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ABSTRACT Probability estimation plays a pivotal role across diverse domains, particularly in scenarios
where the objective is to select non-repetitive units one at a time, with the option of replacement, from a
predefined set of units. Traditional probability calculations in this scenario pose three challenges: the number
of floating-point operations to be executed is directly proportional to the chosen set size, susceptibility to
floating-point precision errors, and exponential growth in storage needs with increasing number of chosen
units. In this scenario, the presented work aims to develop SPM: a sigmoid function-based model that
estimates probabilities for such problems with a fixed number of calculations (independent of the input
parameter), achieving a constant time complexity algorithm. The research methodology involves generating
probability data points, selecting the optimal sigmoid function, augmenting additional data to enhance
parameter estimation, identifying parameter estimation equations, and evaluating the model. Moreover, the
study’s second objective includes training and comparing six established machine learning-based models
(including Decision Tree, Random Forest, Support Vector, Linear Regression, Nearest Neighbour, and
Artificial Neural Network) against the proposed SPM. The rigorous assessment of the model’s performance,
utilising metrics including RMSE, MAE and r? across a wide range of scenarios involving varying
values of the total units, affirms the model’s accuracy and resilience. The study findings can improve
decision-making processes in various domains, including statistics, cryptography, machine learning and
optimisation, by offering a faster, more adaptable solution for probability estimation in units’ selection with
replacement.

INDEX TERMS Probability estimation, sigmoid function, modeling, non-repetitive units selection,
optimization.

I. INTRODUCTION

Probability estimation is a fundamental and indispensable
element in various fields, with its significance particularly
pronounced when selecting unique units one by one from a
predefined set of units, all while allowing the replacement of
the selected units in the super-set after each draw. Accurate
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probability estimations with reduced computation steps are
crucial in fields like statistical analysis and decision-making
when dealing with complex systems, such as quality control
in manufacturing and financial risk assessment [1], [2].
In such a context, the precision of probability estimation
plays a pivotal role in facilitating well-informed decision-
making processes. Extensive calculations predominantly
characterise traditional methods for computing probabilities
in this scenario.
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A general way of calculating the probability in such cases
depends on two key parameters: the total number of units in
the set, denoted as N and the sample size, represented as n,
which indicates the number of units chosen from the set. One
of the methods for calculating this probability is based on a
series of conditional probabilities, where at each step, you
compute the likelihood of selecting a non-repetitive unit and
then multiply these probabilities together to get the overall
probability [3]. The formula is as follows:

P(n,N):leN—_l><N—_2><...><N_—n+1 €))

N N N N

Here, the first term, (%), corresponds to the probability
of selecting any unit on the first draw since you have
yet to draw any. The second term, (NT*I), represents the
probability of choosing a unique (not repeated) unit on the
second draw, given that the first unit was unique. The process
continues for each subsequent draw, with each term reflecting
the probability of selecting a unique unit, considering the
uniqueness of the previous draws. This technique involves
n multiplications to calculate the probability of selecting
unique units with replacement. Furthermore, an alternative
method for calculating the probability of selecting unique
units from a set with replacement is by using the formula:

#favourable events Np,

P(n,N) = = 2
(2, N) #exhaustive events N” )

Here, VP, represents the number of permutations of
choosing n units from N and N" represents the total number
of possible events [4].

Using the traditional formula for probability calculation
is susceptible to various errors. Floating-point precision
calculation mistakes are a common challenge in numerical
computations, leading to errors in various fields. These errors
arise due to the finite precision of floating-point representa-
tions, resulting in inaccuracies during complex mathematical
operations. These mistakes can significantly impact scientific
and engineering simulations, emphasizing the need for
careful consideration and mitigation strategies when working
with floating-point numbers [5]. Consequently, to minimize
errors in our study, we opted for calculating probabilities
using the second method algorithm (eq. 2), which involves
fewer floating-point calculations. However, a limitation of
the second method is the exponential growth in storage
requirements for large integer numbers as n increases
linearly. It is important to highlight that the computational
workload (in terms of time-complexity) increases linearly
with the size of the selected set, demanding proportional
computational resources. In this scenario, our objective
is to provide a constant-time complexity algorithm that
substantially improves precision without the computational
overhead of traditional methods. As the value of N increases,
the computational burden escalates. Therefore, establishing a
relationship between N, n, and probability is advantageous,
enabling a more straightforward probability estimation in
extreme cases. To overcome these challenges, the study
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introduces an innovative application of sigmoid functions for
this task.

A sigmoid function is a mathematical function char-
acterized by an S-shaped curve, widely used in various
fields including machine learning, statistics, optimization
and cryptography [6]. One common example is the logistic
function, defined as f(x) = H% which maps real numbers
to a range of O to 1. Sigmoid functions are extensively
used in artificial neural networks as activation functions [7].
They exhibit monotonic behaviour and have a bell-shaped
first derivative. The logistic sigmoid function, in particular,
is invertible and is used in statistics as a cumulative
distribution function [8]. These functions are commonly
used in logistic regression to model the probability of a
binary outcome. Moreover, sigmoid functions are also used in
biology and ecology to model population growth and logistic
growth [9]. Furthermore, sigmoid functions are part of deep
learning models, especially in recurrent neural networks
(RNNs) for tasks like natural language processing [10].
These functions are also used in medical diagnosis models
to estimate the probability of a patient having a particular
condition based on symptoms and test results [11].

The sigmoid functions’ flexibility in adapting to different
scenarios is a testament to their versatility, making them
valuable tools for accurate probability approximation. In our
quest to develop a probabilistic estimation formula, we sys-
tematically examined probabilities across a range of n:N
and total unit counts (N). In the present study, the sigmoid
function, encapsulated by the eq. 3 consistently provided a
strong fit for these probability patterns.

1

Px) = 14 e (B

3)

Here, x represents n/N. From further investigation, it was
observed that both the parameters « and g displayed varying
dependencies on N which can be represented as a similar
function, with different set of coefficient values for each
parameter. After the model’s development, its performance
was assessed across a range of N values against the
true probability values, utilizing evaluation metrics such
as RMSE, MAE, and r2. Additionally, in the subsequent
phase of the study, the model underwent a comprehensive
examination by training six machine learning models, namely
Decision Tree Regression (DTR), Random Forest Regressin
(RFR), Support Vector Regression (SVR), Linear Regression
(LR), Nearest Neighbour Regression (NNR), and Artificial
Neural Network (ANN). The comparative analysis of these
models was conducted on diverse N values, employing
metrics like RMSE, MAE, and 2 for a thorough evaluation.
The major contributions of the present study include:

« Introducing a novel approach to probability estimation
using sigmoid functions, particularly beneficial in
scenarios involving non-repetitive unit selection with
replacement.
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« Development of a sigmoid-based model with a fixed
number of calculations, offering a constant time com-
plexity algorithm for probability estimation.

« Introduction of a novel computational derivation tech-
nique to determine the most fitting mathematical
equation for the specific problem, enhancing the preci-
sion and appropriateness of the developed model.

o Comprehensive comparison of the developed model
with widely used machine learning algorithms (DTR,
RFR, ANN, LR, SVR, NNR) to establish its superiority
in various scenarios.

« Laying the foundation for future studies by exploring
adaptability to diverse scenarios and potential applica-
tions in various domains, improving decision-making
processes in fields such as statistics, cryptography,
machine learning, and optimization.

In essence, this research work signifies a promising leap
towards creating a faster and more adaptable approach to
probability estimation for complex selections. This endeav-
our presents novel opportunities to enhance decision-making
processes in fields where this challenge is inherent, providing
advanced solutions for professionals in disciplines such as
Engineering, Social Sciences, Finance, Healthcare, Market-
ing, Agriculture, Education, Quality Control and more.

The outline of the remainder of the article is as follows.
Section II provides an in-depth explanation of the methodol-
ogy employed for developing and evaluating both the intricate
and simplified version of the objective sigmoid function.
Section III presents the results derived from the simulations
to estimate the equation parameters. Section I'V discusses the
results, their interpretation, associated limitations, implica-
tions and prospects for future research. Finally, Section V
offers a concise conclusion summarizing the research.

Il. METHODOLOGY
The methodology employed in the presented research is
structured in two phases, i.e., the SPM development phase
and the models’ performance assessment phase, which can
be divided into seven overall systematic steps (Figure 1).
The initial step systematically generates data points
representing the probabilities, characterised by sample and
population size variations. Following the generation of data
points for diverse N and n:N values, additional data points are
required for the fitting of sigmoid functions. To facilitate this,
extra probabilistic data points corresponding to n:N values
ranging from -0.5 to 1.5 are added. Notably, all probability
points corresponding to negative n:N are assigned a value
of 1, while those with n:N exceeding 1 are assigned a value
of 0. Furthermore, we fit multiple sigmoid-family functions
in the probabilistic dataset in the second step, using the
Least Square Method (LSM) [12]. LSM is a mathematical
technique used to find the best-fitting line or curve through
a set of data points. It minimizes the sum of the squared
differences between the observed values and the values
predicted by the model using eq. 4. Frequently used in
linear regression to identify the optimal line portraying the
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correlation between variables, this method can extend its
application to nonlinear models using approaches such as
nonlinear least squares.
m
S=> (-5’ @)
i=0

Here, y; and y; represent the actual and predicted data
points, respectively. Next, we determine the equation which
best serves the purpose of accurately estimating probabilities.
This involved plotting probabilities across a spectrum of n:N
ranging from O to 1 while varying N within the range of
5 to 1000. Through rigorous analysis, we discerned that the
equation with the structure as of eq. 3 consistently provided
an ideal fit for the probability plots across different n:N
values.

Subsequently, we embark on a parameteric-data collection
process. This step entails the acquisition of data relating
to parameter values, specifically o and B, across different
population sizes (N). Moreover, the step is focused on
selecting the most suitable equations for the regression of
parameter values concerning their dependence on N. The
analysis revealed that the values of both parameters, « and
B, can be regressed effectively using the eq. 5 with N as the
input variable.

f=pxp)” )

In this context, p;, p», and p3 represent coefficients
with distinct values for o and 8. After identifying suitable
equations, we proceed with the regression process, applying
these chosen equations to the parameters and using N as the
input variable. In the third step, the research comprehensively
evaluates the developed equations. This assessment involved
employing well-established statistical metrics, including the
Root Mean Square Error (RMSE) [13], eq. 6, Mean Absolute
Error (MAE) [13], eq. 7 and the Coefficient of Determination
(r2) [14], eq. 8, across a broad spectrum of scenarios with N
values from 50 to 850.

| — .
— _ L _V.)2
RMSE = | — l;(yl ) (6)
1 — .
MAE = ZZ"Y"_Y"' @)
2
2 mE YY) - NS
Sz r (£ ]mz (23]
(®)

Here, m is the number of output data point, Y is the model
estimation and Y is the desired output value. This thorough
validation procedure attested to the accuracy and reliability
of our formulated equations.

During the study’s second phase, we performed a compar-
ative analysis to assess the efficacy of the proposed model
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FIGURE 1. Methodological steps undertaken for the development and assessment of SPM.

against established statistical and machine learning models
(see Figure 1). To facilitate this evaluation, we partitioned the
dataset into two subsets, comprising training and testing data,
following an 80:20 ratio.

The practice of dividing data into training and testing
sets is fundamental in both machine learning and statistical
modelling [15]. The training set is utilized to train models,
allowing them to determine patterns and relationships within
the data. The independent testing set is a validation tool
assessing how well the models generalize to the unseen
data. The 80:20 ratio, allocating a larger portion for training,
ensures comprehensive model training while maintaining a
substantial testing sample for robust evaluation. Additionally,
the description of the statistical and machine learning-based
models employed in this study’s comparative analysis is

presented below.
1) Decision Tree Regression (DTR): This approach entails

creating a decision tree structure to predict continuous
values by segmenting the dataset based on features,
allowing it to capture intricate relationships [16]. The
importance of each feature i is quantified by the equation
presented in 9.

M) = Z AR(i, 1), and
teT
AR(i,t) = R(t) + R(t) + R(tg), fori=1,2,...,m

€))

Here, R(?) is the sum of the squared deviations at node ¢
for a spliti of ¢ into 77, and #g. The optimal split is the one
that maximizes the AR. Decision trees excel at capturing
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non-linear patterns, proving valuable in regression tasks.
Through recursive data partitioning, they construct a tree
structure featuring decision and leaf nodes, collectively
forming an effective predictive model.

Random Forest Regression (RFR): RFR is an ensemble
machine learning technique that assembles a diverse set
of decision trees, collectively known as a “forest.”” Each
tree is created using a random subset of the dataset and a
random subset of feature [17]. After K such trees T(x)f
are grown, the RFR predictor can be given by eq. 10.

R 1 &
fp@ =22 Tw (10)
k=1

RFR excels in regression tasks by mitigating overfit-
ting and capturing intricate relationships. Its ensemble
approach enhances predictive power and generalization,
making it a valuable model for diverse applications,
including the comparative analysis of probability
estimation methods in our study.

Nearest Neighbor Regression (NNR): NNR is a machine
learning model that estimates values by considering the
proximity of data points in the training dataset [18].
It identifies the C closest neighbours (data points) to a
given input, where C is a user-defined parameter. The
predicted value is computed by averaging the values of
these nearest neighbours (eq. 11).

1 C
)= — . 11
5 an (11)
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Here, x. represents the data point among the closest
neighbours of the input value. NNR excels in scenarios
where data relationships showcase local patterns or non-
linearity, utilizing the similarity of nearby data points to

enhance predictive accuracy.

4) Linear Regression (LR): LR is a fundamental statistical
approach that models the connection between a depen-
dent variable and independent variables [19]. It aims to
determine a linear equation (eq. 12) that optimally fits
the data by minimizing the sum of squared differences

between observed and predicted values.

y=pBx+e

(12)

This model offers insights into relationship strength and
direction, enabling predictions and variable importance
understanding. Widely used in predictive modeling,
itserves as a baseline in our study’s comparative analysis

of probability estimation models.

5) Support Vector Regression (SVR): SVR seeks a hyper-
plane fitting data with a defined margin for error
(epsilon-tube). Its goal is to obtain a function f(x) (eq.
(13)) with maximum deviation from training data, yet as

flat as possible [20].

[
fG) =D wiK@x)+b

n=1

(13)

Here, I denotes the number of the training data samples,
x is the p-dimensional input vector, and K is the
kernel function. The model identifies support vector
data points closest to the margin, significantly impacting
the final prediction. SVR adeptly captures non-linear
relationships using kernel functions, transforming the

data into a higher-dimensional space.

6) Artificial Neural Network (ANN): ANN consists of
interconnected perceptron nodes organized in layers:
input, hidden, and output. Information travels through
the network, and each connection has a weight repre-
senting its significance. Every perceptron j present in
the network sums its input signals x; after multiplying
them by their respective connection weights wy;. It then
applies an activation function to the resultant and passes
the output to the next layer. The working of a perceptron

can be mathematically described by eq. (14).

Vi = ¢’(::£:M7Ma)
i=1

(14)

where v is the activation function utilizing the weighted
summations of the inputs, and u represents the number
of nodes in the previous layer. Some of the common
activation functions used by the model developers are
the sigmoid function, hyperbolic tangent function [21]
and ReLU [22]. Learning occurs through an itera-
tive process called backpropagation, where the model
adjusts weights to minimize the difference between
predicted and actual outcomes. The hidden layers allow
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FIGURE 2. Plot of the probability values calculated using eq. 2 along with

the regressed line using eq. 3; (a) without appending additional data
points, (b) after appending additional probability datapoints.

ANNs to model complex relationships and patterns
within the data. This architecture enables ANNSs to adapt
and generalize well, making them powerful tools in
various machine-learning applications.

We employed a distinct testing dataset to measure models’
performance on unseen data, evaluating both established
models and the proposed SPM. Input parameters N and
n:N represented test scenario characteristics with N ranging
from 50 to 1000. Moreover, the estimation power of the
models was assessed using RMSE, MAE, and r2. This
comparative analysis affirmed the models’ effectiveness and

suitability for probability estimation in diverse real-world
scenarios.

Ill. EXPERIMENTS AND RESULTS

Figure 2 (a) depicts the probabilities corresponding to
varying n:N ratios with N values of 5, 50, 100, and 1000.
Additionally, the figure displays the regressed sigmoid line
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mined that eq. 15 provides the most accurate fit for o
(Figure 3 (a)):

o =a; X alzw3 (15)

Further investigation revealed that the same equation

could be employed to regress the B parameter (eq. 16)

using a distinct set of coefficient values (Figure 3 (b)).

Table 1 presents the numerically calculated coefficients for
equations 15 and 16.

B =b x b)" (16)

TABLE 1. Coefficient values calculated for the identified parameters
equations.

S.No. Coefficient Value
1. ay 7.725807517862981E-17
2. as 4.2060729845897624E+16
3. as 0.011701718926205223
4. by 3.9051501053770956E+157
5. b 3.262614629230191E-158
6. b3 0.001391446030287691
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FIGURE 3. Regressing the values of (a) « using eq. 15 and (b) 8 using eq.
16 with N as input.

on the probability data points. From the figure, it is observed
that the sigmoid curves exhibit steeper slopes with increasing
N. Furthermore, the plots demonstrate that the identified
sigmoid function (eq. 3) accurately fits the probability
datapoints, verifying its efficacy for probability estimation in
our context. Notably, the sigmoid function for N = 5 faces
fitting challenges due to insufficient data points. To address
this, we have augmented the dataset with additional proba-
bility data points, extending the x-axis from —0.5 to +1.5,
as illustrated in figure 2 (b). The extended data points
enhance the fitting of the sigmoid function to the probability
points.

After determining the most effective sigmoid function
for the given probability problem, the data corresponding
to the parameters o and B of the identified function,
along with their respective N values, was gathered. eq. 3
encompasses these two parameters. Subsequently, we utilized
this parametric dataset to ascertain optimal mathemati-
cal expressions describing the relationship between these
parameters and N. Through experimentation, we deter-
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Following the development of the proposed SPM, the study
conducted a comprehensive performance assessment across a
diverse range of N values from 50 to 850. Figure 4 (a) visually
compares actual and estimated probability values across
varying N, showcasing the model’s robust performance.
Subsequently, Figure 4 (b) quantitatively evaluates the
model’s performance using metrics such as RMSE, MAE,
and r2. Notably, the figures illustrate that the model’s RMSE
and MAE decrease as N increases, indicating enhanced
accuracy with a larger total number of units. The RMSE
ranges from 0.006200 to 0.013551, and the MAE ranges
from 0.001519 to 0.007009. This trend is consistent with 72,
where a larger N corresponds to better goodness of fit, with
r? ranging from 0.998161 to 0.998438.

Figure 5 presents various models’ performance metrics
(RMSE, MAE, and r2), including the SPM, DTR, RFR,
ANN, LR, SVR and NNR. The analysis shows that the SPM
exhibits excellent performance with a low RMSE and MAE,
indicating accurate predictions (table 2). The high 2 value
(close to 1) suggests a strong fit, confirming the model’s
effectiveness in capturing the relationship between variables.
Moreover, RFR, DTR and ANN perform well with relatively
low RMSE and MAE, indicating good accuracy. The high
r? value suggests a strong predictive capability, although
slightly lower than the SPM. Furthermore, SVR, LR and
NNR show comparatively higher errors (RMSE and MAE)
and a lower r2 value, suggesting that it may struggle to
capture the complexity of the underlying relationships in
this context. The analysis indicates that the proposed SPM
outperforms other models, demonstrating its effectiveness
in probability estimation for non-repetitive unit selection.
The Tree-based models (RFR, DTR) generally perform
well, while SVR, NNR, and LR show comparatively lower
accuracy.
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TABLE 2. Preformance comparison of the proposed SPM with six ML-based regression models.

S.No. Model RMSE MAE 2
1. SPM  0.01131414475 0.00379360614  0.9982202167
2. RFR  0.02880895791 0.008985694208 0.9884607188
3. DTR  0.03517940801 0.008340815094 0.9827931762
4, ANN 0.0369162548 0.02359100008  0.9810521941
5. SVR 0.2119314272 0.08495453118  0.3755259671
6. NNR 0.223529966 0.09274821238  0.3053034165
7. LR 0.2485444213 0.1509232229 0.1411215658
1o o, . e N =10, a=9.243, B= -0.398 ¥ RMSE B MAE 2
% T~ == PN =5 "’1"‘”“““”)
‘ RN '\ N = 210, a=38.478, f= - 0.085 0.25 T T 1.10
i | S P(x, N) = 5 smmicoos oy M M N M
. o8 ?* \\‘ ® N =1410,a 4, = —0.06 0.20 + 1 oss
,‘-é 1\“: N T M= .
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%07 : : : : : : : : FIGURE 5. RMSE, MAE and r2-based comparison of the proposed SPM
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 and six ML regression models.
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FIGURE 4. Visualising (a) the probability values calculated using eq. 2 in
comparison with the values calculated using the proposed SPM and
(b) RMSE, MAE and r2 of the SPM over varying N from 50 to 850.

IV. DISCUSSION

The obtained results in this study are noteworthy and provide
valuable insights into probability estimation using sigmoid
equations. The results demonstrate that the sigmoid eq. 17
effectively captures the relationship between sample size-to-
population size ratio and probability.

1

P(x) = 1T e

a3
o =a xalzv ,and

B=b x b (17)
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With the coefficient values as given in table 1, this
equation offers a practical and accurate approach for
estimating probabilities, especially in scenarios involving
selecting non-repetitive items from a set with replacement.
The observed variations in the o and S parameters with
changing population size highlight the complexity of the
relationship. The ability to model these parameter-changes
provides a tailored approach to probability estimation,
adapting to different contexts. This is a unique and valuable
insight into the behaviour of the probability function. The
results showcase the models’ accuracy across a broad
range of population sizes, from 50 to 850. This adapt-
ability underscores the versatility of the sigmoid equation
in providing precise probability estimations in various
scenarios.

The strong fit of the model to the data is evident in the
high r? values exceeding 0.99. These high 2 scores affirm
the reliability and goodness of fit of the proposed model
across different population sizes, reinforcing its efficacy. The
decreasing RMSE values as population size increases indicate
improved accuracy in probability estimation with larger
datasets. This observation highlights the model’s ability to
handle increasingly complex scenarios. Nonetheless, it is to
be noted that the simulation results should be interpreted
with caution, as they are subject to precision errors inherent
in floating-point arithmetic [5]. To address this limitation,
future research endeavors will focus on substantiating
this approximation through a derivational approach as an
alternative to the simulation-based method.
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The proposed sigmoid-based model offers a streamlined
approach to estimating probabilities, reducing the computa-
tional burden associated with traditional methods requiring
numerous calculations. The established methodologies are
characterized by a time complexity of O(n), i.e. the number
of calculations are dependent on the number of chosen
units, in contrast to the proposed approach which offers
a remarkable improvement, enabling the calculation of the
desired probability in constant time, denoted as O(1) [23].

In the study’s second phase, a comparative analysis
was conducted to assess the efficacy of the SPM against
existing models. The dataset was partitioned into training
and testing subsets, and model performances were evaluated
using RMSE, MAE, and r2. The results indicate that the
DTR, RFR and ANN models exhibit the lowest RMSE
values, signifying precise predictions among existing models.
Conversely, LR, NNR, and SVR models show higher RMSE
values, indicating less accuracy in predictions. Similar trends
were observed in terms of MAE and r2. Notably, our findings
align with previous studies where RFR and DTR consistently
outperformed other ML algorithms.

The study conducted by [24] systematically compared
three machine learning techniques, namely Gaussian process
regression, RFR, and SVR, within a GEOBIA framework.
The results revealed that RFR outperformed conventional
regression by 48%, demonstrating superior burn severity
assessment and reduced sensitivity to variations in remote
sensing variable combinations. In the research conducted
by [25], amylase and urease activities were estimated
using Multiple Linear Regression (MLR) and RFR models
with various covariates. The RFR model exhibited superior
performance over MLR, attributed to its capacity to handle
nonlinear relationships and hierarchical dependencies, result-
ing in lower errors and enhanced accuracy.

Another study by [26] focused on landslide susceptibil-
ity mapping and compared logistic regression with RFR,
utilizing hyperparameter optimization through the Bayesian
algorithm. The RFR model demonstrated superior stability
and predictive capability in this assessment. In the analysis
conducted by [27] on COVID-19 cases in Indonesia, the study
predicted new cases using DTR and LR algorithms. The DTR
algorithm achieved higher r2 scores (95.69% for training and
92.15% for testing) compared to LR (79.93% for training and
77.25% for testing).

Furthermore, the pivotal outcomes of this study reveal
that the proposed Sigmoid-based Probability Estimation
Model (SPM) exhibited superior performance compared
to alternative models, as evidenced by the lowest RMSE
and MAE values. These metrics underscore the SPM’s
heightened accuracy in estimating probabilities. Notably,
the inverse relationship between RMSE, MAE, and the
population size (N) signifies the SPM’s enhanced precision
with larger datasets. Additionally, the SPM demonstrated a
notably higher coefficient of determination (r?) compared
to other models when evaluated on the testing dataset. This
emphasizes the SPM’s robust capability to elucidate the
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variance observed in probability data, further affirming its
efficacy in probability estimation.

While our study has made substantial strides in probability
estimation, it is crucial to acknowledge a limitation, namely,
the primary focus on probability estimation in scenarios of
one-by-one units’ selections with replacement. The gener-
alizability of our findings to diverse probability estimation
problems is constrained, as each problem may present
unique challenges and require tailored solutions. The research
outlined in this study lays a robust foundation for future
inquiries and advancements in probability estimation. Sub-
sequent investigations could extend the model’s applicability
to a broader spectrum of probability estimation problems,
encompassing those with intricate sampling methods or
dependencies between selections.

Moreover, although we assessed traditional ML models,
there exists an opportunity to explore more advanced
techniques such as Deep Learning and ensemble methods
for probability estimation. These advanced methods might
offer enhanced accuracy and adaptability across diverse
scenarios. Additionally, exploring the synergy of different
probability estimation models, including the proposed SPM
and ML algorithms, to create hybrid models leveraging
the strengths of each approach could lead to optimized
solutions for specific use cases. Furthermore, investigating
approaches to make probability estimation viable in resource-
constrained environments, where computational resources
are limited, is imperative. This could involve the development
of lightweight models or algorithms tailored to operate
efficiently in such environments.

V. CONCLUSION

In summary, the presented research tackled the problem
of estimating probabilities when drawing units one at a
time from a set without repeating any. The conventional
methods for calculating probability in such scenarios entail
high computational expenses in terms of time and space
complexity. The study introduced a novel SPM model
based on sigmoid functions that simplify the estimation
process using eq. P(x) W Furthermore, the
regression of parameters o and B against the variable N
successfully mitigated the challenge of equation variations
across different N values. The study followed a methodical
approach involving several steps: data generation, equation
assessment, parameter selection, data collection, regression
using the least squares method, equation evaluation and
model assessment using RMSE, MAE and r2. The study
results showed that the proposed model provides accurate
probability estimations with reduced computational effort.
Furthermore, a comparative analysis involving the proposed
SPM and six ML-based models (DTR, RFR, ANN, LR,
SVR and NNR) revealed that the SPM exhibited superior
performance, surpassing all other models. The model’s
strong fit to data across various population sizes highlights
its reliability. The implications of this research are far-
reaching, offering practical benefits in fields demanding
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precise probability estimations, such as statistics and optimi-
sation. The future scope of this research involves exploring
the applicability of the sigmoid-based model in various
real-world scenarios and extending it to address more
complex probability estimation challenges. Overall, this work
advances probability estimation methodologies and opens
doors for enhanced decision-making processes across diverse
fields.
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