [17]. The net-
work was trained in an unsupervised manner. The generating
network took random noise as input, generated low spatial
resolution data through down-sampling, then transmitted it to
the up-sampling structure. The model was optimized repeat-
edly, and finally generated HR pictures. Compared with mod-
ern unsupervised SRR methods, their model showed good
results on the UC Merced, RSCNN7, and NWPU-RESIS45
data sets, especially when the image was magnified by
4 times. Jiang et al. have proposed an edge enhancementGAN
based on a generative adversarial network which consists
of two sub-networks: an ultra-dense sub-network (UDSN)
and an edge-enhanced sub-network (EESN) [18]. When the
UDSN was used for image reconstruction, the reconstruction
result appeared sharp and the edges were seriously pol-
luted by noise. Therefore, EESNs were specially designed
to enhance the edges by learning a noise mask. Compared
with the classical SRCNN, VDSR, and SRGANmethods, the
reconstruction effect of this method was greatly improved.

SSR data sets for remote sensing images are typically
constructed with respect to specific locations and individ-
ual sensors, resulting in limited ability to generalize models
between different locations and sensors. Xiong et al. have
improved the loss function and network structure of SRGAN,
and proposed an improved SRGAN method (ISRGAN) [19].
The ISRGAN method makes the GAN model training more
stable and enhances the generalization ability, such that the
remote sensing image can be used anywhere and for dif-
ferent sensors once it is trained. Their experimental results
indicated that the accuracy of land-cover classification could
be significantly improved by using ISRGAN super-resolution
reconstruction; in particular, for roads and buildingswith high
resolution texture, the accuracy was increased by 15%.

B. LAND COVER INFORMATION EXTRACTION COMBINED
WITH TEXTURE FEATURES
In terms of land-cover monitoring, remote sensing is mainly
used for the extraction and research of land-cover informa-
tion [20], [21]. In previous research on image information
extraction, image spectral information has been mainly used;
however, if only the image spectral information is consid-
ered, the optical remote sensing image information extraction

process may be affected by shadow, noise, atmospheric cor-
rection errors, and other factors, having a certain impact on
the extraction results. There may also be problems related to
‘‘different objects with the same spectrum’’. Therefore, image
information extraction through spectral information alone is
limited in practice [19]. The emergence of texture features has
provided a solution to this problem. As the derivative data of
the image, the texture information reveal the spatial variation
law and spatial correlation of the grayscale information of the
image. Texture features can reflect the spatial structure infor-
mation of remote sensing images and the spatial distribution
characteristics of the image grayscale, and the problem of the
‘‘different objects with the same spectrum’’ can be signifi-
cantly improved through the combination of texture features
and spectral features. With the popularization of high spatial
resolution remote sensing image applications, the importance
of texture has attracted more attention, as the texture features
of high-resolution images are clear and complex, and their
differences are large. As such, the use of texture features can
effectively improve the accuracy of LULC classification.

In the research on land-cover information extraction from
remote sensing images combined with texture characteristics,
the earliest method of texture analysis was used directly for
information extraction; however, the application of this clas-
sification method was greatly limited, and its accuracy could
not be guaranteed. Some studies have used texture features
as a supplement to extract land-cover information from areas
with poor multi-spectral data extraction accuracy [22], [23].
These two methods simply used spectral information and
texture information, and did not combine the advantages of
both for classification. Therefore, the method of combining
texture information with spectral information has become
a research hotspot. Most commonly, texture information is
used as a supplement to synthesize the texture feature image
with the original image through band synthesis, followed by
directly superimposing the two based on their dimensions,
the result of which is a composite image which is used
for land-cover classification. Cao et al. have applied texture
features for remote sensing image classification in 2004 [24].
Many researchers have conducted inspiring studies, and a
large number of applications have emerged. GLCM is one
of the most widely used texture features for remote sens-
ing image analysis: by calculating the correlation between
two points in the image at certain distances and directions,
comprehensive information of the image in terms of direc-
tion, amplitude, and speed can be reflected. Wang et al.
have plotted Robinia forests using a combination of spec-
tral, spatial, and GLCM texture information from IKONOS
images [25]. Godinho et al. have combined the multi-spectral
band with a vegetation index and GLCM texture to improve
LULC classification [26]. Mananze et al. have developed
and tested an automated land-cover mapping method for
a study area in Mozambique, which combined the Land-
sat 7 and 8 multi-spectral bands, a vegetation index, and
GLCM texture features [27]. Hasituya has proposed a new
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FIGURE 1. Geographic location of the study area within Liaoning Province, China. The red box in the figure shows the range covered by GF-1 with
narrow width and high spatial resolution.

scheme combining spectral and texture features to monitor
plastic-covered agricultural land, and used an SVM classi-
fier for classification, which obtained a better classification
effect [28]. Sarzynski et al. have combined PALSAR-2 and
Landsat 8 satellite imagery to map oil palm plantations, using
GLCM texture features derived from PALSAR-2 data on the
Google Earth Engine (GEE) to improve classification [29].
Przemysław has systematically summarized and compared
the effects of different texture analysis methods on land-
use classification [30], and concluded that the combination
of spectral and GLCM texture information can significantly
improve the classification result. Hossein et al. have extracted
spectral, texture, and other features from Landsat 8 satellite
imagery using the GEE cloud computing platform, in order to
accurately classify a study area [31]. Wei et al. have extracted
six image features including texture features of GF-6 as
feature combinations, then used RF classifiers to accurately
classify urban areas [32].

III. MATERIALS AND METHODS
A. STUDY AREA
Rice is the main crop planted on both sides of the Liaohe
River. The single-cropping rice area in the Liaohe River
Delta [33] is the main rice-producing area in the Liaohe Plain,
which is an important japonica rice-producing area in China.
It is located in the southwest of Liaoning Province, between
40◦39 ‘N and 41◦27’ N. Between 121◦ 25’E and 122◦ 30’E,
the ground is flat and there is plenty of water without moun-
tains. There is enough river water to irrigate the paddy fields.
The study area is characterized by a warm temperate con-
tinental semi-humid monsoon climate, with sufficient light,
four distinct seasons, and slightly alkaline soil, all of which
is conducive to the growth and development of rice. The
average annual temperature ranges from 8 ◦C to 11 ◦C and
the average annual precipitation is 618.62 mm. Its estuary

is an important wetland conservation area in China, located
north of Liaodong Bay and close to the Bohai River estuary,
with coordinates latitude of 40◦45’–41◦10’, east longitude of
121◦30’–122◦00’, and covering an area of 223,000 hectares.
Located in Panjin City, Liaoning Province, to the southeast
of the wetland is the Yingkou urban area, located 35 km from
the Panjin urban area. Figure 1 shows the geographic location
of the study area.

B. DATASET FOR SR
In this section, we provide a detailed description of the data
used to train the GAN model and the image data we used to
accurately classify the Liaohe agricultural area.

1) SATELLITE IMAGERY USED IN THE EXPERIMENTS
a: GAOFEN-1
The Gaofen-1 (GF-1) satellite is the first satellite in China’s
high-resolution Earth observation system [34], providing
breakthrough advancements in multiple key technologies
such as optical remote sensing combining high spatial resolu-
tion, multi-spectrum, and wide land coverage. It has a design
life of 5–8 years, and its main parameters and load indicators
are provided in Tables 1 and 2.

TABLE 1. The orbit parameters of GF-1 and Sentinel-2.

b: SENTINEL-2
The Sentinel-2(A/B) satellite, which is part of the Global
Environment and Security Monitoring program, was
launched on June 23, 2015. It carries a multi-spectral imager
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which is able to cover 13 spectral bands with different res-
olution, from visible light and near-infrared to short-wave
infrared, with different spatial resolutions and a width of
290 kilometers. Its main parameters and load indicators are
provided in Tables 1 and 2.

TABLE 2. Band information for GF-1 and Sentinel-2.

2) DATA SET FOR TRAINING
Most standard remote sensing image super-resolution data
sets are for scattered land areas and cannot be used for ver-
ification of the large-area SRR accuracy in specific research
areas. After careful consideration, we combined the Patche-
sExtraction toolbox provided by Orfeo-toolbox [35] to create
the P-W-A (paddy-wetland-August) data set for model train-
ing and comparison of the training results. The P-W-A data
consisted of sharpened 2.5 m resolution GF-1 images and
10 m resolution Sentinel-2 images for the same date, includ-
ing buildings, wetlands, rice fields, water bodies, roads,
ponds, and other landforms. Samples were collected every
500 meters in the study area to create super-resolution recon-
structed images, as shown in Figure 2. A total of 2000 samples
were collected, some of which contained cloud images.
To achieve 4× super-resolution reconstruction, HR image
blocks were cropped to 128 × 128 and LR images were
cropped to 32 × 32.

FIGURE 2. Pairs of images produced for training of generative adversarial
networks.

C. TECHNOLOGY ROADMAP
We designed a comprehensive experimental plan for this
study, consisting of two parts: Multi-spectral remote sensing
image SRR based on deep learning, and classification com-
bined with texture features. In the first stage, we achieved 4×
upgrading of image resolution. We used the RGBN bands
of the down-sampled GF-1 and band-rearranged Sentinel-2
to create LR and HR image pairs with resolutions of 10 m
and 2.5 m, respectively. The data sets containing the HR and
LR images were used to train a pre-trained PGGAN-MSR
model, for which we enlarged the image and increased its
resolution from 10 meters to 2.5 meters. The trained model
was applied to Sentinel-2 images with a spatial resolution
of 10 m to generate a wide high-precision image with a
resolution of 2.5 m. Next, we used mature SVM [36] and
RF [37] classifiers to accurately classify agricultural planting
areas by increasing the spatial information of the texture
features.

D. SR METHOD
GAN-based SRR tasks usually utilize two networks: a gen-
erator and a discriminator [38], [39]. The generator network
converts the input image (i.e., an LR image) into an output
image (i.e., a composite HR image). On the other hand, the
discriminator inputs two images (i.e., an LR image and an HR
image) and produces a signal that indicates the probability
that the second image (HR image) is the real image. The
goal of a discriminator is to detect ‘‘fake’’ (i.e., composite)
HR images from real images. Simultaneously, the goal of the
generator is to produce an HR image that fools the discrimi-
nator by coming close to a real HR image. Next, we introduce
PGGAN-MSR, the super-resolution reconstruction method
based on PGGAN used in this paper.

In PGGAN [5], the basic methodology is to train the dis-
criminator part at a very low resolution. The discriminator
is trained at an original resolution of 4 × 4 and, by adding
convolution and up-scaling layers, images at larger resolu-
tions can be constructed. The adaptive growth of the networks
makes it easier to learn the styles and spatial features of
images with different resolutions. Instead of learning how
to map random noise potential vectors to high-resolution
images, such as 512× 512 or 1024× 1024, the network grad-
ually learns from simple resolutions such as 4 × 4, 8 × 8, and
so on. At each resolution, when training the GAN network,
there is a ‘‘fade out’’ block layer, which helps to smooth
the process of upgrading or zooming out between differ-
ent resolution dimensions. Another major improvement that
enables PGGAN to obtain better results is the calculation
of losses through the Wasserstein GAN Gradient Penalty
(WGGAN-GP) [40]. As the variation between the composite
image and the training data set increases, the gradient is
severely penalized. This process allows themodel to converge
faster in the process of high-resolution image generation
while maintaining better model accuracy through initial scor-
ing [41], in order to generate more realistic output images.
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FIGURE 3. Roadmap of the classification experiment.

FIGURE 4. Structure diagram of PGGAN-MSR network.

In this paper, PGGAN-MSR, an SRR method for multi-
spectral remote sensing (MSR) images, is proposed based
on PGGAN. The model is shown in Figure 4, which can
achieve 4× super-resolution; however, with overlay the cor-
responding up-sample layers, other multiples of resolution
reconstruction can be achieved. We added jump connections
to enhance the stability of PGGAN during resolution recon-
struction training, and reduced the number of layers in the
generator, thus decreasing unnecessary computational over-
head and enhancing the robustness of the model.

IV. EXPERIMENT
This section describes the various experimental settings
and analyzes the test results obtained for all relevant
methods.

A. EXPERIMENTAL ENVIRONMENT
The experimental environment platform used in this
paper was as follows: NVIDIA Quardo P5000 GPU
with CUDA-12.0, CUDNN-8.2.4, TensorFlow-2.8, and
Orefeo-ToolBox version 8.1.
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B. QUANTITATIVE METRICS
In order to quantitatively evaluate the effect of SRR, we cal-
culated the peak signal-to-noise ratio (PSNR) [42] and
structural similarity index measure (SSIM) [43], both of
which are commonly used indicators for image adjustment
tasks. At the same time, we also calculated the mean square
error (RMSE) [44], spectral angle mapper (SAM) [45], and
universal quality index (UQI) [46]. In order to effectively
process large images, we cropped the validation images of
each type of land-cover into equally sized small patches.
Then, we averaged the indicators for all four bands to obtain
the final value. The higher the value of the PSNR (unit, dB),
the better the quality of the reconstructed HR image. The
PSNR is calculated according to the following equation:

PSNR = 10 × log(2552/MSE). (1)

SSIM is one of the main evaluation criteria for the cor-
relation between pixels in an image, and has been used as
a mainstream image quality evaluation standard in recent
years. The structural similarity index measure of the final two
images is shown in Equation 2.
where x represents the original image, y represents the SR

image, µx represents the average brightness of all pixels in
the original image, µy represents the average brightness of
all pixels of the image to be evaluated, σx is the standard
deviation of pixels in image x, and the constants C1 and C2
are used to prevent the denominator data from taking a value
of zero.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(2)

RMSE is one of the most important indicators for evaluating
image indicators, reflecting the degree of difference between
the two images. Smaller metrics indicate better image quality.
The calculation method is as follows, where m and n are the
length and width of the image, respectively. In this paper,
the average of the four bands is calculated to obtain the final
RMSE result.

RMSE =

√
1

m× n

m×n∑ (
xij − yij

)2 (3)

The UQI is an indicator, proposed by Wang et al. [44] in
2005, which is used to evaluate image quality. It comprises
a combination of correlation loss, luminance distortion, and
contrast between images, and is commonly used to evaluate
image quality, similarly to PSNR and SSIM.

UQI =
4σxyxy

(σ 2
x + σ 2

y )[(x)2 + (y)2)
(4)

where x and y are the values of the cells in the original image
and the SR image, respectively, σx and σy are the respective
variances, and σxy is the covariance of the pixel values in
two images.

In order to compare the spectral deviation of the recon-
structed image, we calculated the spectral angle map-
per (SAM). The SAM is often used to calculate the similarity

between two spectral curves, and its calculation result can be
regarded as the cosine angle value of the two sets of data,
where a smaller angle indicates a higher similarity. In our
work, SAM was calculated as follows:

θSAM = cos−1 yT x
(yT y)1/2(xT x)1/2

, (5)

where y is the spectrum of the original image and x is the
corresponding spectrum in the reconstructed image to be
evaluated.

LULC having become a popular research topic, numerous
result verification methods have emerged, among which the
most objective and commonly used method is the confusion
matrix. Checking the classification results for accuracy and
reliability is of great practical significance, as it not only
allows for objective evaluation of the classification results,
but also for evaluation of the quality of the source image
by comparing multiple classification results. The accuracy
of the original image and reconstructed image classification
can be evaluated using an error confusion matrix (Confusion
Matrix Using Ground Truth ROIs). The indicators mainly
include the mapping accuracy, user accuracy (UA), overall
accuracy (OA), and Kappa coefficient. We calculated UA and
OA for evaluation of the classification accuracy. We used
stratified random sampling to calculate OA and UA, seventy
percent of the entire datasets were used for training, while
thirty percent were used as validation datasets. Some auxil-
iary datasets such as Google Map and Google Street View
were used to collect the sampling datasets.

C. SUPER-RESOLUTION EXPERIMENT RESULTS ON
PGGAN-MSR NETWORK
The main idea of PGGAN-MSR is to gradually increase the
scale of the generators and discriminators based on PGGAN.
The network was initially trained at very low resolution,
following which new layers were gradually added to improve
the details during training. The details of training are provided
in Table 3. This practice not only accelerated the training, but
also made the training more stable, improved the clarity of
the image in the experimental results, and allowed a better
description of the texture features of objects to be obtained.
The PGGAN-MSR network based on the P-W-A training set
with transfer training achieved a good effect, and the exper-
imental data obtained are detailed in Table 4. We evaluated
the reconstruction results using the five indicators mentioned
above.

TABLE 3. Parameter settings for training the pre-trained PGGAN-MSR.
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FIGURE 5. Comparison of SR results in large areas. From left to right: S2 original 10 m image, GF-1-pansharp-2.5 m image, bicubic
reconstructed sentinel-2 2.5 m image, SRGAN reconstructed sentinel-2 2.5 m image, and PGGAN-MSR reconstructed sentinel-2
2.5 m image.

As shown in Table 4, the overall image reconstruction qual-
ity was good. Rice fields and residential areas received higher
PSNR scores, while water and rice fields scored relatively
better in the SSIM index, which is more in line with human
visual evaluation indicators. The root mean square error was
low for all feature classes. Rice fields obtained the best SAM
results (0.041 degrees), and the SAM values of several other
types of features—although not as ideal as those for rice
fields—were also within the acceptable limits. The indicators
for the entire images were acceptable, and we believe that the
reason why they were slightly lower than those for individual
features is due to cloud occlusion.

TABLE 4. Verification of accuracy after SRR.

The PGGAN-MSR network was employed for SRR of
optical remote sensing images. The bit depth of the origi-
nal image was increased from 24 bits to 32 bits, enhancing
the spatial and texture information contained in the object,
improving the accuracy of the target detector, and reduc-
ing the false and missed detection rates. Compared with
the original LR image, the image output by the GAN net-
work presented more obvious texture information and richer
spatial information. Figures 5 and 6 show a comparison of

the images after SRR. From the figure, we can see that the
method in this paper achieves a better visual effect in the
work of SRR, the spectrum is closer to the original image,
comparedwith the traditional algorithm and SRGAN, the thin
cloud can be removed, and the texture details of the ground
object are also well improved.

D. CLASSIFICATION OF SUPER-RESOLUTION
RECONSTRUCTED IMAGES COMBINED
WITH TEXTURE FEATURES
1) EXTRACTION OF TEXTURE FEATURES
In 1973, Haralick first proposed the GLCM, which is superior
to the gray-level run length method and spectral method. The
GLCMmethod describes the spatial structural characteristics
and correlations between pixel pairs based on the spatial
relationship between image grayscale values. In this work,
we used the Co-occurrence module in the ENVI 5.6.3 soft-
ware to extract eight texture features from the images. These
features included mean, variance, homogeneity, contrast,
difference, entropy, angular second-order moment, and cor-
relation. Among them, the mean value reflects the change of
light and shade of the image, the variance indicates the degree
of dispersion of neighboring cells in the image, the homo-
geneity describes the similarity of the cells within the
window, the contrast describes the depth and smoothness
of the image texture features, the difference measures the
similarity of cell textures within a window, the entropy
measures the complexity of the image texture distribution,
and the angular second-order moment reflects the regularity
and uniformity of the cell distribution [47], [48], as depicted
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FIGURE 6. Small area comparison. From left to right: schematic diagram of the intercept area, S2 original 10 m image,
GF-1-pansharp 2.5 m image, bicubic reconstructed sentinel-2 2.5 m image, SRGAN reconstructed sentinel-2-2.5 m image, and
PGGAN-MSR reconstructed sentinel-2-2.5 m image. (a) Ponds and paddy fields; (b) Area with complex features; (c) Soil, trees, and
paddy fields; and (d) Paddy fields, roads, and ponds.

in Figure 7. In our experiment, we set the size of the sliding
window to 3 × 3.

FIGURE 7. Different texture features extracted from SR images in this
paper: (a) Mean; (b) Variance; (c) Homogeneity; (d) Contrast;
(e) Dissimilarity; (f )Entropy; (g) Second Moment; and (h) Correlation.

2) CLASSIFICATION RESULTS FOR PLANTING AREA IN
LIAOHE RIVER BY BLENDING TEXTURE FEATURES
Crops often exhibit similar spectral curves in multi-spectral
satellite images during the growing season, which is also
known as the ‘‘different objects with the same spectrum’’ phe-
nomenon. Moreover, due to the influences of the atmosphere

and solar altitude angle, even the same type of ground objects
in the same source data may present spectral differences.
Additionally, it takes a certain period for the satellite to run
over a designated area and, even if it reaches the area, the
ground image may not be obtained due to certain weather
conditions (e.g., cloud and fog). The spectral characteris-
tics of ground objects will also change due to the time phase
of homologous images. At the same time, the phenomenon
of ‘‘different objects with the same spectrum’’ becomes
more obvious due to the differences between sensors when
multi-source images are reconstructed. To obtain better clas-
sification results, we fused more spatial information in the
classification. Specifically, we used the calculated image tex-
ture information to assist in the classification, thus reducing
the spectral transfer error caused by multi-source sensors.

For this experiment, a reconstructed Sentinel-2 Liaohe
planting area image was used for classification. The image
acquisition date was August 16, 2022, and the image mainly
covered agricultural land, including rice fields, wetlands,
water bodies, buildings, roads, and other features. It can be
found that rice fields and wetlands in the growing season
present similar color and spectral information; however, their
texture information significantly differs. Due to the different
water quality components of the water surface in agricultural
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FIGURE 8. Comparison of the classification maps. Classified maps based on SVM algorithm using (a) GF-1; (b) Reconstructed 2.5 m
Sentinel-2; (c) Reconstructed 2.5 m Sentinel-2 with texture features, as well as classified maps based on RF algorithm using (d) GF-1;
(e) Reconstructed 2.5 m Sentinel-2; and (f) Reconstructed 2.5 m Sentinel-2 with texture features.

planting areas, the spectral reflectance will also vary greatly.
Due to the differences in geographical location and soil com-
position, as well as the complex layout of residential areas,
different settlements tend to present different characteristics.

From the qualitative analysis of the classification results,
it was concluded that, for the Sentinel-2 reconstruction
images, the overall classification effect was better; the basic
classification of wetlands, paddy fields, and water bodies
was correct; and the main classification of construction land
was correct. However, there was some misclassification of
construction land and water surfaces, as well as rice fields and
wetlands, due to the ‘‘different objects with the same spec-
trum’’ problem. Areas that were misclassified into roads or
land due to cloud occlusion in the GF-1 image were improved
after SRR. When using the grayscale symbiotic matrix
texture, the misclassification of water bodies was greatly
improved. As shown in Figure 8, while the rice field itself was
misclassified into wetland in the reconstructed image classi-
fication, the phenomenon of misclassification was reduced
when using the GLCM texture features. Although water
and ponds were misclassified as roads in the reconstruc-
tion image classification, with the assistance of the GLCM
texture, the water surfaces were more accurately identified,
indicating that the misalignment between the construction

land and water bodies had been significantly improved. The
assistance of the grayscale symbiotic matrix texture also
inhibited the salt and pepper phenomenon in wetlands, due
to the misclassification of cells as rice fields, to a certain
extent. Additionally, the use of the grayscale symbioticmatrix
texture also significantly enhanced the ability to recognize
detailed information and, for small areas of ponds, the clas-
sification accuracy was higher. Small ponds in paddy fields
were identified as buildings or roads in the original image,
and this misclassification phenomenon was more obvious
on the reconstructed image. Using the grayscale symbi-
otic matrix texture, small ponds could be better identified.
Figures 9 and 10 compare the details of the RF classifier and
SVM classifier [49] classification results.

It is worth noting, from Table 5, that images with tex-
tured features added after Sentinel-2 SSR and classified by
SVM classifiers achieved the highest producer’s accuracy
for rice paddy, road, and water classes. The images with
textured features added to the results of the RF classifier
exhibited the highest classification accuracy in upper rice,
water, and land, with Producer’s accuracies reaching 98.86%,
98.44%, and 83.73%, respectively.Compared with the orig-
inal Sentinel-2 and Sentinel-2 2.5 m reconstructed images,
adding texture features improved the classification accuracy
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TABLE 5. Comparison of the classification accuracy for different images and algorithms.

FIGURE 9. Comparison of RF classifier classification results. (a)Lake;
(b)Paddy filed and ponds; (c)Paddy field; (d)Wetland. Each group from
left to right: GF-1 Pan-sharpened image; Bicubic reconstructed sentinel-2
2.5 m image; PGGAN-MSR reconstructed Sentinel-2 image; PGGAN-MSR
reconstructed Sentinel-2 image with GLCM feature.

for rice, wetland, road, and water surface classes, and the
classification accuracy was the highest for soil, Sentinel-2

FIGURE 10. Comparison of SVM classifier classification results of Paddy
and ponds. From left to right: GF-1 Pan-sharpened image; Bicubic
reconstructed sentinel-2 2.5 m image; PGGAN-MSR reconstructed
Sentinel-2 image; and PGGAN-MSR reconstructed Sentinel-2 image with
GLCM features.

image reconstructed by PGGAN-MSR performs better on the
rice field classification accuracy than the traditional Bicubic
reconstruction method, which we believe is mainly due to the
removal of cloud occlusion and the reconstruction method of
GANmakes the farmland boundary clearer. Both of the SVM
classifier and RF classifier had low overall classification
accuracy for roads and soil. Throughout the study, the OA
of the SVM classifier was slightly higher than that of the
RF classifier; however, this difference was not significant.
The SVM classifier had lower classification accuracy than

16840 VOLUME 12, 2024



H. Han et al.: Remote Sensing Image Classification

the RF classifier for roads and soils. Sentinel-2 images with
GLCM texture features added after SRR achieved the best OA
with both the SVM classifier and RF classifier. This result
indicates that the proposed method effectively improved the
OA in the study area. Compared with the original image,
after reconstruction, the classification accuracy for the water
surface class was the most significantly improved; it is also
worth mentioning that the OA of the reconstructed Sentinel-2
image and the Sentinel-2 image with texture features added
after reconstruction was higher than that on the original GF-1
image.

V. CONCLUSION
In this paper, through the SRR, the high-resolution, large-
width, and cloud-free accurate classification of the study area
was realized, a new application scenario was proposed in
order to classify super-resolution reconstructed images of
agricultural areas based on texture information. The method
of adding texture features provided more spatial informa-
tion to the target features to be classified, leading to better
classification results. To achieve this, we first studied a
cross-sensor optical satellite image super-resolution recon-
struction method, and trained the proposed PGGAN-MSR
network under the generative adversarial network framework.
The traditional PGGAN network only performs style gen-
eration of RGB HR images. In this paper, we developed
the PGGAN-MSR network based on PGGAN, which gives
it the ability to carry out multi-spectral SRR. By reducing
the number of layers in the generator, we have reduced
unnecessary computational overhead and made it easier for
engineering applications. The use of the minibatch standard
deviation layer makes spectral migration possible, and the
PGGAN-MSRmethod is closer to the original image than the
SRGAN method. Additionally, we used a deeper discrimina-
tor network structure, which providedmore sufficient training
for the discriminator of PGGAN-MSR, the relative average
discriminator forces the generator to train on both generated
data and real data, which is more conducive to the generation
of texture details. The addition of skip connections helped the
network to converge better and speed up training. To address
the problem that reconstruction cannot be verified in specific
large areas, we created a P-W-A data set for the growth season
of agricultural areas, which was used for network training and
verification.

Next, we extracted texture features from the 2.5 meter
resolution images generated by the PGGAN-MSR network
as supplementary spatial information. After obtaining the
texture information from the reconstructed image, it was
superimposed with the original image, and the superimposed
image was used as input to the SVM and RF classifiers
for supervised classification. Surface object classification
experiments were carried out on GF-1 pan-sharpened images,
Original Sentinel-2 images, SRR Sentinel-2 images, and
SRR Sentinel-2 images with GLCM features. With the addi-
tion of texture features, more spatial detail information was
added to the original image, allowing better classification

results to be obtained for water bodies, paddy fields, and
wetland areas; suppression of the salt and pepper noise
caused by classification; and significant improvement of the
classification accuracy for agricultural areas. The overall
classification accuracy under the two classifiers increased
by 1.07% and 1.16%, respectively, when compared with
only classifying the reconstructed image. A very noteworthy
phenomenon observed in this study is that the classifica-
tion results on the reconstructed image after super-resolution
reconstruction were better than when directly classifying the
original sharpened GF-1 and Sentinel-2 images, whether or
not texture features had been added. This conclusionmay pro-
vide a new scheme for future practical application research.

In recent years, unsupervised SRR models have been pro-
posed, further research is required to understand the impacts
of these models on reconstruction classification tasks. Addi-
tionally, in this study, we only tested the 4× SRR effect, while
methods based on PGGAN can achieve higher resolution up-
scaling. The validity of the classification also needs to be
verified in larger areas and other features, such as forests [25],
deserts, and rocks [50]. Some studies have mentioned the
influence of different sizes of sliding windows of GLCM on
the classification effect [47], which also needs further study.
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