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ABSTRACT In general, salient object detection (SOD) datasets have ambiguity due to annotation accuracy
and human subjectivity in determining saliency. Since this data uncertainty causes inaccurate prediction,
many techniques tackling data uncertainty have been proposed so far. Previous works estimated data
uncertainty in terms of predictive inaccuracy and adjusted the learning contribution so that a given model
can focus more on specific data. However, inaccurate predictions can occur due to not only data uncertainty
but also model uncertainty in which the model does not fully explain the data. As a result, a region
that is inaccurately predicted due to model uncertainty is considered a region with high data uncertainty,
resulting in insufficient learning. To solve this problem, we propose a novel uncertainty-aware learning
scheme where model uncertainty is decomposed from prediction uncertainty and it is minimized. Also,
we propose a refinement method to further improve performance by correcting the prediction result using
data uncertainty in the inference step. The proposed uncertainty-aware method excludes data uncertainty
from learning step and inference step more effectively, making the model more accurately detect salient
object(s). The experimental results prove that the proposed method achieves state-of-the-art performance on
several SOD datasets and qualitatively detects salient objects more accurately than the prior arts. The code
will be uploaded on Github.

INDEX TERMS Data uncertainty, model uncertainty, salient object detection.

I. INTRODUCTION
Salient object detection (SOD) is a technique that imitates
the human cognitive system to detect and segment main
objects or regions in real-world images. SOD has been
an important tool for various computer vision tasks such
as object recognition/detection [1], [2], [3], image/video
segmentation [4], [5], [6], and visual tracking [7]. With the
advent of convolutional neural networks (CNNs), SOD has
been developed rapidly [8], [9].
SOD datasets are generally composed of pairs of input

images and ground truth (GT) images in which salient objects
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are labeled in the form of binary masks. Since saliency is
defined in various ways according to human subjectivity, the
labeled salient object has data ambiguity [10]. In particular,
since the contours of salient objects are difficult to be
accurately labeled, data ambiguity due to such poor annota-
tion quality is inevitable [11]. Thus, SOD datasets contain
data uncertainty due to human subjectivity and annotation
issues. Here, data uncertainty refers to ambiguity caused
by human subjectivity and noise in the data itself, and is
defined as aleatoric uncertainty [12]. Since data uncertainty
is noise inherent in the data itself and cannot be solved by
learning, some techniques have been proposed to minimize
the effect of data uncertainty on learning [13], [14]. As the
most representative approach, data uncertainty map was
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FIGURE 1. Data uncertainty and prediction according to whether model
uncertainty is minimized in estimating data uncertainty. (a) Input data
and ground truth (b) data uncertainty and salient objects estimated by
previous methods (c) data uncertainty and salient objects obtained by the
proposed method to which model uncertainty minimization process is
applied.

estimated based on prediction inaccuracy, i.e., the distance
of the prediction map from GT, and it was used as a loss
attenuation [12].

Note that prediction inaccuracy results from not only data
uncertainty but also model uncertainty. Model uncertainty
is uncertainty in which the model does not sufficiently
explain the data, and unlike data uncertainty, it can be
minimized. Model uncertainty occurs when the model does
not sufficiently learn data. So, if model uncertainty cannot
be resolved due to insufficient learning, it can be reflected
in the estimated data uncertainty. As a result, even regions
with high model uncertainty are considered to have high
data uncertainty. This results in a problem that the data is
not sufficiently learned. To make this problem clear, let’s
qualitatively analyze the data uncertainty map of Fig. 1 (b)
which does not consider model uncertainty. We can observe
that the uncertainty is estimated even on a relatively easy
(or accurately predictable) background. Also, the detection
accuracy in the region with high data uncertainty is low (see
the red boxes). Nevertheless, any technique that considers
both uncertainties does not yet exist.

In this paper, we propose a novel method of esti-
mating data uncertainty more accurately by minimizing
the involvement of model uncertainty and using it for
learning and inference of the SOD model. The proposed
method consists of an uncertainty-aware learning step and
a refinement step. First, we present a learning strategy
that additionally considers model uncertainty to improve
the existing data uncertainty-aware learning algorithm(s).
The proposed model uncertainty-aware learning strategy
is to decompose model uncertainty from the prediction
uncertainty caused by the two uncertainties, and then
minimize it. The higher learning weights are given in regions
with high model uncertainty, so model uncertainty is resolved
quickly, which results in more accurate data uncertainty
estimation. In addition, we present a method to refine the
prediction map based on data uncertainty in the inference

step, enabling more accurate salient object inference even in
unseen data.

Experiments show that the proposed uncertainty-aware
method remarkably improves SOD algorithms in both
quantitative and qualitative aspects. The proposed method
added on to a recent SOD method [15] achieves state-
of-the-art (SOTA) performance on various SOD datasets.
Looking at the data uncertainty map of the proposed method
that minimizes model uncertainty, the uncertainty in the
background is greatly reduced (see Fig. 1(c)). We can also
observe that the detection accuracy of the red box in Fig. 1(b)
is improved because even data with low data uncertainty is
sufficiently learned.

The contribution points of this paper are as follows.

• Uncertainty-aware learning that simultaneously consid-
ers data and model uncertainties is proposed for the first
time in SOD task. Through the proposed uncertainty-
aware learning, a pixel-wise data uncertainty map
in which model uncertainty is constrained can be
generated.

• In the inference step, a method for correcting the
prediction map according to model uncertainty is
proposed, which improves the detection accuracy of
salient objects predicted by the model with certainty.

• The proposed method achieves SOTA performance on
four SOD datasets, and is qualitatively superior to
existing methods.

• The proposed method can be easily added-on to other
SOD methods for further performance improvement.

II. RELATED WORKS
With the rapid development of deep learning, the perfor-
mance of CNN-based SOD models has overtaken traditional
techniques. CNN-based SOD methods extract semantic
information or features of various levels and integrate them
efficiently. Reference [16] proposed a network consisting
of two branches: Supervised learning and unsupervised
learning. The two branches model the interaction between
human intuition and memory to detect salient object(s).
Recently, several multi-scale techniques have been proposed
to further improve the learning ability of semantic infor-
mation. For example, MINet [17] is a network that fuses
features of adjacent layers, which detects salient objects
through a strategy to minimize noise caused by the difference
in resolution of feature maps by using small up-/down-
sampling rates. Chen et al. [18] proposes a novel method
with designing a parallel multi-scale structure to integrate
the salient features at each levels. Ji et al. [19] proposed
a method for learning context between feature information
of different scales by applying spatial and channel unit
attention modules to multi-scale encoder-decoder networks.
In addition, a few techniques for additionally learning contour
(or edge) information of an input image as well as a
prediction map have improved segmentation performance
of SOD. Reference [20] proposed EGNet, which learns
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FIGURE 2. The proposed data and model uncertainty-aware method. Step (a) extracts pixel-wise data and model uncertainty map. Through Step (b), the
uncertainty map of unknown data is used as a zero-masking map in the inference step.

edge information through supervised learning based on
multiple branches and integrates the learned local edge
information and global location information. Han et al. [21]
added an edge convolution contraint to U-Net to predict
more accurate saliency map. SOD-ID [22] detects salient
object and estimate importance degree with object contours
information. Reference [23] discovered a problem that the
contour-saliency fusion of existing SOD techniques to learn
contour information causes excessive false positives, and
proposed the RCSBN that employs recursive CNNs to extract
and learn contours and saliency. [24] proposed a binary cross
entropy loss, i.e., contour loss, in which contour information
was given a higher weight to effectively predict the contour
of main object. DIMONet [25] extract both object and
boundary features with dual-branch, and refines each features
with mutual optimization and fusion modules. Meanwhile,
many techniques for estimating and resolving uncertainty
in SOD tasks have been devised. As mentioned above,
uncertainty is classified into data and model uncertainty.
Reference [10] proposed a generative model UCNet that
generates multiple saliency predictions to estimate data
(labeling) uncertainty due to subjective criteria for saliency.
Reference [14] proposed a so-called adversarial learning
network that newly defines the uncertainty that occurs
in the process of labeling main objects or backgrounds
and solves the uncertainty through joint-learning of the
camouflaged object detection task and the salient object
detection task. Reference [26] estimate out-of-distribution of
SOD for the first time to investigate distributional uncertainty
with deep ensemble and single-model uncertainty methods.
Reference [13] argued that there is a limitation to precise
labeling of training-purpose datasets, and proposed a data
uncertainty loss function that overcomes the limitation as an
alternative. Reference [27] used an adversarial decoder with
a saliency network to extract a confidence map representing
model uncertainty and use it for learning. Reference [12]
estimated data uncertainty through prediction inaccuracy
based on the difference between the prediction map and GT,
which is known as the most general approach for estimating
data uncertainty.

However, according to [12], inaccuracies in prediction
can be caused not only by data uncertainty but also by
model uncertainty. So, if model uncertainty is not consid-
ered, a region that is inaccurately predicted due to model
uncertainty is considered a region with high data uncertainty,
which may cause insufficient learning of the data. Thus,
this paper proposes a novel learning strategy considering
data uncertainty and model uncertainty at the same time.
In addition, we propose a refinement method that further
improves the detection accuracy of salient objects predicted
by the model with certainty by applying the estimated
uncertainty to the inference step.

III. PROPOSED METHOD
This section details the uncertainty-aware learning and refine-
ment steps of the proposed method, which are conceptually
visualized in Fig. 2. Note that the proposed method can be
attached to the generic deep learning-based SOD network to
further improve its performance.

The first step is (a) uncertainty-aware learning. As we
point out that existing data uncertainty-aware learning does
not consider model uncertainty, we propose the estimation
and learning strategy of data and model uncertainties.
We set auxiliary blocks to estimate data uncertainty and then
apply Ldata and Lmodel to consider both data and model
uncertainty on learning. The second step is (b) uncertainty-
aware refinement. To improve the reliability of the estimated
salient object in the inference step, we apply a zero-masking
refinement framework on high model uncertainty region that
is difficult for the model to estimate as unknown data.

A. DATA UNCERTAINTY-AWARE LEARNING
This section mathematically defines the existing pixel-wise
data uncertainty, and analyzes the previous learning approach
considering data uncertainty [12] and its limitation. While
model uncertainty can be resolved if only data for learning is
sufficient, data uncertainty cannot be directly resolved due to
various noises inherent in the data itself, such as sensor noise
and motion noise. Especially, since SOD is a task of detecting
salient objects from images captured in the real-world,

15018 VOLUME 12, 2024



H. Lee et al.: Data and Model Uncertainty Aware Salient Object Detection

as mentioned in Section I, SOD datasets inevitably have data
uncertainty. If we can effectively cope with this inevitable
data uncertainty, stabilization of prediction performance will
be achieved.

To solve this fundamental problem of SOD, [12] proposed
a technique for estimating data uncertainty and learning
it. Specifically, pixel-wise data uncertainty was estimated
based on the Gaussian likelihood and it was applied to
learning. Eq. 1 defines the Gaussian likelihood with respect
to the prediction ŷ′ for an input image x, GT y, and data
uncertainty σD.

p(y|ŷ′) = N (ŷ′, (σD)2) (1)

whereN indicates Gaussian distribution. σDi indicates pixel-
wise data uncertainty, and the larger the value, the more
difficult it is to accurately predict the data. So, [12] assumed
that a region is difficult to predict as the data uncertainty
increases, and introduced an auxiliary layer to estimate it.
Then, based on the estimated uncertainty map, they employed
a loss function that adjusts the learning contribution of the
data, which is as follows:

Ldata =
1
P

∑
i∈P

1

2(σiD)2
||yi − ŷ′i||

2
+

1
2
log(σDi )2 (2)

where P indicates a set of pixels, and σi
D, yi, ŷ′i indicates

a pixel value of data uncertainty, GT, and initial prediction,
respectively. Here, the first term adopts the inverse of the data
uncertainty map as loss attenuation, which indicates that the
higher the data uncertainty, the lower the weight. In other
words, this term serves to decrease the learning weights in
regions with high data uncertainty. The second term is a
regularization term to prevent the data uncertainty map from
diverging infinitely. If Eq. (2) is used as a loss function,
the function diverges as σi

D approaches 0. Therefore, for
numerical stability, we set log σD as a trainable variable
that allows stable learning considering the characteristics of
logarithmic and exponential functions. Accordingly, Ldata is
defined by the following equations.

exp σ̂D = exp log σD = σD (3)

Ldata =
1
P

∑
i∈P

exp(−(σ̂Di )2)||yi − ŷ′i||
2
+ (σ̂Di )2 (4)

Although the estimated σD seems to effectively represent
data uncertainty, the strong assumption that prediction errors
occur due to data uncertainty may cause some errors.
To analyze this phenomenon qualitatively, Fig. 3 shows
the prediction map and data uncertainty map for an input
image. The red box in the first row is regarded as a region
where data uncertainty exists due to human subjectivity in
judging main object(s). In fact, looking at σD, we can find
that the region is strongly activated, which means that data
uncertainty is well estimated. On the other hand, looking at
the red box of the second row, although the data uncertainty
is not high, the prediction accuracy is greatly reduced,
and the corresponding region is strongly activated in σD.

FIGURE 3. Prediction and data uncertainty map estimated through data
uncertainty-aware learning.

In other words, an inaccurate prediction occurred due to
another factor other than data uncertainty in the region, and
accordingly, the data uncertainty map was also incorrectly
estimated. Therefore, we argue that prediction inaccuracy is
not necessarily caused by data uncertainty alone, and that
we need to analyze and resolve another factor of prediction
inaccuracy.

B. MODEL UNCERTAINTY-AWARE LEARNING
In this section, we introducemodel uncertainty, another factor
involved in estimating data uncertainty. And to improve the
performance of uncertainty-aware learning by minimizing
model uncertainty, we propose a strategy to decompose only
data uncertainty from the prediction error map. σD is learned
to be large in the region where the difference between GT
y and prediction ŷ′, that is, the prediction inaccuracy is
large. However, as in Fig. 3, prediction inaccuracy is not
caused by data uncertainty alone. As in [12], we also define
another factor of prediction inaccuracy as model uncertainty,
which occurs because the model is not sufficiently trained.
If regions with large prediction error are regarded as having
large data uncertainty and their contribution to learning is
reduced, regions with only high model uncertainty may not
be properly learned. To solve this problem, we present a
method to decompose model uncertainty from the estimated
data uncertainty map and quickly minimize it. In other words,
both data uncertainty andmodel uncertainty are learnable, but
have the characteristics of being unreducible and reducible,
respectively. Therefore, since the two uncertainties are
independent of each other in terms of solvability, we assume
that prediction uncertainty can be decomposed into data and
model uncertainty. Note that this assumption was derived by
referring to uncertainty decomposition techniques [28], [29].

To estimate model uncertainty, we first define the predic-
tion uncertainty caused by data uncertainty σD and model
uncertainty σM. Since SOD is a binary classification, values
far from 0 or 1, i.e., 0.5 is judged to have the highest
prediction uncertainty T , which is represented by

T = 1 − (2ŷ′ − 1)2. (5)
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Here, to simplify this problem, we assume that the two
uncertainties are independent. Then T can be decomposed
into the product of σD and σM. Thus, model uncertainty σM

is defined by

σM = T /σD (6)

Also, based on model uncertainty, we define the model
uncertainty constraint Lmodel as follows.

Lmodel =
1
P

∑
i∈P

exp(−σ̂Di )T (7)

Lmodel is a loss function that is independent of data
uncertainty, that is, allows the model to additionally learn
sufficiently predictable data through the Eq. 7. The model
uncertainty constraint strongly polarizes prediction uncer-
tainty with low data uncertainty, which boosts the gradients
in regions where learning is inhibited due to Ldata so that
they can be learned sufficiently. As a result, the model’s
decision-making ambiguity isminimized and the contribution
to learning in regions where learning is inhibited due to data
uncertainty loss is improved.

The total loss function Ltotal of the proposed method
consists of the binary cross entropy Lbce, which is a
fundamental loss function for the SOD task, and two
uncertainty-based constraints, i.e., Ldata and Lmodel. Ltotal is
represented as follows:

Ltotal = λ1Lbce + λ2Ldata + λ3Lmodel (8)

Both λ1 and λ2 are weights of binary cross entropy and data
uncertainty loss that are learned based on GT and output.
In this paper, they were set to the same parameters. Here,
model uncertainty loss was estimated from prediction and
data uncertainty, so λ3 was set equal to λ2. Therefore, the
proposed uncertainty-aware learning strategy minimizes the
involvement of model uncertainty to induce a more accurate
estimation of the data uncertainty map, and adjusts the
learning weight so that the model can intensively learn more
meaningful data. As a result, the SOD network trained by the
proposed method can provide qualitatively and quantitatively
improved performance, as shown in Section IV.

C. UNCERTAINTY-AWARE REFINEMENT
However, even models that have learned both uncertainties
can still make inaccurate predictions when encountering
unseen data in the inference step. In other words, prediction
uncertainty may increase for unseen data. This section
presents a method to further improve performance by apply-
ing a specific refinement based on prediction uncertainty to
the estimated prediction map.

Note that the main goal of SOD task is to predict the salient
object with high precision by minimizing false positives [30].
So, we propose a refinement step which zero-masks a region
with high data uncertainty and sets it as a background.
In detail, we first apply a min-max normalization to make the
range of σD be within [0, 1], and then build a mask with the

region higher than a specific threshold. Here, although σD

is learned to minimize the effect of model uncertainty, the
accuracy of the unseen data may be somewhat lower because
it is still estimated by the auxiliary network. Therefore,
in order to increase the reliability of this refinement step,
we adopt another condition based on prediction uncertainty
T , which is represented by

R =

{
0 if Ti > θP and σDi > θD

ŷ′i otherwise
(9)

where θP and θD are set to 0.8. Even though the proposed
refinement process was designed through somewhat heuristic
decision-making, it is sufficiently reasonable in terms of
algorithm configuration. In particular, note that it provides
superior performance compared to the previous methods (see
Section IV-D).
In summary, the proposed framework for uncertainty-

aware learning and refinement improves salient object
accuracy even in unseen data by minimizing the effect of
data uncertainty that adversely affects SOD performance.
In addition, the proposed method can be attached to all
SOD learning frameworks as an add-on module without
architecture dependency to improve its performance, which
is verified experimentally in the next section.

IV. EXPERIMENTS
A. EXPERIMENTS CONFIGURATION
In this paper, the performance of the proposed method
was evaluated on five benchmark datasets, i.e., DUTS-
TE [31], DUT-OMRON [32], ECSSD [33], HKU-IS [34],
and PASCAL-S [35]. DUTS-TE consists of 5,019 complex
scenes, and DUTS-OMRON consists of 5,168 images
composed of complex backgrounds and various contents.
ECSSD consists of 1,000 complex nature images, and HKU-
IS consists of 4,447 images composed of several separate
objects and structurally similar foregrounds and back-
grounds. PASCAL-S consists of 850 complex images [17].
We evaluated the performance of each model based

on five metrics: S-measure [36] evaluates the structural
similarity between prediction map and GTmap while consid-
ering object-aware and region-aware structural similarities.
Weighted F-measure Fω

β [37] is an intuitive generalization
of F-measure by alternately applying different weights ω to
precision and recall calculations. MAE [38] calculates the
average absolute value of the pixel-wise difference between
the predicted map and the GT map. E-measure [39] simulta-
neously evaluates the global mean and local pixel agreement
between the predicted and GT maps. F-measure [40]
computes the weighted harmonic mean, taking both precision
and recall into account comprehensively. Here, we set both E
and F-measure as average values.

The proposedmethod was implemented in Pytorch. Except
for the ablation study, ZoomNet [15] was adopted as the
backbone SOD Network. As in [17], [41], and [42], ResNet-
50 pre-trained with ImageNet was used as an encoder. The
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TABLE 1. Quantitative results of the proposed and comparative methods on each dataset. Here, ↑ and ↓ indicate that the lower or higher, the better the
performance, respectively. Also, red, blue, and bold indicate the first, second, and third place, respectively.

weight decay was set to 0.0005, stochastic gradient descent
(SGD) was employed as the optimizer, and momentum was
set to 0.9. The learning rate was set to 0.05. The model
was trained for a total of 50 epochs at NVIDIA RTX A600
environment with the model batch size set to 22. As a training
dataset, DUTS-TR [32] was used in the same way as SOTA
methods [8], [15], [20], [43]. The size of the input image was
set to 352 × 352.

B. QUANTITATIVE RESULTS
We quantitatively compared the proposed method with
seven SOTA SOD methods: BASNet [41], MINet [17],
RCSBN [23], PoolNet+ [44], HQSOD [13], EDN [43], and
ZoomNet [15]. For a fair comparison, numerical figures
for each method were obtained through prediction maps
generated by source codes released by the authors. Here,
both the learning dataset and the learning environment are
the same.

The quantitative results based on the aforementioned
dataset and evaluation criteria are shown in Table 1.
The proposed method not only effectively improved the
performance of the baseline ZoomNet [15], but also showed
superior performance compared to the existing methods.
Note that we achieved SOTA performance on four datasets:
DUTS-TE, ECSSD, HKU-IS, and PASCAL-S. In detail,
the MAE of the proposed method was the best in all
the datasets. This proves that the proposed method more
accurately detects both salient and non-salient regions than
other ones [30]. In terms of Fm, the proposed method greatly
improved ZoomNet by 0.01 to 0.02. This is because the
proposed uncertainty-aware learning enabled to learn certain
data. In addition, the proposed refinement scheme effectively
removes false positives while minimizing the increase in false
negatives. The quantitative results in the table seem to show a

rather low performance improvement. Instead, it is observed
that the proposed method is added-on to various learning-
based baselines and contributes to greatly improving the
performance of the baselines. Additional observations can be
found in Section IV-D. Therefore, we claim that the proposed
method effectively could improve SOD performance.

C. QUALITATIVE RESULTS
Figure 4 compares the previous SOD methods and the pro-
posed method qualitatively. Previous methods and learning
environment are the same as in Section IV-B. Each row of
Fig. 4 shows salient object(s) detected from images sampled
from DUTS-TE [31], DUT-OMRON [32], ECSSD [33],
HKU-IS [34], and PASCAL-S [35], respectively. Here,
as mentioned in Section III-B, the more it is not binarized
to 0 or 1, the higher the prediction uncertainty, which is
visualized as gray.

The first row is the result of complex image where it is
difficult to distinguish between the salient object and the
background. Other methods had a high prediction uncertainty
in the region with fine details, but in the proposed method, the
prediction uncertainty of the corresponding region was low,
so the salient object and background were detected relatively
accurately. The second row is a case in which the data is not
so difficult for humans to predict, but other methods have
limitations in accurately predicting the data. Even in this case,
the proposed method accurately detected the red box through
sufficient learning of the corresponding data with low data
uncertainty. The third row is a case that is difficult for the
model to predict accurately due to a fine structure. Here,
existing methods suffered from high prediction uncertainty
and high prediction inaccuracy. On the other hand, the
proposed method detected the corresponding region similarly
to GT and estimated the prediction uncertainty low. This
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FIGURE 4. Qualitative test results.

supports that the learning and refinement of the proposed
method are designed well. The fourth row is the case of
detecting multiple salient objects. Most existing methods
had low prediction accuracy because they detected only one
object or estimated the noisy background around the salient
object as a salient object. However, the proposed method had
low data uncertainty and mainly learned data that can be
predicted with certainty. Therefore, all salient objects were
uniquely detected by the proposed method. The red box
in the fifth row corresponds to the background. All of the
existing methods detected it as a salient object or estimated
the prediction uncertainty of the corresponding region highly.
However, the proposedmethod effectively excluded region(s)
with high data uncertainty and focused well on the actual
salient object. Especially, it is noteworthy that the proposed
method captures even the fine details of objects that are not
well represented in GT.We compared performance on sample
data from five datasets. Even in cases where it is difficult
to distinguish between object and background, the proposed
method distinguished salient objects with high accuracy.
Additionally, because the proposed method considers areas
with high data uncertainty, a tendency to detect salient objects
with certainty rather than ambiguous areas is observed. As a
result, the proposed method is expected to demonstrate the
above advantages in tasks that require minimizing the rate of
false negatives or false positives.

Through the above quantitative and qualitative compari-
son, we proved that the proposed uncertainty-aware learning
and refinement makes it more effective to infer salient objects
and capture fine details. In other words, the proposed method
has strengths that are not well represented by quantitative
indicators.

FIGURE 5. Comparison with and without model uncertainty-aware
learning (MUAL) method. Each subcaption is the same as Table 2.

D. ABLATION STUDIES
1) MODEL UNCERTAINTY-AWARE LEARNING
This section verifies the performance according to the
presence or absence of model uncertainty-aware learning.
Figure 5 and Table 2 are the qualitative and quantitative
results for the five datasets and DUT-OMRON dataset,
respectively. Figure 5 (b) is a region where the model can
sufficiently learn owing to low data uncertainty, but the
predictive detection rate was remarkably low. On the other
hand, in (c), the low data uncertainty region was well learned
through the minimization of model uncertainty. In addition,
data uncertainty was estimated more accurately than (b)
through noise removal. In the quantitative aspect, a significant
performance improvement was not achieved when only the
existing data uncertainty-aware learning was used. However,
note that applying the proposed model uncertainty-aware
learning here improved the performance in all metrics.
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TABLE 2. Quantitative results with and without model uncertainty-aware learning (MUAL) application. (a) Baseline (b) When MUAL is not applied in the
proposed method (c) The proposed method applied with MUAL.

TABLE 3. Quantitative results with and without uncertainty-aware learning refinement application. (a) Baseline as EDN (b) EDN with add on the proposed
method.

TABLE 4. Performance comparison with and without uncertainty-aware
refinement as well as θ in the DUTS-TE dataset. (a) A case considering
only data uncertainty. Here, the equation of R is defined as Eq. 10.
(b) Proposed refinement scheme.

Such a qualitative evaluation result is demonstrated in
Table 2. Comparing (a) and (b), the proposed method without
MUAL showed a decrease in S-measure [36] compared
to the baseline. In the ECSSD and PASCAL-S datasets,
even E-measure [39] decreased slightly. Considering that
S-measure and E-measure quantitatively evaluate structural
similarity, we can find that the absence of MUAL causes to
reduce structural similarity with GT. On the other hand, (c)
with MUAL improved both S-measure and E-measure than
(b). For DUT-OMRON, ECSSD, and PASCAL-S datasets, (c)

scored higher than (a). For the remaining metrics, (c) showed
better performance than (a) and (b).

Through performance analysis according to whether or not
model uncertainty-aware learning was applied, we proved
that consideration of model uncertainty can solve the
insufficient learning issue of predictable data.

2) UNCERTAINTY-AWARE REFINEMENT
The proposed uncertainty-aware refinement masks both
prediction and data uncertainties. So, we quantitatively
demonstrate that considering both uncertainties is effective.
First, refinement using only data uncertainty θD is expressed
as follows.

R =

{
0 if σDi > θD

ŷ′i otherwise
(10)

Take a look at Table 4. When refinement was applied using
only data uncertainty, performance drops were observed in
most indicators. In particular, when a relatively low threshold
of 0.7 was chosen, the overall performance was significantly
degraded. That is, refinement does not work well. Instead,
if prediction uncertainty is additionally considered here,
performance is improved in most indicators, contrary to the
previous result. Similar performance was observed when
modulation is applied to the threshold, which means that the
hyper-parameter sensitivity is low. In other words, the result
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(b) of the proposed refinement technique considering both
uncertainties shows high performance for the same threshold
compared to the result (a) considering only data uncertainty.
Additionally, it is observed that the proposed refinement
is not sensitive to changes in threshold. As a result, the
proposed method is proven to provide excellent performance
even in various datasets and environments. Therefore, we can
find that our strategy of additionally considering prediction
uncertainty to solve the data uncertainty estimation error is
effective.

3) MODEL GENERALITY
We show that the proposed method can be added on to
conventional deep learning-based SOD networks to improve
their performance. To verify this, we experimented with
5 datasets same as above by replacing the existing baseline
ZoomNet [15] with EDN [43]. According to Table 3, ‘EDN+

Ours’ to which the proposed method is applied to EDN shows
quantitatively better performance than EDN, similar to IV-B.
In particular, the performance of Fm was greatly improved.
Each value in the table is the average of five experimental
values. Note that the proposed method shows a significant
performance improvement over the variability in the learning
process. On the other hand, other techniques providemarginal
performance improvement.

In terms of Sm, which is a metric that measures structural
similarity, the performance of the proposed method was
marginally degraded on both baselines. This might be due
to a phenomenon in which some structural meanings differ
from those of GT as pixels with low prediction uncertainty
are forcibly removed when refinement is applied. However,
note that the proposed method achieves very significant
performance improvements in other quantitative/qualitative
indicators except Sm.

V. CONCLUSION
This paper proposes a data and model uncertainty-aware
method that considers both data and model uncertainty in the
SOD task. We find that existing data uncertainty estimation
methods have overlooked the fact that model uncertainty
intervenes in prediction error, and propose a novel model
uncertainty-aware learning to solve this problem. In addition,
we present a refinement algorithm based on data uncertainty
to reduce the prediction uncertainty due to unseen data
input in the inference step. The proposed method achieved
SOTA performance in most of the datasets and showed
superior results qualitatively. Performance in low-contrast
environments or with data where the distinction between
object and background is ambiguous is still challenging.
However, if techniques to decompose model uncertainty from
data are further studied, it is expected that high performance
can be achieved even with such challenging data. It is true
that performance in low-contrast environments or on data
where object and background classification is ambiguous is
still challenging. However, if further research is conducted to
decompose model uncertainty from data, it is expected that

the proposedmethodwill be able to achieve high performance
even with such challenging data. Additionally, the generality
of the proposed method was proven through quantitative and
qualitative performance analysis on various datasets. On the
other hand, the threshold method in real-world data should
always be handled carefully. Therefore, when applying the
proposed refinement method to real-world data, it needs
to be accompanied by a parameter search optimized for
each environment. Also, through intensive ablation studies,
we show that the proposed method can be easily added
to conventional SOD frameworks to further improve their
performance.
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