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ABSTRACT It is necessary to consider the robustness in the tracking problem, which can effectively
suppress the external disturbance to ensure the tracking performance. Different from previous tracking
control methods, considering the robustness, completely unknown nonlinear system dynamics and
constrained controller, we propose a data-based echo state network (ESN) approximated algorithm for a class
of robust tracking problems. First, the robust tracking control problem (RTCP) is transformed into the optimal
control problem of the according nominal system by designing a elaborate value function. To obtain the
optimal control policy, we have to solve a Hamilton-Jacobi-Bellman equation (HJBE) about the augmented
nominal system. It is well-known that modelling the accurate dynamics for the practical engineering
applications is usually difficult, so the model-free integral reinforcement learning (IRL) algorithm is used
to learn the optimal control policy and performance function simultaneously by only using systems data. In
this IRL algorithm, a reservoir computing based ESN is used to approximate the performance function and
control input. Contrast to other neural networks, ESN need not consider the choice of activation function,
which can greatly reduce the difficulty and effort of neural network structure design. The output weights
of the ESNs are iteratively updated towards the optimal ones by using least square algorithm and the pre-
collected off-line system data. Then, using the converged output weights and ESNs, the tracking control
input can be derived without knowing any system dynamic information. Finally, we demonstrate that the
given system can be controlled to track the desired trajectory well under the proposed method by using two
simulation examples.

INDEX TERMS Adaptive dynamic programming (ADP), echo state network (ESN), integral reinforcement
learning (IRL), robust control, tracking control.

I. INTRODUCTION
In practical engineering applications, external disturbances
are inevitable, to enhance the robustness of the system, then
we have to consider suppressing disturbanceswhile designing
the controllers [1], [2], [3], [4]. System robustness means
that the controlled system can maintain a certain performance
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characteristics in spite of suffering external disturbances. In
recent years, various methods have emerged to cope with
the robust problem [5]. For example, robust fault-tolerant
control based on H∞ method [6], boundary control with
output feedback [7] and Multi-H∞ controls for unknown
input-interference [8]. Especially in the tracking problem,
the external disturbances may cause the system to fail to
track the desired trajectory. The robust tracking control
problem (RTCP) has been a focal point [9], whose purpose
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is to design a control policy so that the given system with
disturbance signal can track the target trajectory, in control
theory [10], [11], [12], [13], [14], [15] and applications,
such as vehicle control [16], aircraft control [17], [18] and
so on. In addition, due to safety considerations, there are
certain physical constraints on the controller in reality [19],
[20]. Therefore, it is interesting to study the RTCP of the
constrained nonlinear systems.

In the past decades, various methods have been proposed
to solve the RTCP. Now, a system transformation method is
usually used to solve the tracking problem by constructing
a corresponding augmented system of the tracking error
and the desired trajectory [21], [22]. Thus the tracking
problem of the nonlinear systems can be transformed into
an optimal control problem by introducing a performance
index. In [11], a robust approximate optimal tracking
control problem was studied. Modares et al. [12] proposes
the disturbances by using the H∞ theory and optimal
control method. Recently, [13] studied the RTCP for the
nonlinear-constrained systems by using RL. The aim of
optimal control is to design the control policy, which make
the system stable and performance index optimal [23], [24].
The key of solving the nonlinear optimal control problem is
how to solve the Hamilton-Jacobi-Bellman equation(HJBE).
However, HJBE is a nonlinear partial differential equation,
which has no analytical solution and is difficult to solve. In
the past decades, many scholars have devoted themselves to
seeking solutions for the nonlinear optimal control methods,
in which adaptive dynamic programming (ADP) [25], [26]
and reinforcement learning (RL) are the prominent ones.
ADP was first proposed by Werbos in [27], and was based
on the dynamic programming proposed by Bellman in [28].
In practical engineering applications, it is difficult to model

the accurate dynamics of a real system, especially when there
are disturbances in the system. Among the above methods,
RL is a type of data-based model-free methods that maxi-
mizes the payoff by learning the experiences and updating the
strategies during the interaction with the environment [29],
[30], [31]. In [32], RL method was proposed and was applied
to the linear optimal control problem. In [29], RLmethod was
applied to the nonlinear systems, which is more universal. In
[33], Yang et al. proposed an integral RL (IRL) for the robust
control problem, which is a great inspiration to this paper.
In [34], Yao et al. proposed a model-based IRL algorithm for
electrohydraulic position servo systems. Further, to cope with
the tracking control problem, [35] used data-driven policy
iteration method to search the optimal controller by only
using system data.

To implement the RL, it is necessary to design appropriate
neural networks (NNs) to approximate the value function and
the control policy. Most of the above references used the
polynomial NNs, which were composed of a combination
of system states. However, the hidden layer structure design
of polynomial NN is always a open problem. Especially for
augmented systems in the tracking problems, the dimension

of the objective system is relatively large, which makes the
design of NNmore difficult. In this paper, echo state network
(ESN) will be used as an approximation to implement the RL
algorithm. ESN is a kind of reservoir network as an improved
recurrent NN model, which was proposed by Prof. Jaeger
et al., in 2001 [36]. The biggest advantage of ESN is that the
reservoir of the hidden layer is randomly generated without
elaborate design. The ESN consists of input layer, a reservoir,
and output layer. In this paper, we use ESN to approximate the
value function in HJBE. In addition, ESN only need to train
the output weights, which greatly reduces the computation.
Therefore, ESN has been successfully adopted in online ADP
methods for the optimal control problems [37], [38].

In short, to solve the RTCP of unknown nonlinear systems
with constrained input, this paper presents an ESN-based
IRL method to obtain a stable closed-loop controller. The
proposed method has the following advantages:

1) The RTCP is transformed into an optimal control
problem by constructing an augmented system and
introducing an auxiliary term into the performance
function.

2) To cope with the unknown system problem, IRL
method is used to solve the optimal controller by only
the system data.

3) ESN is used to implement the IRL method, which
greatly reduces the design difficulty and computational
burden.

The structure of this paper has six parts. In Section II,
problem formulation and preliminaries of the robust tracking
is shown. In Section III, the robust controller is obtained
by solving a transformed optimal control problem with
a novel performance function. Besides, the availability of
the proposed method is proved to be uniformly ultimately
bounded (UUB). In Section IV, an IRL algorithm is derived.
Then, ESN is designed to implement the approximate
iteration only by using the system data. In Section V, two
simulations is given to verify the validity of the proposed
method. A simulation example is shown in Section VI gives
a brief conclusion and prospect.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the following disturbed continuous-time (CT) affine
nonlinear system described by:

ẋ = f (x (t))+ g (x (t)) u (t)+ g (x (t)) ω (x (t)) (1)

where x (t) = [x1 (t) , . . . , xn (t)]T ∈ Ω ∈ Rn is the system
state vector, u (t) = [u1 (t) , . . . , um (t)]T ∈ U ∈ Rm is
the system control vector, which is constrained by |um (t)| ⩽
σ, σ > 0, and σ is the saturating bound. f (x (t)) ∈ Rn and
g (x (t)) ∈ Rn×m are the unknown system dynamics, and
ω (x (t)) ∈ Rn is the unknown disturbing function. x0 = x (0)
is the initial state of the system and f (0) = 0. To complete
the following development, based on the literature [25], two
assumptions are pre-given.
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Assumption 1: The given affine nonlinear CT System (1)
is controllable and f (x (t)) + g (x (t)) u (t) is Lipschitz
continuous on the setΩ , i.e., the solution of the CT nonlinear
system exists and unique whatever initial state x0 ∈ Ω and
u ∈ U.
Assumption 2: For arbitrary x ∈ Rn, the input dynamic

satisfies 0 < ∥g (x)∥ < gM with gM is a given constant. At
the same time, the disturbing functions ω (x (t)) is bounded
by a given function ωM (x), and ∥ω (x)∥ ⩽ ωM (x) for
arbitrary x ∈ Rn. Furthermore, ω (0) = 0 and ωM (0) = 0.
The desired trajectories xr (t) of the affine nonlinear CT

system satisfy

ẋr (t) = z
(
xr (t)

)
(2)

where xr (t) is bounded and xr (t) ∈ Rn. The input dynamic
z (xr (t)) is Lipschitz continuous function and z (0) = 0.
Define the system tracking error e (t) as follows:

e (t) = x (t)− xr (t) (3)

Taking the derivative of the tracking error (3), according to
equations (1) and (2), one has

ė (t) = f (x (t))+ g (x (t)) u (t)+ g (x (t)) ω (x (t))

− z
(
xr (t)

)
(4)

Under Assumptions 1 and 2, the goal of robust tracking
control is to minimize the performance function so that
original system (1) eventually tracks the desired trajectory (2)
and stays stable in the sense of UUB. To address this
goal, the RTCP is solved by using a transformed optimal
control problem of a nominal system with an appropriate
performance function. The so-called nominal system is that

ẋ = f (x (t))+ g (x (t)) u (t) (5)

Subsequently, We define the tracking error of the nominal
system to be

ė (t) = f (x (t))+ g (x (t)) u (t)− z
(
xr (t)

)
(6)

Let Z (t) =
[
e (t)T xr (t)T

]T
, the augmented matrix is

defined by (6) and (2) as follows

Ż = A (Z (t))+ B (Z (t)) u (t) (7)

where

A (Z (t)) =

[
f (e (t)+ xr (t))− z (xr (t))

z (xr (t))

]
(8)

B (Z (t)) =

[
g (e (t)+ xr (t))

O

]
(9)

where O denotes zero matrix with the corresponding
dimension.

We define the tracking performance function of the
augmented system (7) as follows:

V (Z (t)) =

∫
∞

t
e−γ (ς−t)(ηω2

M (Z )

+ Z (ς)T QZ (ς)+ϖ (u (ς))
)
dς (10)

where γ is a discount factor and γ > 0, to ensure
the boundedness of the performance index function. Q =

diag {Qe,On×n}, Qe is a symmetric constant positive definite
matrix about augmented system state Z and Qe ∈ Rn×n, η is
a constant parameter and η > 0, to solve the bounded control
problem in the system, we defineϖ (u (t)) as follows:

ϖ (u (t)) = 2σ
∫ u(t)

0

(
tanh−1 (ς/σ)

)T
Rdς (11)

where R = diag (r1, . . . , rm) and ri > 0, i = 1, 2, 3 · · ·m.
ϖ (u (t)) is a non-quadratic cost index function, which can
cope with the input constraint problem. The term w2

M is used
to suppress the disturbances and ensure the tracking error (4)
to be UUB, which can be shown in Theorem 1.
Definition 1 (Admissible Control): For a practical control

problem, there exists an admissible control set Ω . A con-
troller u (Z ) is called to be admissible on Ω if u (Z ) is
continuous, u (0) = 0, and stabilizes the system (7) with the
performance function (10) is finite for ∀Z ∈ Ω . Then, it is
formulated as u (Z ) ∈ π (Ω).

For ease of presentation, the time variate t will be
simplified in the latter part.

III. ROBUST TRACKING CONTROLLER DESIGN
Based on the augmented system (7) and the new tracking
performance function (10), differentiate V (Z ), one has

V̇ (Z ) = γ

∫
∞

t
e−γ (ς−t)

(
ηω2

M (Z )

+Z (ς)T QZ (ς)+ϖ (u (ς))
)
dς

− ηω2
M (Z )− ZTQZ −ϖ (u)

= γV (Z )− ηω2
M (Z )− ZTQZ −ϖ (u) (12)

We present the Hamiltonian function as follows

H (Z , u,∇V) ≡ ηω2
M (Z )+ ZTQZ +ϖ (u)− γV (Z )

+ ∇VT (Z ) (A (Z (t))+ B (Z (t)) u (Z ))
= 0 (13)

where ∇V = ∂V (Z ) /∂Z . Let V ∗ (Z ) denotes the optimal
value function as follows:

V ∗ (Z ) = min
u∈U

∫
∞

t
e−γ (ς−t)

(
ηω2

M (Z )

+Z (ς)T QZ (ς)+ϖ (u (ς))
)
dς (14)

Substituting (14) into (13), the optimal robust tracking
HJBE is derived as

H
(
Z , u∗,∇V∗

)
≡ ηω2

M (Z )+ ZTQZ +ϖ (u)− γV ∗ (Z )

+ ∇V∗T (Z )
(
A (Z )+ B (Z ) u∗ (Z )

)
(15)

According to the literature [22], the analytical solution for
optimal control is as follows:

u∗
= −σ tanh

(
(1/2σ)R−1BT (Z )∇V∗ (Z )

)
(16)
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According to [35], the optimal control u∗ in (16) can
minimize value function V ∗ and guarantee the tracking
error (3) converges to zero while γ → 0.
Theorem 1: Consider the nominal system (5) of the

disturbed system (1) with related HJBE (15). If the following
conditions hold:

ωT (Z )Rω (Z ) ≤ ηω2
M (Z ) (17)

and

γ → 0, (18)

the optimal control policy u∗ given in (16) can ensure the
tracking error (4) to be UUB.

Proof: Considering the solution V ∗ of HJBE (15),
we can obtain that V ∗ (x) > 0 for arbitrary x ̸= 0 and
V ∗ (x) = 0 for x = 0, ∇V∗ is bounded, denoting as
∥∇V∗∥ ≤ VM with VM > 0. Differentiating V ∗ (Z ) along
the trajectory of the augmented system (7), one has

dV ∗ (Z )
dt

= ∇V ∗T (Z ) (A (Z )+ B (Z ) (u (Z )+ ω (Z )))

= ∇V ∗T (Z ) (A (Z )+ B (Z ) u (Z ))
+ ∇V ∗T (Z )B (Z ) ω (Z ) (19)

Consider the control policy given in (16)

u (Z ) = u∗ (Z )

= −σ tanh
(
(1/2σ)R−1BT (Z )∇V∗T (Z )

)
(20)

According to the Hamiltonian function (13), we have

∇V ∗T (Z ) (A (Z )+ B (Z ) u (Z ))
= γV ∗ (Z )− ηω2

M (Z )− ZTQZ −ϖ
(
u∗

)
(21)

According to the optimal control solution (16), one has

∇V ∗T (Z )B (Z ) ω (Z )

= −2σ
(
tanh−1 (

u∗/σ
))T

Rω (Z ) (22)

Combining (21) and (22), we can derive that

dV ∗ (Z )
dt

= γV ∗ (Z )− ηω2
M (Z )− ZTQZ −ϖ

(
u∗

)
− 2σ

(
tanh−1 (

u∗/σ
))T

Rω (Z ) (23)

dV ∗ (Z )
dt

− γV ∗ (Z )

= −ηω2
M (Z )− ZTQZ −ϖ

(
u∗

)
− 2σ

(
tanh−1 (

u∗/σ
))T

Rω (Z ) (24)

Multiplying e−γ t to both parts of the equation (24) and
considering d(e−γ tV ∗(Z ))

dt = e−γ t
(
dV ∗(Z )
dt − γV ∗ (Z )

)
, one

has

d
(
e−γ tV ∗ (Z )

)
dt
= e−γ t

(
− ηω2

M (Z )− ZTQZ −ϖ
(
u∗

)

− 2σ
(
tanh−1 (

u∗/σ
))T

Rω (Z )
)

(25)

According to equation (11), one has

ϖ
(
u∗

)
= 2σ

∫ u∗

0

(
tanh−1 (ς/σ)

)T
Rdς

= 2σ
m∑
p=1

∫ u∗

0
rp tanh−1 (ς/σ) dς (26)

Briefly, let ϱ = tanh−1 (ς/σ), we have

ϖ
(
u∗

)
= 2σ 2

m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱ

(
1 − tanh2 (ϱ)

)
dϱ

= 2σ 2
m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱdϱ

− 2σ 2
m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱ tanh2 (ϱ) dϱ

= σ 2
m∑
p=1

rj
(
tanh−1 (

u∗/σ
))2

− 2σ 2
m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱ tanh2 (ϱ) dϱ (27)

Denoting ω (Z ) = [ω1 (Z ) , . . . , ωm (Z )]T ∈ Rm with
ωp (Z ) ∈ R p ∈ {1, 2, 3 . . . ,m}, we have

− 2σ
(
tanh−1 (

u∗/σ
))T

Rω (Z )

= −2σ
m∑
p=1

rp tanh−1 (
u∗/σ

)
ω (Z ) (28)

m∑
p=1

rpω2 (Z ) = ωT (Z )Rω (Z ) (29)

Substituting (27), (28) and (29) into (25), let

Λ = −ηω2
M (Z )− ZTQZ

+ 2σ 2
m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱ tanh2 (ϱ) dϱ

− σ 2
m∑
p=1

rp
(
tanh−1 (

u∗/σ
))2

+

m∑
p=1

rpω2 (Z )

−

m∑
p=1

rpω2 (Z )− 2σ
m∑
p=1

rp tanh−1 (
u∗/σ

)
ω (Z )

= −ηω2
M (Z )− ZTQZ +

m∑
p=1

rpω2 (Z )

+ 2σ 2
m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱ tanh2 (ϱ) dϱ

−

m∑
p=1

rp
(
σ tanh−1 (

u∗/σ
)
+ ω (Z )

)2
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≤ − ηω2
M (Z )− ZTQZ +

m∑
p=1

rpω2 (Z )

+ 2σ 2
m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱ tanh2 (ϱ) dϱ (30)

What’s more, according to the integral mean-value theo-
rem, one has

2σ 2
m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱ tanh2 (ϱ) dϱ

= 2σ 2
m∑
p=1

rp tanh−1 (
u∗/σ

)
ε tanh2 (ε) (31)

where ε ∈ (0, tanh−1 (u∗/σ)),

2σ 2 ∑m
p=1

∫ tanh−1(u∗/σ)
0 rpϱ tanh2 (ϱ) dϱ > 0, and 0 <

tanh2 (ε) ≤ 1. Besides,

2σ 2
m∑
p=1

∫ tanh−1(u∗/σ)

0
rpϱ tanh2 (ϱ) dϱ

≤ 2σ 2
m∑
p=1

rp tanh−1 (
u∗/σ

)
ε

≤ 2σ 2
m∑
p=1

rp
(
tanh−1 (

u∗/σ
))2

= 2σ 2
(
tanh−1 (

u∗/σ
))T

R
(
tanh−1 (

u∗/σ
))

=
1
2

(
∇V ∗

)T B (Z )R−1BT (Z )∇V ∗

≤
1
2
λmax

(
R−1

)
B2

MV
2
M (32)

where λmax
(
R−1

)
is the largest eigenvalue of R−1, BM

denotes the upper bound of B (Z ).
Considering the given assumption (17), according to (30)

and (32), one has

d
(
e−γ tV ∗ (Z )

)
dt

≤ e−γ t
(
− λmin (Q) ∥Z∥

2
+

m∑
p=1

rpω2 (Z )

+
1
2
λmax

(
R−1

)
B2

MV
2
M − ηω2

M (Z )
)

≤ e−γ t
(
− λmin (Q) ∥Z∥

2

+
1
2
λmax

(
R−1

)
B2

MV
2
M

)
(33)

According to [22] and [35], when γ → 0, we have

d (V ∗ (Z ))
dt

≤ −λmin (Q) ∥Z∥
2
+

1
2
λmax

(
R−1

)
B2

MV
2
M

(34)

Obviously, d(V
∗(Z ))
dt < 0 when Z is out of the set ΨZ :

ΨZ =

Z : ∥Z∥ ≤ BMVM

√
λmax

(
R−1

)
2λmin (Q)

 (35)

By the Lyapunov extension theorem we can prove that the
trajectory of the augmented system (7) is UUB under the

optimal control u∗ (16) with the bound BMVM

√
λmax(R−1)
2λmin(Q)

.
In other words, the tracking error (3) is UUB.

IV. ESN-BASED IRL ALGORITHM FOR THE SOLUTION
In this part, an ESN-based IRL algorithm is proposed to
search the solution of the HJBE (15). In the first part,
the off-policy algorithm is shown. In second part, a date-
based IRL algorithm is introduced. Finally, ESN is designed
to complete the IRL algorithm, which reduces the design
complexity and the computation burden.

A. BASIC OFF-POLICY ITERATION ALGORITHM
On-policy iteration and off-policy iteration both are rein-
forcement learning methods. In on-policy iteration algorithm,
the next policy relies on the currently improved policy and
the performance function is evaluated by using the system
data generated by that improved policy. However, the data
is inaccurate, which results in an increasing approximation
error. Different from the on-policy iteration, in off-policy
iteration algorithm, the next policy do not rely on the
currently improved policy and the performance function
is evaluated by using the system data generated by an
arbitrary control [39], [40], [41]. This paper uses the
off-policy iteration algorithm, which includes two parts:
policy evaluation and policy improvement.

Algorithm 1. (Steps of the off-policy iteration)
• Step 1: Initialization. Initialize the admissible policy
u(0) (Z ) and the calculation accuracy ι > 0 at step ℓ = 0.

• Step 2: Policy evaluation by compute the performance
function V (ℓ) (Z ).

ηω2
M (Z )+ ZTQZ +ϖ

(
u(ℓ)

)
− γV (ℓ) (Z )

+

(
∇V(ℓ) (Z )

)T (
A (Z )+ B (Z ) u(ℓ) (Z )

)
= 0 (36)

whereϖ
(
u(ℓ)

)
= 2σ

∫ u(ℓ)
0

(
tanh−1 (ς/σ)

)T
Rdς .

• Step 3: Policy improvement via

u(ℓ+1) (Z ) = −σ tanh
(
(1/2σ)R−1BT (Z )∇V(ℓ) (Z )

)
(37)

• Step 4: Termination Conditions. Stop the iteration when∥∥V (ℓ+1) (Z )− V (ℓ) (Z )
∥∥ ≤ ι for each Z ∈ Υ . The final

corresponding policy is approximately optimal. If not,
let ℓ = ℓ+ 1 and return to the Step 2.

The convergence of the policy iterations has been shown
in [23].

B. DATA-BASED IRL ALGORITHM
Algorithm 1 indicates that system dynamics A and B are
required. When the system dynamic is unknown, we will
present a data-based IRL algorithm.
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Adding an auxiliary variate u(ℓ) (Z ) to the augmented
system (7), we can obtain

Ż = A (Z )+ B (Z ) u(ℓ) (Z )

+ B (Z )
(
u (Z )− u(ℓ) (Z )

)
(38)

Taking the derivative of V (ℓ+1) (Z ) along the augmented
system (38), one has

dV (ℓ) (Z )
dt

=

(
∇V (ℓ)

)T (
A (Z )+ B (Z (t)) u(ℓ) (Z )

+ B (Z )
(
u (Z )− u(ℓ) (Z )

) )
=

(
∇V (ℓ)

)T (
A (Z )+ B (Z ) u(ℓ) (Z )

)
+

(
∇V (ℓ)

)T (
B (Z )

(
u (Z )− u(ℓ) (Z )

))
(39)

According to equations (36) and (37) in Algorithm 1,
we can obtain(

∇V(ℓ) (Z )
)T (

A (Z )+ B (Z ) u(ℓ) (Z )
)

= −ηω2
M (Z )− ZTQZ −ϖ

(
u(ℓ)

)
+ γV (ℓ) (Z )(

∇V(ℓ) (Z )
)T
B (Z )

= −2σ
(
tanh−1

(
u(ℓ+1)/σ

))T
R (40)

Substituting the above two equations into (39), we can
obtain

dV (ℓ) (Z )
dt

= −ηω2
M (Z )− ZTQZ −ϖ

(
u(ℓ)

)
+ γV (ℓ) (Z )− 2σ

(
tanh−1

(
u(ℓ+1)/σ

))T
R

(41)

Integrating both sides of (41) over the time interval[
t, t +1t

]
, one has

V (ℓ) (Z (t +∆t))− V (ℓ) (Z (t))

= −

∫ t+∆t

t

(
ηω2

M (Z (τ ))

+ ZT (τ )QZ (τ )+ϖ
(
u(ℓ) (τ )

)
− γV (ℓ) (Z (τ ))

)
dτ

−

∫ t+∆t

t

(
2σ

(
tanh−1

(
u(ℓ+1) (τ ) /σ

))T
× R

(
u (τ )− u(ℓ) (τ )

) )
dτ (42)

Algorithm 2. (Steps of the data-based IRL)
• Step 1: Collecting data. Given a calculation accuracy ι >
0, let ℓ = 0, select the initial admissible control u(0) (Z ).

• Step 2: Let ℓ > 0, according to control policy u(ℓ) (Z ),
simultaneously solving for V (ℓ) (Z ) and u(ℓ+1) (Z ) from
equation (42).

• Step 3: If
∥∥V (ℓ+1) − V (ℓ)

∥∥ ≤ ι for each Z ∈ Υ . The
final corresponding policy is approximately optimal. If
not, let ℓ = ℓ+ 1 and return to the Step 2.

Differ from the off-policy algorithm, the data-based IRL
algorithm can iterate and compute the performance function
V (ℓ) (Z ) and the control policy u(ℓ+1) (Z ), simultaneously.
We can find that the proposed data-based IRL algorithm does
not require any system dynamics information.

C. IMPLEMENTATION OF THE IRL ALGORITHM BY USING
ESN
In this subsection, an ESN-based actor-critic architecture is
used to implement the IRL algorithm. First, performance
function V (ℓ) (Z ) is approximated by ESN as follows

Ż1 (t) =
1

B1
(−κ1Z1 (t)+Φ1 (Win1Z (t)+W1Z1 (t)))

(43)

V̂ (ℓ) (Z ) =

(
W (ℓ)
out1

)T
[Z (t) ;Z1 (t)] (44)

where augmented system states Z (t) is used as the input
of ESN. Z1 (t) is the reservoir states. Parameters κ1 > 0,
B1 > 0 and Φ1 (·) denote the leaky rate, time constant
and active function, respectively. Weight matrixes Win1 ∈

Rp1×2n, W1 ∈ Rp1×p1 and Wout1 ∈ R1×(2n+p1) link
the input vector, reservoir states and critic ESN output
vector, respectively. [·; ·] denotes the concatenation operation
between two vectors. Among these weight matrixes, only the
output weight Wout1 ∈ R1×(2n+p1) needs to be trained, and
the other matrices are randomly generated according to the
given sparsity. Unlike polynomial NN, ESN do not need to
elaborately select the hidden layers and only need to train the
output weights, which greatly reduces the design difficulty
and computational burden.

Let Θ (Z ) = [Z (t) ;Z1 (t)], we have

V̂ (ℓ) (Z ) =

(
W (ℓ)
out1

)T
Θ (Z ) (45)

To solve the constraint input problem, inspired by the
literature [33], an intermediate variable is defined as

µ(ℓ) (Z ) = tanh−1
(
u(ℓ) (Z ) /σ

)
(46)

Applying the ESN to approximate this intermediate
variable (46), one has

Ż2p (t) =
1

B2p

(
−κ2pZ2p (t)+Φ2p

(
Win2pZ (t)+W2pZ2p (t)

))
(47)

µ̂(ℓ)p (Z ) =

(
W (ℓ)
out2p

)T [
Z (t) ;Z2p (t)

]
(48)

The settings of ESN parameters are similar to the
performance function in (43) and (44), which will not be
described here. It should be noted here thatW (ℓ)

out2p is the actor

ESN output weight vector. Let ψ (ℓ)p (Z ) =
[
Z (t) ;Z2p (t)

]
,

then µ̂(ℓ)p (Z ) is deduced to be

µ̂(ℓ)p (Z ) =

(
W (ℓ)
out2p

)T
ψ (ℓ)p (Z ) (49)
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where µ̂(ℓ)p (Z ) means the p-th intermediate variable of the
control input, p ∈ {1, 2, 3 . . . ,m}. So the control policy is
formulated as

û(ℓ) (Z ) = σ tanh
(
µ̂(ℓ) (Z )

)
=

[
σ tanh

(
µ̂
(ℓ)
1 (Z )

)
, . . . , σ tanh

(
µ̂(ℓ)m (Z )

)]T
=

[
σ tanh

((
W (ℓ)
out21

)T
ψ
(ℓ)
1 (Z )

)
, . . .

σ tanh
((
W (ℓ)
out2m

)T
ψ (ℓ)m (Z )

) ]T (50)

Substituting (50) into (11), we have

ϖ
(
u(ℓ)

)
= 2σ

∫ u(ℓ)

0

(
tanh−1 (ς/σ)

)T
Rdς

= 2σ
∫ σ tanh

(
µ(ℓ)(Z )

)
0

(
tanh−1 (ς/σ)

)T
Rdς (51)

Then the final formulation of IRL algorithm (42) is

V (ℓ) (Z (t +∆t))− V (ℓ) (Z (t))

= −

∫ t+∆t

t

(
ηω2

M (Z (τ ))+ ZT (τ )QZ (τ )− γV (ℓ) (Z (τ ))

+ 2σ
∫ σ tanh

(
µ(ℓ)(Z )

)
0

(
tanh−1 (ς/σ)

)T
Rdς

)
dτ

−

∫ t+∆t

t

(
2σ

(
u(ℓ+1) (τ )

)T
× R

(
u (τ )− σ tanh

(
µ(ℓ) (Z (τ ))

)) )
dτ (52)

According to the integral operation of the inverse hyper-
bolic tangent, we have

2σ
∫ σ tanh

(
µ(ℓ)(Z )

)
0

(
tanh−1 (ς/σ)

)T
Rdς

= 2σ 2
(
µ(ℓ) (Z )

)T
R tanh

(
µ(ℓ) (Z )

)
+ σ 2

m∑
p=1

rp ln
(
1 − tanh2

(
µp

(ℓ) (Z )
))

(53)

So (52) can be derived as

V (ℓ) (Z (t +∆t))− V (ℓ) (Z (t))

= −

∫ t+∆t

t
ηω2

M (Z (τ ))+ ZT (τ )QZ (τ )− γV (ℓ) (Z (τ )) dτ

−

∫ t+∆t

t
2σ 2

(
µ(ℓ) (Z (τ ))

)T
R tanh

(
µ(ℓ) (Z (τ ))

)
dτ

−

∫ t+∆t

t
σ 2

m∑
p=1

rp ln
(
1 − tanh2

(
µ(ℓ)p (Z (τ ))

))
dτ

−

∫ t+∆t

t

(
2σ

(
µ(ℓ) (Z (τ ))

)T
× R

(
u (τ )− σ tanh

(
µ(ℓ) (Z (τ ))

)) )
dτ (54)

When the performance function and the control policy are
not optimal, we define the approximated values as V̂ and µ̂.
We substitute the approximated values into the data-based
IRL algorithm (54), there is the residual error ζ as follows:

ζ (Z )

=

(
W (ℓ)
out1

)T
Θ (Z (t))−

(
W (ℓ)
out1

)T
Θ (Z (t +∆t))

−

∫ t+∆t

t

(
ηω2

M (Z (τ ))+ ZT (τ )QZ (τ )

− γ
(
W (ℓ)
out1

)T
Θ (Z (τ ))

)
dτ

−

∫ t+∆t

t

(
2σ 2

((
W (ℓ)
out2

)T
ψ (ℓ) (Z (τ ))

)T

× R tanh
((
W (ℓ)
out2

)T
ψ (ℓ) (Z (τ ))

) )
dτ

−

∫ t+∆t

t
σ 2

m∑
p=1

rp ln
(
1 − tanh2

((
W (ℓ)
out2p

)T
ψ (ℓ)p (Z)

))
dτ

− 2σ
m∑
p=1

rp

∫ t+∆t

t

((
W (ℓ)
out2p

)T
ψ (ℓ)p (Z (τ ))

)T

×

(
up (τ )− σ tanh

((
W (ℓ)
out2p

)T
ψ (ℓ)p (Z (τ ))

))
dτ

(55)

Let

J (Z )

= (Θ (Z (t))−Θ (Z (t +∆t)))T

+

∫ t+∆t

t
γΘ (Z (t (τ )))T dτ

K (Z )

= 2σ rp

∫ t+∆t

t

(
u (τ )

− σ tanh
((
W (ℓ)
out2p

)T
ψ (ℓ)p (Z (τ ))

) )(
ψ (ℓ)p (Z (τ ))

)
dτ

L
(
Z , û(ℓ)

)
=

∫ t+∆t

t
ηω2

M (Z (τ ))+ ZT (τ )QZ (τ )dτ

+

∫ t+∆t

t
2σ 2

((
W (ℓ)
out2

)T
ψ (ℓ) (Z (τ ))

)T

× R tanh
((
W (ℓ)
out2

)T
ψ (ℓ) (Z (τ ))

)
dτ

+

∫ t+∆t

t
σ 2

m∑
p=1

rp ln
(
1 − tanh2

((
W (ℓ)
out2p

)T
ψ (ℓ)p (Z)

))
dτ

Ξ (Z )

=

[
J (Z )T ,K1 (Z )T , . . . ,Km (Z )T

]T
∈ R1×(N+mM)
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W (ℓ)
out

=

[(
W (ℓ)
out1

)T
,
(
W (ℓ)
out2

)T
, . . . ,

(
W (ℓ)
outm

)T]T
ζ (Z )

= Ξ (Z )W (ℓ)
out − L

(
Z , û(ℓ)

)
(56)

To obtain the optimal ESN output weights, it is necessary to
collect enough system data. Consider the q-th sampled data,
we have

ζ [q] (Z ) = Ξ [q] (Z )W (ℓ)
out − L[q]

(
Z , û(ℓ)

)
(57)

According to [33], the output weights can be iterated by
using the least squares method as follows

W (ℓ)
out =

 S∑
q=1

((
ζ [q] (Z )

)T
ζ [q] (Z )

)−1

×

S∑
q=1

(
ζ [q] (Z )

)T
L[q]

(
Z , û(ℓ)

)
(58)

By using the (58), we can obtain the optimal weights for
critic ESN and actor ESN until

∥∥V (ℓ+1) − V (ℓ)
∥∥ ≤ ι and stop

the iteration. Then we can acquire the optimal control policy
by using equations (48) and (50).
Remark 1: To implement (58), we need to collect enough

data from the system (38), which is generally chosen to be
at least N + mM . To guarantee the approximate accuracy,
according to [42], the size of the reservoir of the ESN should
be at least equal to the dimension of the system states. In
order to improve the approximation accuracy, it is suggested
that the size of the reservoir should be more than twice of the
system states dimension.

V. SIMULATIONS
The two simulations, one is about linear system and another
is about nonlinear system, are given in the following.

A. LINEAR SYSTEM SIMULATION
Consider the disturbed well-known spring, mass and damper
system

ẋ1 = x2

ẋ2 = −
k
m
x1 −

c
m
x2 +

1
m
(u+ w) (59)

where x1 denotes the position and x2 denotes the velocity,
m denotes the mass, k denotes the stiffness coefficient and
c denotes the damping. These parameters are always be
selected asm = 1kg, c = 0.5N ·s/m and k = 5N/m. Besides,
the disturbance is defined as w(t) = x1sin2(x2)cos(0.5x1).
The desired trajectories are written as

ẋr =

[
0 1

−5 0

]
xr (60)

Consider the nominal system of the system (59), the
corresponding augmented system is

Ż =


0 1 0 0

−5 −0.5 0 −0.5

0 0 0 1

0 0 −5 0

Z +


0

1

0

0

 u (61)

The tracking performance function is selected as

V (Z (t)) =

∫
∞

0
e−0.01(ς−t)

(
3Z2

+ Z (ς)T QZ (ς)

+ 2σ
∫ u(t)

0

(
tanh−1 (υ/σ)

)T
Rdυ (u (ς))

)
dς

(62)

where Q and R are set as identity matrices. Besides, the
system dynamics are assumed to be totally unknown. The two
ESNs are selected as B1 = B2p = 100, κ1 = κ2p = 1,
p1 = p2 = 10. The reservoir functionΦ1 andΦ2 are selected
as identity function. Then, the output weights of ESNs are
vector with 14 dimensions and are initially set as zero.

FIGURE 1. The actor NN weights of the linear tracking system.

The simulation results are shown in Figs. 1–3. Fig. 1
shows the iteration of the weights of the actor ESN
during the training process of the linear system tracking
problem. Fig. 2 shows the iteration of the weights of the
actor ESN during the training process. Substitute the actor
weights into the equation (49) to compute the intermediate
variable. Then, substitute the intermediate variable into the
equation (50) to compute the optimal control policy. To verify
the effectiveness, the obtained controller is used to control
this linear system (59) to track the predefined desired (60),
the tracking trajectory is shown in Fig. 3. We can see
that this linear system tracks the desired system in 6s and
maintains the tracking state well under the disturbance. Fig. 4
shows the tracking trajectory under the polynomial network
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for the linear system, which is similar to our simulation
result.

FIGURE 2. The critic NN weights of the linear tracking system.

FIGURE 3. The tracking trajectory of the linear system.

B. NONLINEAR SYSTEM SIMULATION
The nonlinear system is

ẋ =

[
−x1 + x2

−0.5(x1 + x2)

]
+

[
0

0.5x2(2 + cos2(2x1))2 + (2 + cos2(2x1))

]
× (u+ w) (63)

where x denotes the system states. The disturbance is defined
as w(t) = x1sin2(x1)cos(0.5x1x2).
The desired trajectories are written as

ẋr =

[
−1 1
−2 1

]
xr (64)

FIGURE 4. The tracking trajectory of polynomial network for linear
systems.

By using the nominal system (63), the corresponding
augmented system is

Ż =


−Z1 + Z2

−0.5(Z1 + Z2 + Z3 + Z4) + 2Z3 − Z4
−Z3 + Z4
−2Z3 + Z4



+


0

0.5(Z2 + Z4)(2 + cos(2(Z1 + Z3))2)2

+2 + cos2(2(Z1 + Z3))
0
0

 u (65)

The tracking performance function is selected as

V (Z (t)) =

∫
∞

0
e−0.01(ς−t)

(
2Z2

+ Z (ς)T QZ (ς)

+ 2σ
∫ u(t)

0

(
tanh−1 (υ/σ)

)T
Rdυ (u (ς))

)
dς

(66)

where Q and R are selected as identity matrices. Besides, the
system dynamics are assumed to be totally unknown. The two
ESNs are set as B1 = B2p = 100, κ1 = κ2p = 1, p1 =

p2 = 10. The reservoir function Φ1 and Φ2 are selected as
tanh(·). Then, the output weights of ESNs are also vector with
14 dimensions and are initially set as zero.
The simulation results are shown in Figs. 5–7. Fig. 5

shows the iteration steps of the actor ESN weights the
during the training process of the nonlinear system tracking
problem. Fig. 6 shows the iteration steps of the actor ESN
weights during the training process. Substitute the actor
weights into the equation (49) to compute the intermediate
variable. Then, also substitute the intermediate variable into
the equation (50) to compute the optimal control policy. To
verify the effectiveness, the obtained controller is used to
control this nonlinear system (63) to track the predefined
desired (64), the tracking trajectory is shown in Fig. 7.We can
see that this nonlinear system tracks the desired system in 4s

VOLUME 12, 2024 15141



C. Liu et al.: ESN-Based Robust Tracking Control for Unknown Constrained Nonlinear Systems

FIGURE 5. The actor NN weights of the nonlinear tracking system.

FIGURE 6. The critic NN weights of the nonlinear tracking system.

FIGURE 7. The tracking trajectory of the nonlinear system.

and maintains the tracking state well under the disturbance.
Fig. 8 shows the tracking trajectory of polynomial network
for nonlinear system, which is similar to our simulation result.

FIGURE 8. The tracking trajectory of polynomial network for nonlinear
systems.

According to these two comparisons, we can see that the
algorithm used in this paper not only guarantees tracking
effectiveness, but also does not need to consider the choice
of activation function.

VI. CONCLUSION
This paper utilizes a data-based IRL algorithm to solve
the RTCP for a class of constrained CT nonlinear systems.
It extends the IRL technique in robust tracking problem.
The tracking problem is solved by using an optimal
control method by defining an augmented system and a
corresponding discounted performance function. Different
from the existingmethods, ESN is utilized as the approximate
structure in the IRL algorithm, thus reducing the difficulty
of neural network design and calculation burden of the
weights training. The optimal performance function and
control policy can be solved by using only the system data
generated off-line. Two simulations present good results that
the controlled system can effectively suppress the external
disturbance and ensure the system to track the given target.
Because of the random characteristics of ESN, the stability of
the proposed algorithm needs to be further improved. In the
future, wewill continue to study how to design the parameters
of ESN to improve the IRL algorithm, and concern with the
problem of asymmetric input constraints.
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