
Received 30 December 2023, accepted 18 January 2024, date of publication 26 January 2024, date of current version 5 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3359056

Evaluation and Enhancement of Resolution-
Aware Coverage Path Planning Method
for Surface Inspection Using
Unmanned Aerial Vehicles
WEITONG WU 1, YUKI FUNABORA 1, (Member, IEEE),
SHINJI DOKI 1, (Senior Member, IEEE), KAE DOKI2, (Member, IEEE),
SATORU YOSHIKAWA3, TETSUJI MITSUDA4, AND JINGYU XIANG3
1Department of Electrical Engineering and Computer Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
2Department of Electrical and Electronics Engineering, Aichi Institute of Technology, Toyota, Aichi 470-0392, Japan
3SOKEN INC., Nisshin, Aichi 470-0111, Japan
4DENSO Corporation, Kariya, Aichi 448-8661, Japan

Corresponding authors: Weitong Wu (doki_wu@nagoya-u.jp) and Yuki Funabora (funabora@nagoya-u.jp)

This work was supported in part by the Regional Reconstruction Practical Development Promotion Project Cost Subsidy.

ABSTRACT We implemented and evaluated our previous path planning method for inspection using
unmanned aerial vehicles (UAVs) in real-world, and identified its shortcomings in handling positioning
errors. Then, we proposed an enhanced method to address this problem. The previous method theoretically
guaranteed complete coverage of targets and data quality. However, we verified it in bridge inspection
experiments and found that the former has not been ensured. The crucial factors of data omission are clarified
as the errors in UAV positioning. Our previous method relies on appropriately setting ideal allowances to
counteract positioning errors, which is challenging in practice. Therefore, we proposed an enhanced path
planning method, which adaptively adjusts allowances according to positioning error to prevent omission
while minimizing waypoints. In the simulation including positioning disturbances, the enhanced method
consistently achieved full coverage in 1000 times simulation with over 28%waypoints less than the previous
one.

INDEX TERMS Surface inspection, visual inspection, inspection path planning, coverage path planning
(CPP), unmanned aerial vehicle (UAV), remote sensing, structural health monitoring.

I. INTRODUCTION
Recently, unmanned aerial vehicles (UAVs) equipped with
cameras have gained popularity for capturing high-resolution
images of construction surfaces to facilitate visual inspec-
tions. This approach can reduce the operational cost [1], [2],
[3], [4] and enable more frequent inspections to ensure the
safety of construction. Practical case studies have validated
the feasibility of UAV-based inspection [5], [6], [7], [8],
[9]. and specialized UAVs and equipment are constantly
developed [10], [11], [12], [13], [14], [15] to better collect
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data. Once surface data is collected, the defects can be
detected visually or using data processing technologies [16],
[17], [18], [19], [20], [21], [22]. In such a context, we aim to
useUAVs to effectively and stably collect qualified inspection
datasets in practice.

Data quality, especially the data spatial resolution (also
known as the ground sampling distance, GSD) is critical
to the image-based defect identification [23], [24], [25].
Take crack detection of concrete bridges as an example,
the maximum allowable crack width varies according to
the standards of countries and regions [26], 0.2 mm for
Germany [27] and 0.1 mm for Japan [28]. Meanwhile,
according to the literature [29], [30], [31], the minimum
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width of detectable cracks on images has been proven to
be proportional to the image GSD. Thus, in order to detect
cracks above a particular width on a given construction, it is
necessary to collect its surface dataset at enough GSD.

Since the relationship between GSD and the sensor’s
relative pose to objects can be modeled [32], theoretically,
we can collect inspection data at the desired GSD by
appropriately planning UAV paths according to construction
shapes. However, although the importance of data GSD has
been recognized, the path planning method that ensures GSD
has not been well studied. In previous research [33], [34],
we have proposed a coverage path planning (CPP) method
that uses targets’ 3D models to plan their inspection paths.
We validated it in simulations and confirmed that it can
inspect targets under ideal conditions. However, practical
inspection environments include various disturbances that
affect data quality, yet they have not been introduced in our
ideal simulations. It’s only through validation in the real
world that we can ascertain whether our method can still
reliably collect desired data. If not, the experiment results
can help us to identify crucial factors that require further
attention and to determine whether adjustments are necessary
to enhance the method’s performance.

To further validate our previous algorithm [33], [34] and
clarify if it needs enhancement, we implemented it to inspect
some surfaces of a bridge in this study. Results indicate that
the targets are almost successfully inspected and the GSD
of collected data is qualified, yet the positioning errors of
UAV resulted in a small percentage of omissions. These
positioning errors are inevitable in practice, and handling
them in the previous method’s framework is challenging.
Users must set an ideal parameter to control data redundancy
and prevent omission, which is impractical in real inspection.
Consequently, we further enhanced our path planningmethod
to enable it to adaptively determine parameters according to
limited positioning and orientation errors. The contributions
of this study are summarized as follows:

• The practical performance of our previous path planning
method for inspection is evaluated. The data quality
can be ensured yet errors in coordinate conversion and
positioning led to a data omission of 7.49% in the worst
case.

• The disturbance factor that should be further handled in
practical UAV inspection is clarified as the errors inUAV
positioning.

• An enhanced method is proposed, which adaptively
adjusts the allowances of paths according to the errors
in UAV positioning to prevent data omission.

• Simulations including the disturbances of UAV posi-
tioning are conducted. Results show that the enhanced
method is robust to position, data quality is ensured and
no omission occurs in 1000 times inspection.

The rest of this paper is organized as follows. The section II
reviews the works related to inspection path planning. The
section III defines the inspection data collection problem we

focus on and briefly introduces our CPP method [33], [34].
The section IV introduces the practical experiment and how
we planned the flight paths for the UAV. The experiment
results are summarized in section V. We provide quantitative
evaluations of the collected data in terms of coverage rate and
GSD. In section VI we introduce our enhanced CPP method.

II. RELATED WORKS
The path planning of UAV is a frequent and persistent
problem in many applications, including 3D reconstruc-
tion [35], [36], SAR [37], [38], [39], surveying [40], [41],
communication [42], and construction inspection. There are
many commercial software available for path planning, such
as DJI GS PRO [43], ArduPilot [44], Pix4D [45], and
QGround [46]. They allow users to specify the vertexes of
2D regions of interest on their user interface and they will
plan lawnmower scan paths. However, using them to plan
paths for construction inspection can be a labor-intensive
task. Because constructions usually have complex shapes
and many separate surfaces, planning the path for each
surface costs numerous man-hours. Moreover, although these
software provide features like structure scanning, they can
only approximate the targets as cylinders and plan simple
circular paths to scan them. Such paths can not guarantee the
desired data GSD since the actual inspection distance and
angle are uncontrollable. In conclusion, these software are
considered unsuitable for the construction inspection.

The above problems can be avoided by planning paths
based on the 3D model of target construction. The 3D model
can be acquired by laser scanners, digital twins, or BIM.
Recently, various model-based inspection path planning
methods have been proposed. Almadhoun et al. [47] proposed
a method that creates adaptive sensor poses based on the
construction’s 3D model to navigate the UAV toward areas
with poor data quality and coverage. Jing et al. [48] proposed
a method to generate discrete sensor poses and planned paths
for UAV swarms to reach them. These methods generate
sensor pose candidates by random sampling and filtering
out those poses which ensure data GSD, and plan a path to
visit them. However, the sampling-based approach is hard
to guarantee 100% coverage of the inspection target, which
will cause defect misses in inspections. Another prevalent
approach for CPP is cell decomposition. For example, in the
study of Phung et al. [49], they establish a grid for each
target surface and plan sensor poses to inspect every occupied
cell at the desired GSD, then plan paths to visit them. This
approach ensured complete coverage, yet the quantity of
sensor poses may not be minimized, which will increase the
UAV battery consumption and the man-hours for data post-
processing. Besides, Peng and Isler [50] proposed a CPP
method for covering large-scale 3D urban constructions. Ivić
et al. [51] proposed a Heat Equation Driven Area Coverage
(HEDAC) algorithm to address the 3D inspection problem of
complex structures. These methods ensured that every point
of the target could be inspected via at least one point on the
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paths. However, they did not indicate the exact poses that
UAVs should collect data, which is indispensable for practical
inspection.

Contrarily, our CPP method [33], [34] divides the 3D
model into as few clusters as possible and plans poses for
each cluster. As a result, the UAVonly needs to collect images
at sensor poses and complete coverage can be achieved, the
sensor poses can also be minimized. We believe that this
method is the onemost probable to realize theUAV inspection
we desire. Therefore, we validated it in real inspection
experiments to clarify if it delivers on what it theoretically
promises.

III. AUTOMATIC SURFACE DATA COLLECTION USING UAV
A. PROBLEM FORMULATION
Our goal is to use the UAV to automatically collect the
construction’s surface data, a CCD camera attached to a
controllable gimbal is located at the UAV center. The col-
lected data must be qualified to enable technicians to assess
the condition of the construction. The data requirements we
considered are listed below:

• Resolution requirement: Every point on the inspection
target should be inspected at the required GSD G∗

(mm/pixel) to ensure that defects are discernible. G∗ is
determined according to the user’s needs, smaller value
brings better data quality and more details of inspected
surfaces.

• Coverage requirement: The photoset must cover the
inspection target not less than the target coverage rate,
which is usually 100% to ensure no defect will bemissed
in inspections.

We determine a set of inspection positions Pinsp =
{p1, p2, . . . , pN } where UAV collects the desired photos, and
plan a collision-free path ξ as short as possible to navigate the
UAV to visit Pinsp and collect the desired inspection data. One
inspection position p ∈ Pinsp is a vector with six dimensions.
The first three elements of p represent the camera coordinates
and the last three elements represent the direction inwhich the
camera takes a photo.

We supposed that the following information is available
for planning Pinsp and ξ . The inspection target is presented
as a set of triangular polygons Mtar (STL [52] format) in
virtual space V3. The Mtar can be a set of planar or uneven
surfaces, bridge piers, or dome structures of arch bridges and
tunnels (see [33], [34] for more path samples). The size L
and resolution I of the image sensor of UAV’s camera in
the direction of its short edge, and the focal length f are
known. A set of ground control points (GCP) on the target are
previously measured, and their coordinates in V3 and R3 are
known. We only need to plan ξ in V3 since ξ can be easily
converted into the real world R3 using GCP.
Finally, we consider the following constraints. There exists

positioning error Epos of UAVs. The view angle of any point
on the target surface should not exceed the threshold βmax
for ensuring GSD. The view angle is defined as the angle

FIGURE 1. Our previous algorithm determines the ideal inspection
distance dinsp and the corresponding inspection range s to generate
Pinsp, then it plans a collision-free ξ .

between the camera’s optical axis and the surface normal. The
UAV is modeled as a sphere with a volume VUAV , which is
used for the collision check of the planned path.

B. INSPECTION PATH PLANNING
Fig.1 illustrates the framework of our previous algorithm [33],
[34]. It consists of two modules, the inspection positions
generation module and the path generation module.

1) INSPECTION POSITIONS GENERATION
Fig.2 illustrates the complete workflow of generating Pinsp.
Our previous algorithm determines the ideal inspection
distance dinsp and the corresponding sensor range s for
collecting data at G∗ in advance (Fig.2(a)). Then it decom-
poses (Fig.2(b)) and recombines Mtar into a minimal set of
patches and plans one p for every patch to acquire one image
(Fig.2(c)).

The relationship between the actual GSD G and the
object distance d can be modeled as Eq.(1) when the
sensor faces directly opposite to the object. Therefore, dinsp
can be determined as Eq.(2) according to G∗ and camera
specification. Every pwill be planned at dinsp away from each
patch to respect the resolution requirement.

G =
d · L
f · I

(1)

dinsp =
G∗ · f · I

L
(2)

Once the dinsp is determined, the inspection range s (Fig.3)
will be determined. It indicates how large a region the camera
can inspect at dinsp, a shorter dinsp brings smaller s. Although
the actual inspection region is a rectangle (height H = G∗ · I ,
widthW ), we define the s as an oblate inside the rectangle to
filter the invalid region caused by lens distortion. The semi-
major axis rmaj of s is determined by H and α as Eq.(3), and
the semi-minor axis rmin is proportional to rmaj, a low ratio is
sufficient for flat target surfaces. The α ∈ (0, 1] is a parameter
that controls the overlap between adjacent photos, users can
adjust it to prevent the data omission caused by Epos or further
filter the distorted part in photos.

rmaj = α · H/2 (3)

Next, Mtar is subdivided into polygons Msub tiny enough
to be treated as points. Our method clusters the Msub into k
clusters C = {c1, c2, . . . , ck} using k-mean++ method [53]
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FIGURE 2. In the inspection positions generation phase, our algorithm decomposes and recombines the inspection target model into patches according
to G∗ and camera specification.

FIGURE 3. The sensor’s inspection range s is defined as the yellow oblate
intersecting the real image plane (azure) at dinsp.

as shown in Algorithm 1. One pj(j ∈ [1, k]) will be planned
for each cj(j ∈ [1, k]) in the mean normal direction of the
polygons in cj, dinsp away from the center of cj. Then our
algorithm checks if all polygons in cj are contained in the
inspection range of pj and if the view angle of each polygon is
belowβmax . If not, the algorithmwill increase the k and repeat
the above steps until all polygons in Msub are successfully
inspected.

2) PATH GENERATION
The planning of ξ is treated as a TSP (Travelling Salesman
Problem) with obstacle constraints. It is a classic problem and
there are numerous existing methods [54], [55], [56], [57]
available for addressing it. Optimizing ξ is not the focus of
our work in this manuscript although it is crucial in practice.
Therefore, we simply adopted an existing collision-free path
planning method [58] to plan ξ for demonstration in our
previous work [33], [34]. If necessary, ξ can be converted into
the format in R3 using the information of GCP.

IV. INSPECTION EXPERIMENTS
This section introduces the experiment contents, conditions,
and the UAV inspection platform we used for implementing

Algorithm 1 Inspection Position Generation
Input: Mtar , G∗, L, I , f , α, βmax
Output: Pinsp = {p1, p2, . . . , pN }
1: dinsp, s, rmaj, rmin,← Initialize(G∗,L, I , f , α)
2: Msub← Subdivision(Mtar )
3: Initialize the k
4: while True do
5: C = {c1, c2, . . . , ck} ← Clustering(Msub, k)
6: pj(j ∈ [1, k])← Determine(C, dinsp)
7: if all polygons inMsub are inspected then
8: Pinsp = {pj|j ∈ [1, k]}
9: Breaks
10: end if
11: k ++
12: end while

our path planning method. Then, we demonstrated how to
prepare paths using our method for an actual UAV inspection.
The details of parameter tuning and countermeasures for
countering the disturbance factors are provided.

A. EXPERIMENT CONTENTS
The verification experiments were performed on a real-size
bridge model (Fig.4) in the Fukushima robot test field.
A prepared STL model of this bridge is available for path
planning. There are test pieces(Fig.5) sporadically embedded
on the bridge surface for simulating various cracks and other
deterioration defects. The crack widths and their positions are
known.

We select two surfaces on the bridge (Fig.6) as the target of
the experiment 1 and 2 respectively. Although ourmethod can
plan a 3D inspection path for the entire bridge, it is impossible
to execute it in one flight due to the battery limitation. The
inspection of a large-scale target would have needed to be
divided into several tasks in advance and the path for each task
should planned respectively. Besides, this bridge consists of a
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FIGURE 4. A real-size bridge model is built in the test field for the
inspection experiments using robots).

FIGURE 5. Examples of crack test pieces on experiment 2 surface.

FIGURE 6. The positions of inspection target surfaces on STL model and
real bridge are shown.

set of planar surfaces, inspecting other surfaces is essentially
the same as repeating these experiments. Therefore, we did
not inspect the entire bridge and these two experiments are
considered sufficient to verify our method.

The experiment goal is to collect the image sets of
target surfaces at G∗ = 0.3 mm/pixel and the coverage rate
requirement is 100%. According to the case study [29], [30],
[31], the images should be collected with the GSD lower
than 3 ∼ 5 times as the width of the crack desired to be
detected. Thus, we set such a conservative G∗ to ensure that
those cracks wider than 0.1 mm are detectable. Considering
the effect of possible Epos, the data will be collected at
0.316 mm/pixel in the worst case.

Note that there are some inconsistencies between Mtar
and the actual bridge which was previously unknown till we

FIGURE 7. Our UAV inspection system uses a total-station-based
localization system to enable UAV executing flight paths in GNSS-denied
environments and collect photos.

arrived at the field. The inspection paths and data analysis are
based onMtar .

B. UAV INSPECTION SYSTEM
The UAV inspection system we integrate to execute inspec-
tion data collection is shown in Fig.7. This UAV platform
is developed by DENSO Corporation [59], it is specialized
for topographical surveying and bridge inspection. It has
six motors whose rotation axis directions can be controlled
individually. It can tilt the motors for greater resistance
to side winds, enabling stable autonomous flight and spot
inspections in windy environments (gusts of up to 10 m/s).
A commodity camera (Sony a6000) is mounted 280 mm over
the center of the UAV, its direction is controlled by a camera
gimbal. We adopted a 50 mm lens with mere distortion. The
specifications of the UAV and camera are summarized in
Table 1.

Generally, UAVs need GNSS (Global Navigation Satellite
System, e.g., GPS) to localize themselves and execute flight
paths. However, the GNSS signal will be blocked and
reflected near the constructions [60]. Thus, we used our total-
station-based localization system [12] instead of GNSS to
realize highly accurate UAV position estimation with several
centimeters. The localization system is set on the position
where the UAV is always visible (Fig.7). A ground station
is used to process the planned path files and control the UAV
to execute the paths.

It should be noted that navigating the UAV to arrive at a
point exactly is impossible in practice. As an alternative, the
UAV will be considered to have arrived at a waypoint if it has
kept a distance from the waypoint lower than a threshold for
a short while. In this study, we set the threshold to 200 mm
for the balance positioning accuracy and operation efficiency.
Correspondingly, an inevitable Epos of up to 200 mm is
introduced, which is the most probable reason that finally
caused data omission in experiments.

C. PATH PLANNING FOR IMPLEMENTATION
This section introduces the details of planning inspection
paths for experiments 1 and 2. User-defined parameters α and
βmax are necessary for path planning. We set two α values as
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TABLE 1. Specification of UAV and camera.

TABLE 2. Inspection path planning parameters.

0.8 and 0.5 respectively to counteract the effects of Epos and
prevent data omission. We expected that the α = 0.5 could
ensure full coverage of the target in the worst case. The
α = 0.8 is a value that balances the inspection position
quantity and the data overlap. We did not further narrow the
α for distortion filtering since the lens used has a negligible
distortion. The βmax is unnecessary to be considered since
the inspection targets all planar surfaces. All the necessary
parameters dinsp, H , W , and the size of s (rmaj and rmin) are
determined as shown in Table 2.

The Pinsp and ξ are planned according to the above
parameters. It took about 5 minutes for the path planning of
experiment 1 (α = 0.8) and less than 5 hours for experiment 2
(α = 0.5) using the processor CPU i7-7700K (4.2Ghz). The
runtime is considered acceptable for the practical inspection
operation. Some adjustments to Pinsp and ξ are adopted
for implementing them in the real world. The complete
preparation process for experiments is shown in Fig.8.

In the real world, unpredictable positioning failure and
wind disturbance [61] are inevitable and they may result in
collisions. Therefore, we excluded those inspection positions
in Pinsp within 1 m above the ground for safety. The
corresponding areas of excluded positions will not be
considered in the data evaluation. Therefore the actual target
areas are slightly different from Fig.6 and their bottom edges
are uneven as shown in the subsection V-B later.
Besides, the execution time of paths is also significant

to practical inspection. Therefore, we further optimized the
planned ξ using the 2-opt algorithm [62] after the original
path planning in section III-B2. The path lengths were
shortened by up to half to respect the battery duration
limitation. Under these adjustments, the details of the paths
for final implementation are listed in Table 3.
The coordinates in R3 of 22 distinguishable corners (some

of them are shown in Fig.9) on the bridge are previously

given. We associated the corresponding points on Mtar and
used these point pairs as GCP in path conversion. The
Helmert transformation [63] and the open-source carto-
graphic projections and coordinate transformations library
‘‘pyproj’’ [64] were used. Besides, since the ξ is essentially
the trajectory that the camera should reach, we modified it
into UAV flight paths. An offset was added to all ξ to cope
with the difference between the camera position and the UAV
center.

V. RESULTS AND DISCUSSION
All the experiments and paths were successfully performed.
The achieved coverage rate and the object distances at which
the photos are collected are summarized in Table 4. The
results show that our method [33], [34] can collect data at
G∗ in practice, yet 100% coverage is not achieved. We infer
that there are two major reasons for the omissions. The
first one is some biases were introduced to the paths in the
coordinate conversion phase. The second reason is that the
setting of α was inappropriate so the effect of Epos was not
well counteracted. Through the experiments, we identified
that the Epos is the crucial disturbance factor that hinders
desired data collection, and the shortage of our method in
coping with Epos is also reflected.

A. DATA QUALITY EVALUATION
Since it is impossible to precisely calculate the G for every
pixel of each collected photo, in this study the quality of each
dataset is estimated by inspection distances shown in Table 4
and the visibility of cracks on test pieces.

We calculated the G of the collected photos based on
their inspection distance and Eq.(1), the GSD ranged from
0.278 to 0.316 mm/pixel and did not exceed the tolerance (up
to 0.316mm/pixel is allowed). Themean inspection distances
are very close to dinsp = 3.84 m. Fig.10 shows a 150 mm
wide test piece with a 0.3 mm crack extracted from collected
photos. Its edge is supposed to occupy 500 pixels at G∗ =
0.3 mm/pixel, but it occupies 502 pixels on the collected
image, which means the G of this photo is better than G∗.
Besides, the 0.3 mm crack also does not exceed one line of
pixels. These quantitative metrics indicate that the G of the
collected photos are not poorer than G∗.
Because our essential purpose is benefiting defect detec-

tion, we further analyzed the collected photos that contain
crack test pieces. At G∗ = 0.3 mm/pixel, the cracks with
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FIGURE 8. The flow of paths preparation for implementation is shown, some adjustments (yellow) are inserted in the original steps (azure)
of our method.

TABLE 3. Details of implemented inspection paths.

TABLE 4. Implementation results of experiments.

FIGURE 9. Some corners (green) on the bridge are selected and measured
as the ground control points, part of them are shown in figure.

widths down to 0.06 ∼ 0.1 mm are supposed to be detectable
in the photos [29], [30], [31]. Fig.11 shows some samples
of inspected cracks. The 0.3 mm and 0.2 mm cracks are
clearly visible as expected. Even the 0.05 mm crack is
visible, which is almost the limit of G∗. We checked all the
photos containing cracks and confirmed that the cracks are all
visible.

FIGURE 10. The edge of the test piece (150 mm wide) occupies 502 pixels,
which means the GSD of photos is 0.299 mm/pixel and is better than G∗.

Based on the above evidence, we have confirmed that the
collected data met the GSD requirement and the defects in
data are detectable. Our method [33], [34] can ensure the data
quality.

B. COVERAGE EVALUATION
The coverage of each dataset is defined as the ratio of the
inspected area and the target area. We extracted the valid part
(the round area) from every collected image and then stitched
them together. The achieved coverage rates of all datasets are
shown in Table 4. The target and inspected areas are shown
in Fig.12 and Fig.13, for experiments 1 and 2 respectively.

Although our CPP method guarantees full coverage in
theory, omissions occurred in all datasets. We classify the
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FIGURE 11. Captured cracks on collected photos are clearly visible, which indicates the GSD of data satisfied requirements.

FIGURE 12. Coverage results of experiment 1, the valid parts of collected photos are stitched together and overlaid on inspection target.

omissions as two patterns, the banded distributed omissions
on the edges and scattered omissions. The former is consid-
ered caused by systematic errors and the latter indicates the
shortage of this CPP method.

The banded distributed omissions exist in all results.
In Fig.12, the top area is inspected though it does not belong
to the target area, while omission occurs on the bottom.
Similarly, in Fig.13, the distribution of the background
in the stitched image is unbalanced. The upper-right area

that does not exist in the model Mtar has been almost
completely inspected. They are probably caused by the
integral biases of inspection paths relative to the actual bridge.
The possible reasons may be coordinate conversion errors
or localization system initialization errors, rather than the
design flaws of the path planning method. Since we did
not know the Mtar is slightly different from the real bridge
before experiments, we may have incorrectly associated the
corners onMtar and those on the real bridge (see section IV).
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FIGURE 13. Coverage results of experiment 2, the valid parts of collected photos are stitched together and overlaid on inspection target.

Thus, the wrong GCP information resulted in biases in path
conversion.

Regarding the scattered omissions, the scattered omissions
only occur in the results of α = 0.8. The prerequisite for
nonomission inspection is that the occurred Epos should be
lower than the allowance introduced by α. The α is set as
0.8 and 0.5, which corresponds to allowances of 120 and
300 mm respectively. However, the problem in waypoint
arriving judgment may cause an Epos of up to 200 mm as we
mentioned in section IV-B. It is reasonable to infer that the
actually occurredEpos in experiments exceeded the allowance
of α = 0.8 and it finally caused the omission. On the contrary,
the paths of α = 0.5 almost achieve full coverage as expected.

In conclusion, based on the results of α = 0.5,
we confirmed that our method [33], [34] can achieve full
coverage in the practical inspection. The strict 100% coverage
can be achieved as long as the systematic errors are eliminated
and Epos’s effect is canceled by setting appropriate α.
However, setting an appropriate α for each specific case is
very challenging, inappropriate α will cause data omission
or redundant data. Since Epos’s effect has not been modeled
before, there is no guideline for determination α and its
setting only depends on experiences and trials. This shortage
ruins the method’s utility in practice and further enhancement
is necessary.

VI. ENHANCED INSPECTION PATH PLANNING
A. ADAPTIVE DETERMINATION OF THE INSPECTION
DISTANCE AND RANGE
Through the practical inspection, our previous method’s
shortage is confirmed. Users must set an appropriate α to

FIGURE 14. The enhanced method optimizes the inspection distance and
range, and it plans Pinsp and ξ like the previous method.

adjust the data overlap and prevent omission caused by
Epos while it is impractical. To realize stable collections of
qualified inspection data, we modeled the effects of those
inevitable positioning and orientation errors in practice and
then enhanced our CPP method to handle them.

Fig.14 illustrates the logic of the enhanced method. The
only difference between the enhanced and previous methods
is the initialization, the rest steps of these two methods are
the same. The enhanced method discards the α. It adaptively
optimizes the inspection distance and range using a novel
guideline to cancel the effects of the above errors. As a result,
data completeness and quality can be strictly ensured.

We expand the problem statement based on the practical
experiments as follows. We suppose that when the camera
visits an inspection position p, the actual camera positionmay
fall within or on an ellipsoidal space centered at p due to a
limited Epos. The ellipsoid has semi-axes of lengths a and b
that are parallel to the inspection surface (a ≥ b), and the
length of the semi-axis perpendicular to the surface is denoted
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FIGURE 15. Adjustment of inspection distance is introduced to eliminate
the effects of positioning error.

FIGURE 16. We define q as the point on the edge of the actually
inspected region (green) that is closest to the projection O of p on the
target surface when positioning error occurred.

as c. Besides, there exists an unpredictable orientation error
Eori in the range of [0, 1θ] between the planned direction and
the real direction in which the camera takes a photo. Our goal
is still to inspect given targets at G∗ without omission in such
a condition.

The first change of the enhanced method is that we
shortened the inspection distance to strictly respect the
resolution requirements in such a condition, as shown in
Fig.15. In the previous method, the inspection distance
dinsp is determined as Eq.(2), it is the distance that is just
enough for G∗. Even a slight Epos in the direction of the
optical axis or a slight Eori can affect the quality of data.
Therefore, we updated the inspection distance d ′insp as Eq.(4)
to ensure the data GSD in even the worst case. Since the
GSD deteriorates with the changes in view angle [32], a term
cos(1θ ) is introduced to compensate for Eori.

d ′insp = (dinsp − c) · cos(1θ) (4)

Correspondingly, the s of one p that can be inspected
by a single photo at the new distance d ′insp should also be
modified for full coverage path planning (see section III-B).

FIGURE 17. The minimum of |Oq| can be found on a − c axes plane.

TABLE 5. Inspection simulation conditions.

Considering an inspection position p is planned d ′insp away
from the inspection surface. The region actually inspected by
p changes according to the happenedEpos andEori. Thus, the s
should be defined in the planning phase as the region that will
always be inspected regardless of how Epos and Eori change.

We simplified the definition of new s to an extremum
problem. Firstly, we replace the original camera FOV 2θ =
2 arctan(L/F) by a narrowed FOV 2θ ′ = 2(θ − 1θ ) to
eliminate the effects of Eori. The region inspected by the
camera will always be round and its center and radius depend
on the camera’s real position. Let point O be the projection
of p on the surface, the q is the closest point to O on the
edge of the inspected region (Fig.16). q varies according to
the positioning error that actually occurred. We can define
the rmaj of s as the minimum of |Oq| and plan paths as before
to ensure full coverage.

Obviously, |Oq| decreases when the actual camera position
is further away from p in the parallel direction of the
surface or is closer to the surface. Therefore, only those
camera positions simultaneously exist on the positioning
error ellipsoidal’s surface and its a − c axes plane need to
be discussed. We consider such a planar coordinate system
(Fig.17). The origin is O and the X-axis is parallel to the
major axis of the positioning error ellipsoidal. p′ = (0, d ′insp)
denotes as the projection of p on a − c axes plane, the
q = (xq, 0) locates on X-axis. The worst case of camera
position pc = (x, y) corresponding to minimum |Oq| exists
on the elliptical arc of x ∈ [0, a], y ∈ [0, c] (satisfies Eq.(5)).
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TABLE 6. Simulation results (experiment 1).

TABLE 7. Simulation results (experiment 2).

TABLE 8. Details of parameters for path planning.

The xq can be expressed as a function f (x) about x,
as Eq.(6). The minimum |Oq| can be found by differentiating
the Eq.(6). It is worth noting that, counter-intuitively, the
camera position corresponding to the minimum |Oq| does not
always be the two ends of the elliptical arc, (0, d ′insp − c)
and (a, d ′insp). Finally, the new rmaj is defined as Eq.(7).
By planning the inspection positions using the d ′insp and new
rmaj in the existing CPP framework, the effects of Epos and
Eori can be complete eliminated full coverage and data quality
can be strictly ensured in theory.

x2

a2
+

(y− d ′insp)
2

c2
= 1 (5)

xq = f (x) = x + c · tan(θ ′) ·

√
1−

x2

a2
− d ′insp · tan(θ

′) (6)

rmaj = d ′insp · tan(θ
′)−

√
a2 + c2 · tan2(θ ′)

when
df (x)
dx
= 0 (7)

B. SIMULATIONS
We compared the performance of the previous and enhanced
CPP method through the inspection simulation. The sim-
ulation conditions are set as close as possible to our real
experiments to acquire objective results. The inspection
targets are those in Fig.6 and the simulation conditions are
summarized in Table 5, which is the same as the experiments.
To simulate the Epos we encountered in experiments,
a Gaussian distribution (µ = 0, 3σ = 200 mm) is added
to the actual UAV position to replicate the waypoint arriving
judgment problem. The semi-axes lengths a, b, c of the
enhanced method are set to 3σ = 200 mm correspondingly.

We planned the inspection paths respectively and the
simulation results of two targets are summarized in Table 6
and Table 7. Each path is repeated one thousand times and the
count of achieving full coverage is provided. The positioning
errors varied every time.

Obviously, compared to the previous method’s two cases,
the enhancedmethod can achieve full coverage better. Similar
to the result of practical experiments, the previous method
(α = 0.8) failed to achieve 100% coverage in many cases.
Reducing the α to 0.5 helps increase the full coverage count
yet omission still exists. On the other hand, the enhanced
method is more robust to Epos since its effects are well
quantified and counteracted, it achieved the goal of full
coverage every time.

Furthermore, the enhanced method realized full coverage
with fewer inspection positions. The inspection distance and
inspection range determined for each condition are shown in
Table 8. In the previous method, the user has to significantly
narrow the inspection range to avoid data omission. In the
case of α = 0.5, the inspection range is reduced to the half of
camera’s real range and the inspection positions increase over
2 times. On the contrary, the enhanced method adaptively
optimizes both the inspection range and distance according
to inspection conditions, so that it only needs to introduce the
bare minimum of data overlap necessary for the Epos.

In conclusion, the enhancement properly solved the
challenge of Epos and made our CPP method more suitable
for practical inspection.

VII. CONCLUSION
In this study, we implemented our resolution-aware path
planning to collect the inspection data of a bridge to validate
its practical effectiveness. The results show that this method
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basically delivers what it promises in theory, it can ensure the
GSD of inspection data. However, the inevitable positioning
errors in practice led to data omission. The positioning errors
can not be well handled in the previous method’s framework.
Therefore, we enhanced this path planning method to realize
adaptively adjustment of the inspection path. Through the
simulation, we confirmed that the enhanced method achieved
stable data collection even though the positioning errors
existed. The enhanced method prevented omission while
minimizing data redundancy.

On the other hand, there still remain some limitations of our
path planning methods. How to shorten the total running time
by approaches such as subdividing the path planning tasks
or setting the k appropriately is a valuable topic. Another
limitation of our method framework is that it can only plan
inspection positions directly opposite the target, which is
not suitable for inspection when the workspace is narrow.
This problem can be addressed by inspecting from a tilted
direction with a higher zoom ratio, yet no CPP method can
realize such flexible planning. Meanwhile, it is confirmed
that the UAV took too long to reach one waypoint, further
reducing the number of inspection positions will significantly
benefit the inspection efficiency. Fusing adjacent inspection
positions into one and planningmultiple inspection directions
is a feasible choice.

In addition, the optimization of the inspection paths is a
crucial problem that needs further discussion. Various distur-
bances in the inspection environment need to be considered,
such as the spatial-variant wind field, the changing light
conditions, the influence of the steel structural parts on the
UAV’s magnetometer, etc. How to model them in the cost
function for path optimization is a crucial challenge. We are
going to address these challenges in the future works.
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