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ABSTRACT As machine learning models are increasingly applied to real-world scenarios, it is essential
to consider the possibility of changes in the data distribution over time. Concept drift detection and
adaptation refers to the process of identifying and tracking these changes and updating themodel accordingly.
Researchers have devoted significant efforts to develop various techniques and tools for concept drift
detection and adaptation, as this paper provides a generic roadmap and review of the field. In this paper,
we begin by reviewing the background of data stream classification and its assumptions and requirements.
Then, we explore the historical development of concept drift detection and adaptation and highlight the key
points of approaches that have emerged over time. Next, we summarize the major findings, challenges, and
limitations of past research, and provide insights into potential future directions of the field. The paper can
benefit researchers and practitioners who seek to navigate the challenges and opportunities in concept drift
detection and adaptation.

INDEX TERMS Concept drift, data stream, non-stationary environments.

I. INTRODUCTION
Concept drift in machine learning refers to a scenario in
which the statistical characteristics of the target variable,
which the model aims to predict, change over time [1], [2],
[3]. This implies that the meaning of the input data on which
the model was originally trained has significantly altered.
However, the model remains unaware of these changes and,
as a result, may not produce accurate predictions.

The sudden changes in human behavior caused by the
COVID-19 pandemic represent a prime example of concept
drift in action. To understand how the pandemic-related con-
cept drift may affect predictive models, let’s consider an
example fromMelbourne City, where the COVID-19 quaran-
tine has impacted various aspects such as shopping behavior,
electricity usage, and motor vehicle collisions. As an illus-
tration, let’s examine the number of future motor vehicle
collisions prediction. VicRoads is responsible for reporting
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all accidents involving injuries, deaths or damages of at least
$1,000. During the pandemic, the annual collision count was
significantly lower compared to previous years, which was a
result of the lockdown and business closures. Furthermore,
if we consider electricity usage, the data patterns before
and after the pandemic are not the same (as life returns
to normal). Therefore, any predictive model created before
the pandemic that assumes a specific relationship between
inputs and outputs will perform poorly due to changes in
the underlying data patterns. To further illustrate the phe-
nomenon of concept drift, consider the following scenario in
Table 1a and Table 1b. Suppose we are attempting to predict
whether a customer will purchase a product based on their
age and salary, and we train a logistic regression model using
historical customer data from January to June (Table 1a). This
example highlights how changes in data over time can lead
to concept drift, potentially impacting the accuracy of the
model’s predictions. Imagine a model that initially performs
well on the training data, achieving an accuracy of 80%.How-
ever, suppose in July, there’s a shift in the demographics of
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FIGURE 1. A general framework of concept drift handling [1].

TABLE 1. Illustration of concept drift.

our customer base, leading to an increase in both the average
age and salary (as shown in Table 1b). If we were to use the
same model, which was trained on the prior data, to predict
purchases for this new customer profile, we would likely see
a drop in performance. This is an example of concept drift -
the statistical properties of the target variable have changed
over time, causing the model to become outdated and perform
poorly on new data.

Concept drift is a widely occurring phenomenon that
affects many different applications. It has been identified
and addressed in various fields, including medicine, industry,
education, and business. In the medical field, the effective-
ness of antibiotics can decrease over time as microorganisms
become resistant. If an unnecessary use of antibiotics leads
to resistance, it may render antibiotics useless when they are
needed. Changes in the drug being used can trigger changes
in disease progression. In finance, bankruptcy prediction or
credit scoring are usually considered to be stable problems,
but latent factors such as social demands and movements

can cause concept drift. In industrial monitoring applica-
tions, changes in production or service monitoring and user
behavior can also result in concept drift. In transportation,
traffic management systems use data mining to monitor traf-
fic states like car density and accidents, which are subject
to change due to seasonal or permanent changes in traffic
patterns. Thus, these systems must be able to handle concept
drift [1]. The phenomenon of concept drift has been explored
in numerous disciplines such as data mining, machine learn-
ing, statistics, and information retrieval [4]. Notably, this
phenomenon might be identified by different terminologies
depending on the field. Table 2 lists the diverse terms asso-
ciated with the concept drift phenomenon across different
research fields.

TABLE 2. Concept drift terminology.

II. CONTRIBUTION AND INNOVATION IN THE RESEARCH
COMMUNITY OF CONCEPT DRIFT
Traditional machine learning involves two key elements:
training and prediction. However, research on machine learn-
ing with concept drift has added three new aspects: detecting
the presence of drift (concept drift detection), comprehending

21130 VOLUME 12, 2024



O. A. Mahdi et al.: Roadmap of Concept Drift Adaptation in Data Stream Mining, Years Later

when, where, and how the drift occurred (drift understand-
ing), and adapting to the drift (drift adaptation). The most
prevalent methods/ techniques for handling streaming data
with concept drift are depicted in Figure 1. Over the past
decade, many scientific studies have focused on the topic of
concept drift, with recent research specifically exploring how
to detect it accurately [5], [6], [7], understand it effectively,
and adapt related knowledge in response to [8] and [9],
in order to ensure that prediction and decision-making are
adaptable in an environment with concept drift. However,
stream learning poses additional challenges due to time and
storage limitations and balancing computational cost with
learning accuracy is crucial for practical applications. Thus,
it is important to find ways to efficiently handle concept drift
in real-world situations and applications [10], [11], [12] that
have limited computational resources and time, as accuracy is
not the only factor in determining the effectiveness of learning
models.

The groundbreaking findings significantly advance stud-
ies in artificial intelligence and data science, especially in
the realms of pattern recognition and data stream mining.
Furthermore, a recent technical paper from Berkeley [13]
identifies acting in continuous learning and dynamic settings
as one of the nine pivotal research avenues to tackle present
AI research obstacles. Therefore, this study centers on exam-
ining the primary research issues associated with detection
methods and adaptive ensembles for evolving data streams.

III. DATA STREAM CLASSIFICATION
Data stream classification involves building a model using
accessible data (namely, the training data) to forecast
the labels of previously unobserved instances. The formal
description of data stream classification is presented as
follows:

Consider a stream S that consists of a series of instances
like (x1, y1), (x2, y2), . . . ,(xt, yt), appearing in sequence
over time. Each pair (xt , yt ) represents an instance at a
specific moment t . Here xt is a vector containing values
for k attributes, represented x = (x1, x2, . . . , xk ), and yt
denotes a class label from a set of m class labels, indicated
as yt ∈ {c1, c2, . . . , cm}. Imagine a target function yt =
f (Xt ) that associates an input vector with its respective class
label. Typically, the objective in learning is to successively
develop a mode ˜f that comes close to mirroring function
f as each instance is handled. Achieving an approximation
that heightens classification accuracy is crucial. Regarding
data stream classification, there are specific assumptions
regarding the behavior of data streams. Alongside these
assumptions, we also touch upon four core prerequisites every
data stream classification endeavor should adhere to, which
are detailed further in subsequent subsections.

A. ASSUMPTIONS
Broadly speaking, there are six primary assumptions com-
monly accepted in the realm of data stream classification as

indicated in the literatures [1] and [14]. These assumptions
include:
• A data stream is characterized by a consistent set of
attributes. Too many attributes can hinder the learning
procedure and elevate memory consumption.

• The overall count of instances or records is signifi-
cantly larger compared to the number of attributes. Most
learning algorithms are believed to handle potentially
limitless data without exhausting memory resources.

• It’s preferable to have a limited number of class labels.
An increased number of class labels necessitates more
statistics to craft a classification model. Given that these
statistical values are constantly refreshed over time, pro-
cessing a data stream with numerous classes becomes
computationally demanding. This demand escalates lin-
early with the class count in terms of computational
complexity.

• Typically, the volume of the data surpasses available
memory. As a result, it’s im-practical to load the entirety
of the data into memory.

• Learning algorithms are expected to navigate both
the training and testing stages al-most instantaneously,
given the rapid influx of data stream instances.

• The learning paradigm is either perceived as stable or
ever-changing. When there’s a shift in the foundational
data distribution, it’s termed concept drift.

The initial trio of assumptions delves into the behavior
and characteristics of data streams. In contrast, the final three
highlight the attributes and requirements learning algorithms
should exhibit when classifying against these data streams.

B. REQUIREMENTS
The main obstacles in data stream classification arise from
the limited computational resources and the occurrence of
concept drift. To make learning from data streams viable,
classification algorithms need to satisfy these four essential
criteria as outlined in [1] and [15]:
• Requirement One (R1): Process each instance indi-
vidually and review it a single time – Recall which
instances of a data stream arrive one after another and
they are handled only once in the order of appear-
ance. In other words, random access to the instances
is not doable. An instance is thrown away once it has
been handled. While this is a vital necessity for data
stream mining, a learning algorithm can internally store
instances for a short time for additional usage without
violating Requirement 2.
• Requirement Two (R2): Conserve memory usage -
The rationale behind incrementally training classifica-
tion models is that data size often surpasses the capacity
of accessible memory. In essence, vast volumes of data
can’t be accommodated within constrained memory
space. Therefore, it’s crucial to set a maximum limit
on memory consumption to prevent possible memory
depletion. Typically, a learning algorithmmay utilize the
primary memory to keep the existing model.
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• Requirement Three (R3): Process an instance within
a limited timeframe -Learning algorithms need to
address instances almost immediately upon their arrival.
This means they must process data faster than the rate
at which it comes in. Failing to keep up will inevitably
lead to missed information. Therefore, a maximum limit
should be established concerning the time dedicated to
handling each instance.
• Requirement Four (R4): Always be ready to make
predictions -An ideal learning algorithm creates a clas-
sification model that can swiftly determine the label of
new, unseen instances. This readiness to predict signifies
that a class label can be provided at any given moment,
a crucial aspect for data stream classification.

C. THE CYCLE OF DATA STREAM CLASSIFICATION
The data stream classification cycle is depicted in Figure 2.
This cycle comprises three phases: processing, learning, and
utilizing [16], [17]. The details of these phases are as follows:

• Processing: This phase aligns completely with Require-
ment 1, wherein instances from the data stream are
readied and then forwarded to the learning phase.
• Learning: The learning algorithm refines its predic-
tion model by training with every new instance. It also
ensures that it stays within the constraints of Require-
ments 2 and 3 by not surpassing the memory or
processing time limits.
• Utilizing: The model is employed to determine the class
labels of previously unobserved instances. Fulfilling
Requirement 4 involves ensuring the model is always
primed for prediction.

FIGURE 2. The cycle of data stream classification [1].

IV. ADAPTIVE CLASSIFICATION
A. CONCEPT DRIFT PHENOMENON
In non-stationary environments, the distribution of data may
shift over time, resulting in Di ̸= Dj for any two time points
i and j. This makes the notion of two points unstable and the
model unable to accurately capture the latest data distribution.
Therefore, a central obstacle in analyzing streaming data is
identifying notable shifts in the incoming data. Moreover,

variations in the definitions and distributions of incoming
data can influence the classification precision of a model
trained on past data. The detailed explanation of concept drift
will be addressed in the following subsections.

Formal Definition
An important feature of data streams is their dynamic

nature, which requires classifiers to anticipate, detect, and
adapt to changes in concepts. To accomplish this, changes
in type, frequency, source, predictability, and impact must be
assessed [18].

Bayesian decision theory [19] proposes that a classifica-
tion model is defined by prior probabilities of classes p(y)
and class conditional probabilities p(y|x) for all predefined
classes y ∈ K1, . . . , Kc (where c is the number of classes). The
nature of data streams is characterized by changes in these
probability distributions, which is known as concept drift,
occurring after a period of stability [2]. In various domains,
concept drift might also be known as temporal evolution, pop-
ulation drift, covariate shift, or non-stationarity. The majority
of research indicates that concept drift is not easily pre-
dictable, in contrast to seasonal variations. However, certain
adaptive strategies can foresee shifts tied to environmental
elements. The formal definition of concept drift is as follows:
Definition: For a specified data stream S, if there’s a

change in concept between the time points t and t +1,
it happens if and only if there’s some x such that pt (x,y) is
not equal to pt+1(x, y). Here pt denotes the joint distribution
at time t linking the collection of input attributes to the class
label.

Taking this into account, modifications in incoming data
can be identified as alterations in the constituents of Bayesian
decision theory [4], [20], [21]:
• Prior probabilities p(y) are susceptible to alterations.
• Probabilities p(x|y) of class conditional are likewise
susceptible to alterations.

• As a result, posterior probabilities p(y|x) might either
change or remain the same.

Considering the reasons and outcomes of these shifts, two
primary forms of drift are recognized: real drift and virtual
drift [18], as depicted in Figure 3.

FIGURE 3. Two variations of drift: where instances are depicted as circles
with distinct colors [1].

Real drift refers to alterations in p(y|x). It’s important
to note that such changes can occur irrespective of changes
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in p(i), making them undetectable from the data distribution
without knowledge of the true class labels. This differenti-
ation is crucial, as some techniques aim to detect concept
drift by solely examining attribute values [22]. Real drift is
also known as concept shift [23] or conditional change [20].
Example of Real drift, suppose a financial institution is using
a machine learning model to detect fraudulent transactions,
and over time, the characteristics of fraudulent transac-
tions change, such that the model’s predictions become less
accurate. In this scenario, the changes in the conditional
probability distribution p(y|x) can be classified as real drift.
Virtual drift typically denotes shifts in the distribution

of attribute-value p(x) or class p(y) that do not influence
p(y|x) [24], [25], [26]. However, the root and understanding
of such modifications differ among scholars. Widmer and
Kubat [26] suggested that virtual drift stems from an incom-
plete representation of data, rather than genuine conceptual
shifts. In contrast, Tsymbal [24] characterized virtual drift as
shifts in data distribution that modify the decision boundary,
while Delany et al. [25] viewed it as a drift that doesn’t
influence the core concept. Moreover, virtual drifts have also
been labeled as transient drifts [27], sampling shifts [23],
and feature changes [20]. To illustrate virtual drift, consider
a model trained to recognize cats in photos, using a dataset
featuring only black and white cats. In real-world scenarios,
there might be pictures of cats with varied fur colors. If the
model struggles with identifying these newly introduced cats,
this discrepancy can be traced back to virtual drift in the
distribution p(x) or class distribution p(y), which doesn’t
impact the conditional probability p(y|x).
To better elucidate the distinction between real and vir-

tual drift, let’s delve into an example, which is elaborated
upon in Table 3. Suppose a company has built a machine
learning model to predict customer churn based on customer
demographics and purchasing behavior. After a few months,
the company introduces a new product line, which results
in changes to the purchasing behavior of some customers.
The model’s accuracy starts to decline as a result, and the
company wants to know whether this is due to real or virtual
drift.

Ultimately, when a real concept drift is detected, it becomes
necessary to adapt the decision model to the new incoming
data as the current decision boundary becomes outdated.
This adaptation process involves updating the classification
model to maintain high classification accuracy for the new
distribution.

B. CONCEPT DRIFT PATTERNS
Aside from variations in the causes and consequences of
concept changes, several methods have been identified by
researchers to further characterize such changes. These meth-
ods include analyzing the permanence, severity, predictabil-
ity, and frequency of drifts. However, the manifestation of
drifts over time is the most extensively analyzed aspect [2],
[24], [28], [29]. Figure 4 illustrates three fundamental struc-
tural patterns of changes that could occur over time.

TABLE 3. Difference between real and virtual drift.

FIGURE 4. Concept drift patterns.

To start with, sudden or abrupt drift is characterized by a
sudden substitution of the source distribution in St at time t
with another distribution St+1. This causes the classification
accuracy of a classifier to reduce as the new distribution is
used for training. On the other hand, gradual drift happens
at a slower rate and involves a transition stage where exam-
ples from two different distributions Pj and Pj+1 are mixed.
As time passes, the likelihood of monitoring Pj examples
decreases, while that of Pj+1 examples increases. Recurrent
drift refers to a situation where previous concepts may reap-
pear after some time. Recent approaches to detect these three
types of drifts include abrupt drift, gradual drift, and recurring
drift. It is worth mentioning that the proposed concept drift
detection method primarily addresses sudden or abrupt drift.

V. CONCEPT DRIFT DETECTION METHODS
In this section, a thorough evaluation of current methods for
detecting concept drift is presented.

The objective of this thorough evaluation is to offer a
comprehensive overview of Concept Drift Detection Meth-
ods. Our literature search was conducted during my PhD
candidature, utilizing established academic databases. The
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search process was steered by keywords such as ‘‘concept
drift’’, ‘‘non-stationary environments’’, and ‘‘data stream
mining’’. From this effort, pertinent papers were analyzed
to trace the evolution of methodologies and techniques,
establishing a framework for learning under concept drift.
These papers were then organized into three principal cate-
gories: Statistical-based Methods, Windows-based Methods,
and Ensemble-based Methods, as depicted in Figure 5.
Our analysis encompasses the fundamentals of data stream
classification, its underlying assumptions, and requirements.
We delved into the historical progression of concept drift
detection and adaptation, emphasizing the salient aspects
of the methods that have surfaced over the years. Subse-
quently, we collate the significant findings, challenges, and
constraints observed in previous research and offer perspec-
tives on the potential trajectories for future endeavors in the
field.

A. STATISTICAL-BASED METHODS
The Statistical-based Methods are employed to observe the
progress of the learning process by tracking the online error
rate changes of base learners. If the model’s decline in
performance goes beyond the level of significance testing,
it is believed that concept drift has occurred. The basic pro-
cedure of using Statistical-based Methods is presented in
Algorithm 1.

Algorithm 1 Generic Schema of Statistical-Based Methods
Input: S, Data Stream of Examples
Drift Test (DT): Using Statistical Tests or
Mathematical Inequalities.
C: Classifier
Output: Drift ∈ {TRUE, FALSE}

1. Initialize (Parameters)
2. For each example xt ∈ S do
3. Measure DT;
4. If drift detected,

then
5. Return TRUE
6. Else
7. Return TRUE
8. End if
9. End for

Algorithm 1 describes a data stream learning process that
utilizes a drift test to detect concept drift in the data stream.
The algorithm takes a data stream of examples S as input and
a pre-trained classifier C. The output of the algorithm is a
Boolean value indicating whether drift has been detected or
not. The steps of the algorithm are as follows:
1) Initialize Parameters: The algorithm initializes the

parameters required for the drift detection process.
2) For each example x t ∈ S do: The algorithm iterates over

the data stream examples.
3) Measure DT: The algorithm measures the drift test to

check if the current example is consistent with the
concept the classifier has learned so far. This can be done

FIGURE 5. Concept drift detection methods.

using statistical tests or mathematical inequalities. If the
current example is consistent with the learned concept,
the drift test will return a value indicating that no drift
has been detected.

4) If drift detected, then: If the drift test returns a value
indicating that drift has been detected; otherwise, return
false.

In summary, the algorithm processes the data stream exam-
ples one by one, measures the drift test for each example,
and outputs a Boolean value indicating whether drift has been
detected or not. If drift is detected, the algorithm can trigger
re-training of the classifier or other actions to handle the
concept drift.

There are several techniques available in the literature for
detecting concept drift in data streams, each with their own
strengths and weaknesses. DDM (Drift Detection Method)
is a widely used method that monitors the classifier’s error
rate [30]. EDDM (Early Drift Detection Method) is a mod-
ification of DDM that uses the distance error rate instead
of the classifier’s error rate [31]. RDDM (Reactive Drift
Detection Method) was introduced to address the issue of
performance degradation in DDM by incorporating a mech-
anism to discard older examples and periodically update
the statistics used for drift detection [32], [33]. DMDDM
(Diversity Measure as a new Drift Detection Method) com-
bines the disagreement measure with the Page-Hinkley test
to quickly detect concept drift with less memory and time
consumption [34]. KAPPA measures the level of agree-
ment among different classifiers to detect concept drifts
while minimizing computational resources [35]. DMDDM-S
(Diversity Measure as a new Drift Detection Method for
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Streaming Data without Class Labels) was designed to detect
sudden drifts in the absence of class labels, monitoring
the diversity of a pair of classifiers instead of error esti-
mates [36]. HBBE (Hybrid Block-Based Ensemble) is a
hybrid block-based ensemble for multi-class classification in
evolving data streams, which integrates the strengths of an
online drift detector for a k-class problem and the concept
of block-based weighting to respond effectively to different
types of drifts [37]. EBE (Entropy Based Ensemble) uses
information entropy to detect concept drifts, incorporating
entropy as a drift detector into the evolving ensemble to
improve performance [38]. CDDFET (Concept Drift Detec-
tion based on Fisher’s Exact Test) is a modification of
STEPD that uses Fisher’s Exact test to calculate the p-
value, with three modified versions proposed for detecting
drifts [39]. ACDDM (Accurate Concept Drift Detection
Method) uses Hoeffding’s inequality to analyze prequential
error rate consistency for detecting concept drift in dynamic
data streams [40].

B. WINDOWS-BASED METHODS
Typically, a static reference window is used to summa-
rize previous information, while a dynamic sliding window
is used to summarize the latest information. If there is a
notable difference between the distributions of these twowin-
dows, it indicates a concept drift has taken place. The basic
procedure of using Statistical-based Methods is presented
in Algorithm 2, and different window-based methods are
described below.

Algorithm 2Generic Schema ofWindowing-BasedMethods
Input: S, Data Stream of Examples
W , Window of Examples

Output: C: a classifier built on examples in window W
1. Initialize window W
2. For each example xt ∈ S do
3. W←W U {xt}
4. If necessary, remove out-

dated examples from W
5. rebuild/update C using

W
6. End for

Algorithm2 is designed to build a classifier C using a
sliding window of examples in a data stream S. The algorithm
takes S and a window size W as input and outputs a classifier
C built on the examples in the window. The steps of the
algorithm are as follows:
1) Initialize windowW: The algorithm initializes a window

W to store a fixed number of the most recent examples
from the data stream.

2) For each example x t ∈ S do: The algorithm iterates over
the data stream examples.

3) W←WU {x t }: The algorithm adds the current exam-
ple to the windowW .

4) If necessary, remove outdated examples from W : If
the size of W exceeds the maximum window size, the

algorithm removes the oldest examples fromW to main-
tain a fixed window size.

5) Rebuild/update C using W: The algorithm rebuilds
or updates a classifier C using the examples in the
window W.

In summary, the algorithm maintains a fixed window of
the most recent examples from the data stream and rebuilds
or updates a classifier using the examples in the window. This
allows the classifier to adapt to changes in the data over time.

Many methods have been proposed for detecting drift
in data streams under this category. ADWIN (Adaptive
SlidingWindow) [41] is a technique that compares the means
of two sub-windows, w0 and w1, of a larger window, w,
to detect drift. If there is a significant difference in the
means of the two sub-windows, ADWIN signals a drift and
removes the tail of the window until the means become
similar again. ADWIN2 [42] is an upgrade to ADWIN that
uses a window of variable size to adapt to changes in the
data distribution. FHDDM (Fast Hoeffding Drift Detection
Method) [43] uses Hoeffding’s inequality and a window of
size n to detect drift by comparing the current probabilities
to the highest level of correct predictions. SEED [44] also
uses Hoeffding’s inequality, but it applies Bonferroni correc-
tion and block compression to compare two sub-windows
and remove the older portion of the window if there is a
noticeable difference in the average. HDDM_A test and
HDDM_W test [45] are two methods that use Hoeffding’s
bounds to detect drift. HDDM_A examines moving averages,
while HDDM_W examines the weight of moving averages
with weighting based on the exponentially weighted moving
average (EMWA) forgetting scheme. ECDD (EWMA for
Concept Drift Detection) [46] adapts the EWMA technique
to detect drift by using weights to distinguish between recent
and older instances. STEPD (Statistical Test of Equal Pro-
portions) [47] uses two windows to evaluate the accuracy
of a learner’s performance and issues a warning if there
is a substantial difference in accuracy within the recent
window. WSTD (Wilcoxon Rank Sum Test Drift Detector)
[32], [48] is similar to STEPD but uses the Wilcoxon rank
sum statistical test to detect drifts. OCDD (One Class Drift
Detector) [49] is an implicit concept drift detector that uses a
sliding window approach to approximate the distribution of a
new concept. It estimates the percentage of outliers to detect
drift within the sliding window. BDDM (Bhattacharyya Dis-
tance Drift Detector) [50] monitors changes in the mean
and variance over time using the Bhattacharyya distance to
identify changes in distribution. MDDMs (McDiarmid Drift
Detection Methods) [51] leverage McDiarmid’s inequality to
detect drift by monitoring the prediction results in a window
of size n. Whenever a prediction is correct, a 1 is added to the
window; otherwise, a 0 is added.

C. ENSEMBLE-BASED METHODS
Block-based approaches process data streams in portions
called blocks. These methods often replace the weakest
ensemble member with a new classifier after periodically
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evaluating their components. This strategy is effective at
detecting gradual concept drift and maintaining high accu-
racy. Additionally, ensemble-based approaches combine the
outcomes of multiple diverse base learners, and the overall
performance can be monitored by assessing the accuracy of
all the ensemblemembers or each individual base learner. The
majority of ensemble-based detectors utilize the Weighted
Majority Algorithm (WMA) [52] as their foundation. WMA
selects the top-performing learners in the ensemble by assign-
ing a weight to each learner based on its performance. The
basic procedure of using the Ensemble-Based Method is
presented in Algorithm 3, the subsequent sections elaborate
on different block-based ensemble methods.

Algorithm 3 outlines a generic schema of an ensemble-based
method for building a weighted classifier ensemble from
examples of a data stream split into blocks. The algorithm
takes as input the data stream split into blocks, the size of
the block, the number of components in the ensemble, and a
measure of classifier quality (Q). The output of the algorithm
is a k weighted classifier ensemble. The steps of the algorithm
are as follows:

Algorithm 3 Generic Schema of Ensemble-Based Method

Input: S, Data Stream divided into blocks
d , block’s size
k, number of the elements within an ensemble.
(Q): a measure for classifier quality
Output: E : k weighted classifier (ensemble)

1. For each blocks Bt ∈ S do
2. using Btand Q() to construct and assign

weights to each proposed classifier C′

3. Weight C iusing Biand Q( )
4. If |E| < kthen
5. E← E U {C′ }
6. Else
7. Replace the least robust element in the

ensemble with C
8. End if
9. End for

1) The algorithm iterates over each block in the data
stream (S).

2) For each block, the algorithm builds and weights each
nominated classifier (C’) using the block (Bt ) and the
measure of classifier quality (Q).

3) The algorithm weights each nominated classifier (C’)
using the block (Bi) and the measure of classifier
quality (Q).

4) If the number of components in the ensemble (|E|)
is less than k, then the algorithm adds the nominated
classifier (C’) to the ensemble (E).

5) If the number of components in the ensemble (|E|) is
equal to or greater than k, then the algorithm substitutes
the weakest component in the ensemble with the nomi-
nated classifier (C).

6) The algorithm continues iterating over each block in the
data stream (S) until all blocks have been processed.

In summary, Algorithm 3 describes a generic schema of
an ensemble-based method for building a weighted classifier
ensemble from examples of a data stream split into blocks.
The algorithm builds and weights nominated classifiers using
each block in the data stream and a measure of classifier
quality. If the number of components in the ensemble is less
than k, the algorithm adds the nominated classifier to the
ensemble. If the number of components in the ensemble is
equal to or greater than k, the algorithm substitutes the weak-
est component in the ensemble with the nominated classifier.
The algorithm iterates over each block in the data stream until
all blocks have been processed.

Ensemble methods have become increasingly popular in
handling concept drift in data streams. A number of different
ensemble methods have been proposed, each with its own
strengths and weaknesses. In this section, we discuss some
of the most well-known and effective ensemble methods for
concept drift handling.

The accuracy-weighted ensemble (AWE) method, pro-
posed by [53], operates by first training a new classifier for
each incoming data block, using a standard static learning
algorithm. Once the new classifier is trained, it is evaluated
along with all existing classifiers in the ensemble using the
most recent block of data. Following the evaluation, the
algorithm uses mean square error to select the top n clas-
sifiers and update the ensemble accordingly. The Accuracy
Updated Ensemble (AUE2) method, proposed by [54], differs
from AWE in that it employs an online classifier which can
update individual learning models directly, rather than just
adjusting their weights. If the system does not anticipate any
concept drift, then the classifiers improve as if they were
trained on a single large dataset, allowing the block size
to be reduced without impacting the ensemble’s accuracy.
The Dynamic Weighted Majority (DWM) algorithm, pro-
posed by [55], consists of a set of incremental classifiers,
each of which is given a weight based on its accuracy after
processing each incoming example. If a classifier makes a
mistake, its weight is decreased by a user-defined factor β.
Additionally, after a specified period of predictions p, the
entire ensemble is evaluated and a new classifier is added
to the ensemble if necessary. When trained on a large data
stream, DWM can generate a large number of components,
which is why ensemble pruning is often employed as an
extension [2].

The Adaptive Classifier Ensemble (ACE), proposed
by [56], utilizes a combination of an online learner and an
ensemble of batch classifiers. It consists of one online classi-
fier, several batch classifiers, and a drift detector. As each new
data example arrives, the online classifier is trained incre-
mentally, and the batch classifier is extended. Additionally,
the drift detector assesses the average accuracy of each batch
classifier (on the current block), and if the best-performing
component falls outside a 100(1−α)% confidence interval
(where α is a user-defined parameter), a change is detected.
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Once a concept drift is detected, or the number of buffered
examples exceeds the block size, a new batch classifier is cre-
ated, and the online learner is reset. Learn++.NSE, proposed
by [57], is an ensemble method based on human learning
theory, which incorporates aspects of schema theory [58]
that explains how humans learn and organize knowledge.
This algorithm adapts its knowledge retention based on
changes in the stream, similar to how humans construct,
or discard knowledge based on new information. In addition,
Learn++.NSE assigns weights to examples based on their
difficulty in terms of ensemble performance. The Streaming
Ensemble Algorithm (SEA) [59], one of the earliest works
that uses ensembles to deal with concept drift, processes the
data stream by dividing it into blocks of examples. Each
block of data is used to train a new classifier, which is
later compared with the existing ensemble members. If the
candidate classifier outperforms any ensemble member, the
latter is dropped and the former takes its place.

The Online Accuracy Updated Ensemble (OAUE) [16],
makes use of a drift detector that is incorporated into an
online learning system. This detector sends a signal to the
learner to reweight the classifiers when a drift is detected.
The Accuracy and Growth Rate updated Ensemble (AGE)
[60] has expanded on the OAUE approach to address different
types of concept drift. Heterogeneous Dynamic Weighted
Majority (HDWM) [61] enhances DynamicWeighted Major-
ity (DWM) [55] by creating a mixed ensemble that selects
the most appropriate learners at different points in time. This
prevents a decline in performance when the data distribution
changes.

Recurring Dynamic Weighted Majority (RDWM) [62] is
designed to handle recurring concept drift. It includes two
ensembles: a primary online ensemble (EO) and a secondary
ensemble (EB). The primary online ensemble represents the
current concept, while the secondary ensemble represents the
old concept since the beginning of the learning process. The
best learner is selected from the secondary ensemble and
copied into the primary ensemble. Dynamic Drift Detection
(DDD) [63] is a modified version of Online Bagging that
employs four classifier ensembles with different levels of
diversity before and after a concept drift is detected. DDD
identifies the optimal weighted majority of ensembles before
and after the detection of concept drifts, which are identified
by a configurable auxiliary drift detector (by default, EDDM
is used). Fast Adaptive Size Estimation (FASE) [64] is a vari-
ation of the OzaBag algorithm that employs a meta-classifier
to merge the predictions of the base adaptive learners and
employs the HDDMA approach to detect concept drifts.
When drift is detected, the worst classifier is removed and
a new one is added, and the voting strategy used is weighted
based on the error rates of the components. The authors claim
that FASE can process input datawith constant time and space
complexity.

AcceleratedDrift Online Boosting (ADOB) [17] is a boost-
ing ensemble that builds on OzaBoost and aims to accelerate
the recovery of experts after concept drifts. ADOB sorts the

experts according to their accuracy before processing each
instance, affecting the distribution of diversity among the
classifiers and leading to a slight improvement in the accuracy
of the ensemble just after concept drifts. A configurable auxil-
iary drift detector is also included. Boosting Online Ensemble
with Less Restrictions (BOLE) [32], [65] is an algorithm
derived from ADOB with some heuristic changes. These
modifications allow the experts to vote with fewer restric-
tions, enhancing the accuracy of the ensemble in various
scenarios, particularly when there are frequent and sudden
concept drifts. BOLE shows exceptional performance across
most datasets, regardless of the auxiliary drift detection tech-
nique employed. e-Detector and Drift Detection Ensemble
(DDE), are discussed in this paragraph. e-Detector [66] is
an ensemble-based approach that can identify both sudden
and gradual concept drifts. It organizes candidate detectors
into clusters and selects the best component from each cluster
based on a Coefficient of Failure (CoF). The ensemble gen-
erates drift and warning signals when any of its components
identifies a drift, following an early-find-early-report rule.
According to the authors, this approach enhances recall and
reduces false negatives without significantly increasing false
positives and shows better generalization capabilities than
individual detectors. DDE [67] is a lightweight ensemble
of detectors consisting of three configurable components
designed to improve the detection of drifts, with minimal
impact on execution time and better final accuracy. Its detec-
tions depend on a sensitivity parameter, which determines the
minimum number of components required to signal warnings
and drifts. If the sensitivity is set to 1, the DDE’s strategy
is similar to the early-find-early-report rule of e-Detector.
DDE also offers two other sensitivity values (2 and 3) that
make it more robust to false positives but may delay the true
detections.

D. ANALYSIS, DISCUSSION, AND FUTURE DIRECTIONS
This section delves into and deliberates on the pertinent
studies we’ve examined to derive insights and highlight the
prevailing patterns in this domain of research. Our analysis
centers around emphasizing the key aspects that define the
methods outlined in this paper. First,Table 4, provides an
overview of the key points of all the works mentioned above.
However, our observation / findings can be discussed as
follow:

DDM, EDDM, RDDM, DMDDM, DMDDM-S, and
ADWIN/ADWIN2 are capable of detecting abrupt and grad-
ual concept drift. DDM is a popular and widely used
approach, while EDDM is an extension of DDM that aims
to detect drift earlier. RDDM is a relatively new algorithm
that employs a robust approach to handle noise and outliers
in the data. DMDDM and DMDDM-S are variants of DDM,
while ADWIN/ADWIN2 uses a sliding window approach to
monitor changes in the mean of the data.

KAPPA, HBBE, EBE, CDDFET, ACDDM, FHDDM,
SEED, ECDD, STEPD, WSTD, OCDD, BDDM, AUE2,
ACE, OAUE, HDWM, RDWM, ADOB, BOLE, and
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TABLE 4. Key points of the literature.
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TABLE 4. (Continued.) Key points of the literature.
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TABLE 4. (Continued.) Key points of the literature.
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TABLE 4. (Continued.) Key points of the literature.

e-Detector are also capable of detecting both abrupt and grad-
ual concept drift. These algorithms differ in their approach
and methods for detecting concept drift. KAPPA is a newer
algorithm based on the Kappa statistic used in inter-rater reli-
ability. HBBE is a hybrid algorithm that combines Bayesian
estimation and decision trees. EBE uses an ensemble of base
detectors to improve detection accuracy. CDDFET is a variant

of the popular CUSUM algorithm. ACDDM uses hierarchi-
cal clustering to monitor the change in data distribution.
FHDDM is a method that combines multiple detectors to
improve detection accuracy. SEED, ECDD, STEPD, WSTD,
and OCDD are based on sliding window approaches. BDDM
and AUE2 are extensions of DDM, while ACE is a variant
of CUSUM. OAUE is capable of detecting incremental and
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recurring drift in addition to abrupt and gradual drift. HDWM
is capable of detecting recurring drift, while RDWM is
focused on detecting only recurring drift. ADOB and BOLE
are both focused on detecting only abrupt drift.

In terms of future directions, there are several areas where
more research is needed to improve the detection of concept
drift, we list these directions as follow:
1) The literature that was examined primarily deals with

sudden and gradual drifts as the main types of drift.
There are not as many studies on incremental drift which
can be difficult to differentiate from the system’s natu-
ral evolution and continuous changes. Incremental drift
occurs when changes in the data distribution are gradual
and occur over an extended period. It is often caused
by gradual changes in the environment, such as changes
in the economy or changes in consumer preferences.
Detecting incremental drift is challenging because it
requires monitoring the data distribution over time and
detecting small changes in the data. When drift occurs
repeatedly, the system needs to handle it in a specific
manner by having a buffer to store previous behaviors
and reusing the knowledge learned from past observa-
tions when it occurs again in the system.

2) Another area that needs more focus is the detection of
recurring drift. Recurring drift is a type of drift that
occurs periodically in a dataset. It is often caused by
external factors, such as seasonal changes or changes
in consumer behavior. Detecting recurring drift is chal-
lenging because it requires identifying patterns in the
data that repeat over time.

3) There is a need for algorithms that can handle
high-dimensional data and online learning tasks. High-
dimensional data refers to datasets with a large number
of features or variables. Online learning tasks refer to
situations where the data arrives continuously and in
real-time. Handling high-dimensional data and online
learning tasks is challenging because it requires process-
ing large amounts of data quickly and efficiently while
maintaining high accuracy.

4) Drift detection systems need frequent updates after
deployment, so it’s crucial for drift detection methods
to support incremental learning and dynamic adapta-
tion. Hoeffding Trees and Naive Bayes are popular
base learners for most performance-based concept drift
detectors due to their ability to handle large data streams.
However, recent approaches have incorporated neural
networks, which may present challenges for deployment
within big data stream systems because updating the
neural network architecture dynamically can be difficult.
Another significant drawback of neural networks is their
lack of transparency and interpretability, which adds a
burden to concept drift handling systems since under-
standing drift is essential for detecting and adapting to it.

Overall, the development of more robust and accurate algo-
rithms for detecting concept drift is an active area of research,
and further developments in this area are essential for the

continued success ofmachine learning and data science appli-
cations.

VI. CONCEPT DRIFT TOOLKIT AND DATASETS
We now have a better understanding of the various categories
of drift detectors and the pros and cons associated with each
one. This section of the paper will discuss both current and
potential tools that can be employed to detect drifts. In recent
years, there has been a surge in the popularity of monitoring
for Concept Drift. Most major cloud providers offer their own
drift monitoring capabilities.

• Vertex AI Model Monitoring [68]: In May 2022,
Vertex AI Model Monitoring was available on Google
Cloud Platform, and it offered only Univariate
Drift Detection methods without labels, such as the
Jensen-Shannon divergence and L-infinity distance.
Additionally, it was possible to create a monitoring
system that included alerts and warnings.

• Amazon SageMaker Model Monito [69], [70]: Ama-
zon SageMaker Model Monitor offers a sophisticated
monitoring system for Machine Learning models that
are deployed in production and generates reports. How-
ever, there is limited information available re-garding
the specific methods for detecting drift that it employs.

• Watson OpenScale Drift Monitor [70], [71]: IBM
Cloud’s Watson OpenScale Drift Monitor offers a mon-
itoring dashboard to detect drifts, utilizing a variety of
methods to detect inconsistencies and accuracy drops.
This includes some drift detectors with labels, such
as DDM.

• Azure Machine Learning [72]: Microsoft Azure’s
AzureMachine Learning includes drift monitoring func-
tionality among its features, but there is a lack of
transparency regarding the specific metrics it uses. It is
known that the platform is unable to address real concept
drifts.

Open-source tools are also available for detecting drifts:

• MOA (Massive Online Analysis) [73] is a freely avail-
able open-source software designed for data streammin-
ing with a focus on detecting concept drift. It includes
a prequential evaluation method, as well as the EDDM
concept drift methods, and can read ARFF real datasets,
along with generating artificial stream data such as SEA
concepts, STAGGER, rotating hyperplane, random tree,
and random radius-based functions. MOA also supports
bi-directional interaction with Weka.

• River [74] is a machine learning library designed for
dynamic data streams and continual learning. It offers
a range of state-of-the-art learning methods, data gener-
ators/transformers, performance metrics, and evaluators
tailored for various stream learning challenges. Draw-
ing on insights from seminal packages, River boasts a
refined architecture.

Also, a variety of dataset types are also accessible for
assessments: have been widely used in above works [75].
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Real Datasets include:
• The USP Data Stream Repository [40]: contains
27 real-world datasets with concept drift, compiled by
Souza et al. in 2020. The repository can be accessed
online.

• TheAirline dataset [76], which includes approximately
116 million flight arrival and departure records that
have been cleaned and sorted, was compiled by E.
Ikonomovska and can be accessed through the Data
Expo 2009 Competition.

• The Elec2 dataset [77], It comprises 45,312 data points,
with 8 input features, collected every 30 minutes over
two years from the New South Wales Electricity in
Australia. The objective is to forecast whether the elec-
tricity price will increase (Up) or decrease (Down).
Concept drift might occur due to shifts in consumer
behavior, unforeseen incidents, and seasonal variations.

• Forest CoverType [78], It features 54 attributes and
581,012 data points that depict 7 types of forest cover
for areas measuring 30 X 30 meters. This informa-
tion was sourced from the US Forest Service (USFS)
Region 2 Resource Information System (RIS) and per-
tains to four wilderness zones situated in the Roosevelt
National Forest in northern Colorado.

• Poker hand [79], It consists of 1,000,000 data points,
with each data point representing a hand of five playing
cards taken from a standard 52-card deck. Every card
has two characteristics (suit and rank), resulting in ten
predictive features. The classification determines the
type of poker hand.
Synthetic Datasets includes:

• Sine1 (with abrupt concept drift) [80]: The dataset
contains two features, x and y, which are evenly dis-
tributed within the range [1, 0]. The classification is
determined by the function y= sin(x). Data points below
the curve are labeled as positive, while those above are
deemed negative. When a drift occurs, the class labels
switch.

• Sine2 (with abrupt concept drift) [80]: The dataset
features two variables, x and y that are evenly spread
within the [1, 0]. The classification is determined by the
function 0.5 + 0.3 ∗ sin(3 ∗ π ∗ x). Data points that
fall beneath the curve are labeled as positive, and those
above it are deemed negative. When a drift takes place,
the labeling system flips.

• Stagger (with abrupt concept drift) [81]: The dataset
includes three categorical attributes: size (with val-
ues {small, medium, large}), color (with values
{red, green}), and shape (with values {circular, non-
circular}). Before the initial drift point, entries are
labeled positive when both conditions (color = red)
and (size = small) are met. Following this and up to
the second drift, entries are marked positive if either
(color = green) or (shape = circular). After the second
drift, entries are deemed positive if the size is either
medium or large.

• Mixed (with abrupt concept drift) [30]: The dataset
features two numerical variables, x and y, which lie in
the range [1, 0], along with two boolean attributes, v and
w. Data points are labeled as positive when a minimum
of two out of these three conditions hold true: v, w, or y
is less than 0.5+ 0.3 ∗ sin(3 ∗ π ∗ x). When drift events
arise, the classification system is flipped.

• Circles (with gradual concept drift) [80]: It has two
attributes x and y that are distributed in [1, 0]. The
function of circle <(x_c,y_c), r_c> is (x - x_c)^2 + (y
- y_c)^2 = r_c^2 where (x_c, y_c) is its center and r_c
is the radius. Four circles of <(0.2, 0.5), 0.15>, <(0.4,
0.5), 0.2>, <(0.6, 0.5), 0.25>, and <(0.8, 0.5), 0.3>
classify instances in order. Instances inside the circle
are classified as positive. A drift happens whenever the
classification function, i.e. circle function, changes.

• LED (with gradual concept drift) [80]: The aim of
this dataset is to identify the number shown on a
seven-segment display, with each digit having a 10%
probability of being presented. The dataset comprises
7 attributes directly tied to the class and an additional
17 that are irrelevant. Concept drift is emulated by swap-
ping the pertinent attributes.

VII. FUTURE TRENDS
Regarding future research, there are numerous intriguing
directions that can be pursued.

• Intrusion detection systems (IDS): are an important
component of cybersecurity in the Internet of Things
(IoT) ecosystem, as they help detect and respond to
potential security threats [82], [83], [84]. However, IDS
in IoT environments face significant challenges due to
the unique characteristics of IoT data, such as the large
volume, high velocity, and heterogeneity of data. Con-
cept drift is one of the major challenges that IDS in
IoT face. The dynamic nature of IoT data and the com-
plex relationships between devices and the environment
can cause concept drift to occur rapidly and frequently.
To address this challenge, future directions for concept
drift in IDS in IoT could include:
1. Development of specialized algorithms: Traditional

machine learning algorithms may not be suitable for
handling concept drift in IoT data. There is a need
for specialized algorithms that can detect and adapt
to concept drift in IoT data.

2. Integration of context-awareness: Context-awareness
can help improve the accuracy of IDS in IoT by
considering the context in which the data is col-
lected. Future research could focus on developing
context-aware IDS that can adapt to changes in the
data distribution and the environment.

• Federated Learning: Federated learning is a machine
learning technique that allows multiple edge devices to
collaborate on model training without sharing their data.
This approach can be used to detect concept drift in
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IoT data, allowing IDS to adapt to new threats without
compromising the privacy of the data.
• Large-Scale Deployment: IoT systems can generate
massive amounts of data, and concept drift detection
methods need to be scalable to handle this data. Future
work can focus on developing distributed and parallel
algorithms that can handle large-scale IoT data and
detect concept drift in real-time.
• Semi-supervised or unsupervised approaches to drift
detection and adaptation: Present methods for iden-
tifying and adjusting to concept drift operate under
the assumption that correct labels for data instances
are instantly accessible post-prediction, rendering these
processes supervised. Yet, in practical settings, actual
labels might not be immediately obtainable. This neces-
sitates the creation of enhanced drift detection and
adaptation strategies suited for semi-unsupervised situa-
tions, leveraging either semi-supervised or unsupervised
techniques [85].
• Focusing on concept-driven data filtering: Concept
drift challenges can arise not just in data stream learning
but also in batch learning, especially when data for
training and testing is gathered over a span of time
rather than a fixed moment. In such scenarios, knowl-
edge trends might shift over different timeframes, and
the most pertinent predictive data might be missing
from the training and testing sets collected concurrently.
Relying on cross-validation might fall short in mitigat-
ing overfitting and underfitting problems. A potential
remedy for these concept drift issues is the strategy
of concept-driven data filtering. This approach centers
on excluding data that doesn’t pertain to the specific
concept drift.
• Analyzing concept drift in video streams: The explo-
ration of concept drift within video streams can gain
from the innovative methods suggested for video-centric
applications. Moreover, understanding the connections
and distinctions between concept drift adjustment and
visual domain adaptation methods is essential. Address-
ing the challenge of concept drift is vital for the devel-
opment of adaptive systems, marking it as a pressing
and significant concern. Future research holds immense
promise in honing the adaptability of machine learning
methods and frameworks to confront concept drift.
• Class Imbalance issue: The issue of Class Imbalance
is a recognized difficulty in machine learning, char-
acterized by one class appearing much less frequently
than the other. Consequently, identifying drift in the
underrepresented class becomes a formidable endeavor.
• Data streams in big data: Identifying different types
of concept drift within extensive data streams can
be challenging. It’s vital to enhance precision while
also reducing both computational time and memory
consumption.
• DistributedLearning:With the rise of edge computing,
machine learning models are being trained and deployed

in distributed environments. Techniques for detecting
and handling concept drift will need to be adapted to
work with these distributed systems, ensuring that they
remain accurate and robust.

VIII. CONCLUSION
This paper provides a concise overview of the developments
in concept drift detection methods since their introduction.
We have summarized the existing techniques, their applica-
tions, and future trends in the field of concept drift detection.
As new sources of data and types of drift continue to emerge,
the problem of concept drift detection remains open-ended.
This offers many opportunities for researchers and tool devel-
opers to advance the field. To improve the accuracy, speed,
and robustness of the models, future work can focus on more
advanced machine learning algorithms, edge computing, fed-
erated learning, explainable AI, and hybrid methods.

Moreover, research can focus on addressing specific
challenges such as online and incremental learning, han-
dling multimodal data, robustness to adversarial attacks, and
large-scale deployment of concept drift detection methods.
The future work in these areas can lead to the develop-
ment of more effective and efficient concept drift detection
techniques.
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