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ABSTRACT Electricity theft is a prevalent global issue that has detrimental effects on both utility providers
and electricity consumers. This phenomenon undermines the economic stability of utility companies,
worsens power hazards, and influences electricity costs for consumers. The advancements in Smart Grid
technology play an essential role in Electricity Theft Detection (ETD), as they generate large amounts
of data that can be effectively utilized for ETD through the application of Machine Learning (ML) and
Deep Learning (DL) methodologies. The present study presents a novel approach for ETD by combining
Omni-Scale CNN (OS-CNN) and AutoXGB. Firstly, the Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) is employed as the data interpolation technique to address the limitations and missing data in the
dataset. Additionally, a combination of the Synthetic Minority Over-Sampling Technique (SMOTE) and the
Edited Nearest Neighbors (ENN), known as SMOTEENN, is utilized for data resampling to tackle the issue
of class imbalance in the dataset. Secondly, themulti-layer Omni-Scale block stack is employed to effectively
cover the receptive fields of diverse time series scales based on a straightforward rule. This enables the One-
dimensional Convolutional Neural Network (1D-CNN) to acquire enhanced learning capabilities for both
irregular electricity consumption data anomalies and periodic normal electricity consumption patterns in
smart grid datasets, facilitating superior extraction of essential data features. The AutoXGB classifier is then
utilized to classify the extracted features. AutoXGB possesses the capability of automatically optimizing the
hyperparameters required by the model, ensuring that the classification model maintains optimal accuracy
and settings. Finally, the method exhibits superior competitiveness compared to other methods on the same
dataset. The experimental results demonstrate that the proposed model achieves an accuracy rate of 99.2%,
a precision rate of 97.5%, and an area under the ROC curve of 98.4%. These results establish its significant
superiority over alternative models.

INDEX TERMS Electricity theft detection, SMOTEENN, omni-scale CNN, AutoXGB, smart grid.

I. INTRODUCTION
The utilization of electricity is pervasive in everyday life
and is continuously consumed worldwide. Meanwhile, there
are certain degrees of loss during the transmission and
conversion processes of power. In general, power losses can
be categorized into two types: Technical Losses (TLs) and
Non-Technical Losses (NTLs) [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Giambattista Gruosso .

The occurrence of TLs is an inevitable consequence of
power transmission, primarily arising from the Joule effect
in power lines and inefficiencies in transformers. Due to the
inherent characteristics of TLs, the calculation of TLs is quite
complex, and TLs loss cannot be completely eliminated, only
some existing techniques can be used to reduce TLs [2].

The primary causes of NTLs arise from delays and
violations in billing processes, instances of energy theft,
meter malfunctions, fraudulent activities, and outstanding
payments [3]. In recent years, a small proportion of users have
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been engaging in meter data tampering as a means to reduce
electricity consumption and illicitly acquire electricity,
thereby constituting one of the primary factors contributing
to NTLs [4]. The act of power theft can also have detrimental
effects on the stability of the power grid, potentially
disrupting accurate calculation of regional electricity load and
impeding proper upgrading and corresponding power supply
facilities. During periods of peak electricity consumption,
there is a high likelihood that the regional power grid will
experience paralysis due to excessive load, resulting in direct
or indirect economic losses [5]. According to the survey,
various countries have experienced economic losses due to
NTLs. For instance, electricity theft in the United States
results in an annual economic loss exceeding $6 billion, while
the United Kingdom incurs approximately $234 million and
China around $560 million [6].

In the present era, the advent of Advanced Meter
Infrastructure (AMI) has presented novel challenges and
methodologies for detecting theft. The AMI comprises
intelligent meters, sensors, computing devices, and advanced
communication technologies to facilitate bidirectional com-
munication between electricity generation and consumption
points. Additionally, the AMI is responsible for gathering
data on electricity consumption, real-time electricity prices,
and grid conditions. The AMI encompasses intelligent
meters, sensors, computing devices, and advanced communi-
cation technologies to facilitate bidirectional communication
between electricity generation and consumption points.
Moreover, the AMI is responsible for collecting data on
electricity consumption, real-time electricity prices, and
grid conditions. Although the smart meter is equipped
with a tamper-proof detection function, its communication
capability renders it susceptible to increased instances
of electricity theft attacks, leading to meter damage and
subsequent financial losses [7]. Due to the aforementioned
factors, ETD has emerged as a crucial concern in the current
era of AMI.

In this context, numerous researchers have proposed theft
detection technologies based on various perspectives and
methodologies to address the issue of NTLs. The following
are descriptions of some techniques:

1) Hardware-based: The objective of hardware-based
ETD is to develop diverse hardware components that
incorporate sensors with distinct functionalities into
smart meters, enabling the identification of meter status
and prevention of unauthorized serial modifications.
However, this approach incurs significant manpower
and material costs, as well as long-term maintenance
and upgrade expenses [8].

2) Game Theory: In the ETD based on game theory, the
ETD problem is formulated as a game between the
power company and the thief to achieve an equilibrium
state. ETD identifies different distributions of expected
billing energy consumption; However, finding the
appropriate equilibrium function requires significant
computation [9].

3) Data driven: The emergence of data-driven ETD as a
novel technology in recent years can be attributed to
advancements in big data and ML. With the increasing
adoption of smart meters, the smart grid continuously
collects vast power data, alongside a plethora of
meteorological, economic, and other related data. Cur-
rently, researchers have proposed various data-driven
techniques for performing ETD. These techniques
include ML, meta-learning, ensemble learning, and
DL. However, the existing data-driven technology also
faces the following challenges: (i) In ETD, there is
a significant class imbalance where the proportion of
electricity theft users is minuscule compared to the
overall user population. The issue of imbalanced data
can significantly contribute to overfitting problems and
hinder the generalization performance of the electricity
theft model. The model’s decisions tend to exhibit bias
towards the majority class, rendering it incapable of
detecting instances of electricity theft. (ii) The power
data collected by smart meters spans a substantial
amount of time and has extensive dimensions. The
presence of high-dimensional data can potentially lead
to dimensionality disaster in ETD which compromises
the accuracy of models. (iii) A range of non-malicious
factors, such as sensor failures in smart meters and
fluctuations in communication networks, can lead to
abnormal power data records. These factors have also
contributed to the model’s poor performance, leading
to misclassification of abnormal consumers as normal
ones.

Addressing certain issues identified in the aforementioned
papers, this study presents a novel and efficacious model for
ETD. The primary contributions of this study are as follows:

1) Basedased on the literature [10], the present study
proposes an OS-CNN that employs multi-layer 1D
convolution and utilizes diverse convolution kernel
sizes to ensure overlapping receptive fields, thereby
encompassing various temporal scales of the input time
series data for effective feature extraction.

2) The PCHIPmethod is employed to impute a substantial
amount of missing data in the original dataset, while
preserving its inherent distribution.

3) The SMOTE oversampling technique and ENN under-
sampling technique are integrated to address the issue
of imbalanced trainset, thereby enhancing the model’s
robustness.

4) The OS-CNN network is employed for feature extrac-
tion, followed by the utilization of the automatic
hyperparameter optimization framework AutoXGB as
the classifier.

5) Finally, the proposed model in this paper demonstrates
consistent and effective detection performance even
when tested on datasets that conform to the original
data distribution.

The subsequent sections of this paper are organized as
follows. Section II describes the related work conducted in
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the literature to address the issue of electricity theft. The
techniques employed in this paper are concisely outlined
in Section III. In Section IV, the results are presented and
discussed. Finally, the paper concludes in Section V.

II. RELATED WORKS
This section provides an overview of existing research
and techniques for ETD, primarily focusing on data-driven
approaches to address NTLs. In [11], the authors used
the Deep Neural Network (DNN) method to ETD using
time domain and frequency domain features, and solved the
problem of missing data and class imbalance through data
interpolation and synthetic data, but the evaluation index of
the model was insufficient. In [12], the authors proposed an
Inter-week and intra-week convolutional block (IIWCBlock),
which employs convolutional layers with varying dilation
rates to capture inter-week and intra-week data, while extract-
ing features throughmultiple sets of convolutional integration
to generate a first-order representation. The Self-Dependency
Model (SDM) was concurrently employed to acquire the
second-order representation from the autocorrelation matrix,
subsequently integrating it with the first-order representation
for predicting abnormal scores of electricity users. However,
the authors fail to address the issue of imbalanced data
classes.

In addition, in [13], the authors employed AlexNet to
address the issue of high dimensionality, while utilizing
Adaptive Boosting (AdaBoost) for classifying electricity
stealing users and ordinary users. Furthermore, the under-
sampling technique is employed to tackle the problem of class
imbalance, resulting in favorable experimental performance.
However, relying solely on undersampling technology will
result in the loss of a substantial number of samples from the
normal class, thereby diminishing the model’s performance
and robustness. In [14], the present study introduces a Bag-
ging Chi-square Automatic Interaction Detection (CHAID)
Decision Tree (DT) algorithm for consumer classification
and detection, which exhibits superior accuracy compared
to conventional detection methods. However, in the absence
of balanced dataset classes, the model’s performance on
samples from the minority class may be suboptimal. In [15],
the authors employed a diverse range of ML techniques to
train and optimize the dataset through hyperparameter tuning,
aiming to identify the most effective model for consumer type
detection. However, the authors did not address class imbal-
ance in the dataset and employing a multiple ML techniques
may result in diminished training efficacy and substantial
time consumption. In [16], the authors proposed a hybrid
model, CNN-XGB, which combines Convolutional Neural
Network (CNN) and Extreme Gradient Boosting (XGBoost).
This model utilizes both the original One-dimensional (1D)
power data and the processed Two-dimensional (2D) power
data inputs. The proposed model achieves an accuracy of
92%. The authors, however, neglect to tackle the problem of
imbalanced data classes.

Moreover, in [17], the authors proposed a novel method
for ETD based on the Wide and Deep CNN (Wide&Deep
CNN) model. The width CNN component captures the
global characteristics of 1D user data, while the depth CNN
component accurately identifies non-periodic stealing data
and periodic normal electricity data from 2D electricity
data. The performance of the proposed model was evaluated
using area under the ROC curve (AUC) and Mean Average
Precision (MAP). The issue of imbalanced data classes
distribution, however, remains unaddressed. In [18], the
authors proposed a hybrid model comprising of a Multilayer
Perceptron (MLP) and a Long Short Term Memory Network
(LSTM), wherein the LSTM is employed for processing
daily power consumption data while the MLP is utilized
for handling non-sequential data other than power data.
The experimental results demonstrate the superiority of the
hybrid model over the baseline model. However, the authors
have overlooked the issue of imbalance data classes, which
compromises the model’s generalization capability. In [19],
the authors utilized ensemble learning models, including
XGBoost, Random Forests (RF), AdaBoost, Light Gradient
Boosting (LGB), Extra Trees, and Categorical Boosting
(CatBoost) for ETD purposes. Data preprocessing techniques
were applied to enhance the detection performance of the
models. Additionally, SMOTE was employed to address
class imbalance issues. However, the training and testing
process incurs a significant computational cost. Furthermore,
SMOTE alone fails to capture the probability distribution
curve inherent in complex power data. As a result, this
leads to class overlap issues in the synthesized data and
ultimately diminishes the generalization performance of the
classifier.

Besides, in [5], the authors proposed a novel ETD model
by combining CNN and LSTM, where CNN is employed
for automated feature extraction, while LSTM is utilized for
feature classification. Additionally, this study implemented
a novel data preprocessing algorithm to estimate missing
values in the dataset based on local values. To address
the issue of data imbalance, the oversampling technique
SMOTE was also employed, resulting in favorable outcomes
when applied to the power data from Multan Electric Power
Company (MEPCO). However, employing SMOTE alone for
synthetic data generation gives rise to the issue of class over-
lap and may lead to model overfitting phenomenon. In [20],
the authors proposed a hybrid model, namely CNN-GRU-
PSO, for ETD by integrating CNN, Gated Recurrent Unit
(GRU), and Particle SwarmOptimization (PSO). The CNN is
employed to automate feature extraction, the GRU is utilized
to classify the extracted features, and the PSO algorithm
is applied to optimize the hyperparameters. SMOTE is
employed to address the issue of imbalanced data; however,
generating synthetic data through SMOTEmay result in class
overlap and subsequently lead to overfitting of the model.
In [21], the authors proposed a classification framework
that combines the techniques of Visual Geometry Group
(VGG-16) and Firefly Algorithm-based Extreme Gradient
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Boosting (FA-XGBoost). The VGG-16 model is used for
data processing to identify anomalous power consumption
patterns, followed by the utilization of FA-XGBoost for data
classification. To address the issue of data class imbalance,
the authors employed Adaptive Synthetic Sampling (Adasyn)
oversampling technique for minority classes as a means to
mitigate this problem. However, utilizing Adasyn in isolation
entails significant computational overhead and may not yield
desirable outcomes when dealing with high-dimensional
datasets, potentially impacting the model’s performance.

And, in [22], the authors employed a hybrid approach
that combines a stacked autoencoder bagged ensemble RF
for ETD, while utilizing the stacked autoencoder to extract
salient features in order to enhance the classifier’s perfor-
mance in detecting theft incidents. The proposed model’s
performance is assessed using both the Irish power dataset
and the Chinese power dataset. Additionally, to address the
issue of imbalanced data, Random Under-Sampling (RUS)
was used by the authors to balance the class distribution.
However, relying solely on RUS would result in a significant
loss of data samples, leading to a small sample size for
model training and potentially causing underfitting issues. In
[23], the authors employed feature engineering techniques to
reduce data dimensionality and utilized advanced ensemble
technology CatBoost for the purpose of ETD. In addition,
the K-Nearest Neighbor (KNN) interpolation method was
employed for missing value imputation, while the SMOTE-
Tomek technique was utilized to address data imbalance
issues. The hyperparameter optimization of the model,
however, has been overlooked, leading to the classifier being
trapped in a local optimum and consequently compromising
the performance of the model. In [24], the authors proposed
an ensemble DL detector comprising multiple DL-GRU.
The outputs of these diverse DL models are subsequently
fed into a majority voting classifier to determine the final
classification outcome. However, the model overlooks the
issue of data class balance. In [25], the authors proposed
a semi-supervised DL model that leverages a substantial
amount of high-dimensional unlabeled data and incorporates
adversarial modules to mitigate the risk of overfitting.
Experimental results demonstrate that the proposed model
exhibits remarkable performance even when trained on
limited samples. However, the absence of hyperparameter
optimization may lead to the model converging towards a
suboptimal solution.

III. THE PROPOSED SYSTEM MODEL
The proposed model primarily consists of three main units
and several sub-units. The main units are (1) missing values
handling unit (2) outlier handling unit (3) data normalization
unit (4) data class balancing unit (5) proposed electricity
theft detection model unit. The subsequent sections provide
comprehensive coverage of the units and their associated
subunits. Figure1 shows the flow chart of the system and a
diagram of its important units.

TABLE 1. Dataset detail.

A. DATA DESCRIPTION
The present study utilizes the authentic electricity consump-
tion data of users, which has been publicly released by
the State Grid Corporation of China (SGCC). The dataset
consists of data collected from January 2014 to October 2016,
with a daily sampling frequency. Each row represents the
electricity consumption data of an individual user, while each
column corresponds to a specific sampling time [17]. Among
them, there are 42,372 power data records, comprising
38,757 normal power data records and 3,615 abnormal power
data records. The distribution of normal data and abnormal
data exhibits a significant imbalance. The data contains a
significant number of NaN values, outliers, and discrete data
due to uncontrollable factors. Therefore, it is imperative to
address these issues during the ETD. To address the issue
of class imbalance in the dataset, this study employs a
sampling technique that combines oversampling and under-
sampling to achieve a balanced trainset, while reserving 20%
of the imbalanced data as an independent testset. The detailed
description of this series of processing will be the subsequent
section on data processing. The details of all datasets in this
paper are presented in Table1. Additionally, figure2 illustrates
the distribution of abnormal and normal users across various
datasets: the original dataset, the testset, the trainset prior
to data balancing, and the training number set post data
balancing.

B. MISSING VALUES HANDLING UNIT
Missing cases in the collected data samples may arise due
to staff errors, collector failures, or network fluctuations of
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FIGURE 1. Electricity theft detection workflow diagram.

smart meters. The absence of data processing for missing
values can result in a substantial loss of valuable information
and a decline in data quality, ultimately leading to the failure
of the model to achieve the anticipated outcome. In handling
missing values, a conventional approach is to directly remove
the row or column containing the missing value. Although
this method is straightforward and easy to implement,
it may lead to significant data loss. Another alternative
involves employing ML algorithms or DL networks to
predict missing values, which can yield more realistic data;
however, this approach requires significant time and resource
investments for computation, and its predictive accuracy
may be influenced by the trainset. Therefore, considering
its comprehensive performance, interpolation methods are
widely acknowledged for effectively handling missing power
data samples. The following interpolation algorithms are
commonly employed:

1) SIMPLE IMPUTER WITH MEAN METHOD
The Simple Imputer with Mean Method (SIMM) is a widely
utilized technique, with the following formula:

f (xi) =



xi−1 + xi+1

2
, xi ∈ NaN , xi−1,

xi+1 /∈ NaN
0, xi ∈ NaN , xi−1 or

xi+1 ∈ NaN ,

xi, otherwise ,

(1)

where, the vector x represents the daily electricity consump-
tion data, xi, xi−1 and xi+1 denote the data values of day
i, i− 1 and i+ 1 in x. SIMM, although easy to implement
and consuming fewer resources, only considers a fraction
of the daily electricity data within the current sample when
handling missing values. It disregards the overall electricity

FIGURE 2. Data distribution.

consumption pattern of the user. Furthermore, in cases where
consecutive missing values occur in the sample, employing
SIMM may result in a significant number of successive zero
values within the sampled data.

2) PIECEWISE CUBIC HERMITE INTERPOLATING
POLYNOMIAL
The PHCIP represent a form of interpolation that effectively
preserves the inherent shape and characteristics of function
[26]. Hermite, a French mathematician, used the function
value and derivative value of the unknown function f (x) at
the interpolation point to construct the PCHIP. This type
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of polynomial has characteristics such as C1 continuity and
monotonicity in subintervals, making it suitable for fitting
differences in electricity data. The mathematical principle of
PCHIP is presented herein:

The value of function f (x) at node a = x0 <

x1 < · · · < xk−1 < · · · < xn = b denoted as
y0, y1, · · · , yk−1, yk , · · · , yn, and the corresponding function
interval for subinterval [xk−1, xk ] in partition k is represented
by [yk−1, yk ]. Therefore, the PCHIP function Pk (x) is defined
on the interval as follows:

Pk (x) = yk−1 + ak,1 (x − xk−1)

+ak,2 (x − xk−1)
2
+ ak,3 (x − xk−1)

3 ,

ak,1 = dk−1,

ak,2 =
3 (yk − yk−1)

(xk − xk−1)
2 −

2dk−1 + dk
xk − xk−1

,

ak,3 = −
2 (yk − yk−1)

(xk − xk−1)
3 +

dk + dk−1

(xk − xk−1)
2 ,

(2)

the formula incorporates dk−1, dk , which represent the
function value and first derivative of the interpolation
function Pk (x) at the left and right endpoints of the
subinterval, respectively. The determination of the derivative
of the interpolation function at each node, based on known
interval endpoint function values, is crucial for constructing
a monotonic PCHIP function within an interval.

The derivative for each intermediate node k =

1, 2, · · · , n − 1 is approximately calculated by weighting
the first-order difference quotient of the adjacent intervals on
both sides.

δk =
yk − yk−1

xk − xk−1
, w1 =

1
3

(
1 +

xk − xk−1

xk+1 − xk−1

)
,

w2 =
1
3

(
1 +

xk+1 − xk
xk+1 − xk−1

)
,

dk =


δk · δk+1

w1δk + w2δk+1
, δk · δk+1 > 0

0, δk · δk+1 ⩽ 0

d0 = δ1, dn = δn. (3)

The polynomial coefficients are calculated using Equation
(2), and the first derivatives of the interpolation function
at each node are computed using Equation (3). Finally,
the interpolation function is determined Pk (x). Furthermore,
it can be demonstrated that Pk (x) satisfies C1 continuity on
the interval [x0, xn] and remains monotonic in the subinterval
[xk−1, xk ].

The PHCIP method was selected for handling missing
values in the data sample during the experiment, after
evaluating two interpolation approaches.

The interpolated data generates a smooth curve between
the maximum and minimum values of adjacent points, while
preserving the consumption pattern, as illustrated in Figure3
for a random sample.

FIGURE 3. Plots of consumption data before and after interpolation.

C. OUTLIER HANDLING UNIT
The processing of outliers is a crucial step in data pre-
processing as it serves to mitigate or eliminate errors and
biases that arise from including anomalous observations in
the dataset. The generation of outliers primarily arises from
non-resistant factors that induce deviations in smart meter
records, resulting in the emergence of discrete data points.
Unprocessed outliers in the data can lead to reduced model
performance and compromise its robustness. Therefore,
appropriate handling of outliers is imperative. Common
methods for outlier processing include deletion, replacement,
and interpolation techniques. Deletion represents the most
straightforward and cost-effective approach; however, it may
result in the loss of valuable information. Replacement
can preserve the data sample, but it is crucial to select
an appropriate method based on specific circumstances.
The process of interpolation involves estimating outliers
based on existing data points. In practical applications,
selecting an appropriate method for processing outliers
requires considering factors such as data distribution and
feature analysis to ensure accuracy and reliability of the data.
This paper employs the Three Sigma Rule (TSR) to address
the presence of outliers in the data. The formula for this rule
is presented as follows:

f (xi) =

{
avg(x) + 3 · std(x), if xi > avg(x) + 3 · std(x),
xi otherwise ,

(4)

the vector x represents the daily electricity consumption data,
while xi denotes the data value of x on the i day. Additionally,
avg(x) corresponds to themean value of sample x, and finally,
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std(x) signifies the standard deviation of this sample. The
value that surpasses avg(x) + 3 · std(x) in TSR is recognized
as an outlier and attributed with the value of avg(x) + 3 ·

std(x). This approach not only mitigates the impact of outliers
but also partially alleviates the potential reduction in model
effectiveness caused by misjudgment of outliers.

D. DATA NORMALIZATION UNIT
The normalization of raw data is essential prior to training,
as DL techniques exhibit heightened sensitivity towards
sparse, diverse, and unscaled data. If the data range is
excessively large, it may adversely impact the convergence
performance of the model or even prevent it from converging,
so that themodel fails to attain the intended outcome. The two
most prevalent standardization approaches are as follows:

1) MIN-MAX SCALING
The Min-Max Scaling function is employed to transform the
raw data, mapping it onto a specified interval, typically set
as the default range of [0, 1]. The expression for Min-Max
Scaling is as follows:

f (x) =
xi − min(x)

max(x) − min(x)
, xi ∈ x, (5)

the vector x represents the daily electricity consumption data,
where xi denotes the data value of day i in x. Additionally,
min(x) corresponds to the minimum value in sample x, while
max(x) represents the maximum value in sample.

The Min-Max Scaling method exhibits high sensitivity to
outliers in the dataset and should only be applied to data that
has a well-defined range without any outliers. In the power
data, a significant number of values have high magnitudes
alongside a substantial proportion of values approaching
zero. Consequently, using Min-Max Scaling may result in an
abundance of near-zero values within the sample, leading to
excessive elimination of data features and adversely affecting
model performance.

2) ZERO-SCORE STANDARDIZATION
The function of Zero-Score Standardization is to let raw data
follow Gaussian distribution. The expression for Zero-Score
Standardization is as follows:

f (x) =
xi − avg(x)

std(x)
, xi ∈ x, (6)

the vector x represents the daily electricity consumption data,
where xi denotes the data value of day i in x, additionally,
avg(x) corresponds to the average value in sample x, while
std(x) represents the standard deviation value in sample.

The Zero-Score Standardization method is less influenced
by outliers in the sample compared to Min-Max Scaling,
making it suitable for datasets lacking a distinct range.
In the experiment, while controlling for other variables, both
standardization methods were examined as shown in Figure4.
The results indicate that the Zero-Score Standardization
model demonstrates superior performance in this specific
experiment.

FIGURE 4. Data distribution.

E. DATA CLASS BALANCE UNIT
The data in ETD exhibits a significant imbalance, with
the proportion of electricity theft users being considerably
smaller compared to the total number of users. Imbalanced
data can lead to overfitting issues and hinder the generaliza-
tion performance of the theft detection model. Without data
balancing, models that demonstrate satisfactory performance
on the trainset may arise; however, on the testset, the model
tends to be biased towards the majority class and performs
poorly on the minority class.

The most commonly employed processing technique at
the data level involves utilizing oversampling technology
to enhance minority samples and achieve class balance
in the sample data. Within oversampling technology, the
widely adopted approach is SMOTE, which operates by
identifying KNN samples surrounding the minority class
and generating new samples through linear interpolation
operations. The SMOTE sampling technique [27], however,
faces the challenge of generating minority class samples is
difficult to distinguish due to their overlap with majority
class samples. Therefore, some researchers have proposed
a hybrid sampling technology that combines over-sampling
and down-sampling techniques, which is SMOTEENN [28].
Firstly, the minority class samples were generated using the
SMOTE algorithm to obtain newly synthesized instances.
Subsequently, a clustering algorithm KNN was employed to
cluster these newly generated samples. If the classification
result at a specific point coincided with the clustering
outcome of its K-nearest neighbor samples, the synthesized
instances were retained; otherwise, they were discarded
iteratively until achieving balance between minority and
majority class data samples. This approach addresses the
issue of duplication in both minority and majority class data
within the SMOTE algorithm. The steps for implementing the
SMOTEENN algorithm are presented in Algorithm1:

The trainset in this paper is balanced by 80% based
on the algorithm section above. The number of normal
users and abnormal users in the training samples after
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Algorithm 1 SMOTEENN Based Data Augmentation
Input: Training set(X_ train) that consists of majority

class data(X_ trainmaj) and minority class data
(X_ trainmin), Number of minority class samples
(T ),Sample Rate(N )%, count of neighbors(K ),
New minority class sample(xs)

Output: Augmented Data
1: if N < 100 then
2: Randomly select T ∗N% samples from the (X−train

min)
3: Find the K nearest neighbor points Xinn, nn ∈

{1, 2, · · · ,K } of X−train min in X_ train
4: while xs < (N/100) ∗ T do
5: Select a sample Xiab arbitrarily from Xinn
6: Calculate the vector difference between the remain-

ing current traversed sample Xicd
7: New minority class sample xs = xicd +

(xiab − xicd ) ∗ rand(0, 1)
8: According to the KNN algorithm, predict and

classify the newly generated data samples. If it has
same type asmost of its K nearest neighbor samples,
save the data, otherwise delete it.

9: Add new samples to original samples
10: end while
11: end if

generating synthetic data are presented in columns 7 and 8 of
Table1. Figure5 illustrates the data distribution before and
after sampling, achieved by employing Principal Component
Analysis (PCA) to reduce the dimensionality of the data.

F. PROPOSED ELECTRICITY THEFT DETECTION MODEL
UNIT
The subsequent steps involving feature extraction and
anomaly classification can be initiated after completing
the data processing task. The SGCC dataset encompasses
a substantial volume of high-dimensional feature data.
To enhance the process of anomaly classification, it is
imperative to perform dimensionality reduction as an initial
step, thereby alleviating the curse of dimensionality. This
will prevent the model from being overwhelmed by excessive
noise and enable it to demonstrate stronger generalization
capabilities towards novel data. The proposed model for
ETD in this paper is depicted in Figure6, comprising two
structures: the OS-CNNs feature extraction structure, which
consists of multiple Omni-Scale block (OS-block) layers to
extract dimensional data features in SGCC; and the anomaly
classification structure composed of AutoXGB. Following
the passage through the pooling layer and fully connected
layer, the features extracted by the OS-CNNs network are
fed into the AutoXGB classifier for performing anomaly
classification. The subsequent subsections will provide a
comprehensive account of the detailed process involved in
feature extraction and anomaly classification.

FIGURE 5. PCA visualization of data.

1) OS-CNNS FEATURE EXTRACTION BASED ON OS-BLOCK
STACKING
The primary challenge in time series data lies in selecting
an appropriate time window scale for effective feature
extraction. Conventional ML methods exert significant
efforts in capturing crucial time scales, however, as the
length of the time series increases, computational resources
grow exponentially, as exemplified by Shapelet. CNNs have
demonstrated effective feature extraction capabilities for
time series analysis, with the size of the Receptive Field
consistently recognized as a crucial factor that influences the
performance of 1D-CNNs in time series classification tasks.

In [10], the authors proposed the concept of an OS-block,
which automatically sets the kernel selection of a 1D-CNN
through a simple and general rule that can cover Receptive
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FIGURE 6. Proposed model.

Field at different time series scales. The rule is inspired
by the Goldbach Conjecture [29], which states that every
positive even integer can be expressed as the sumof two prime
numbers. Hence, OS-block employs a set of numbers as the
kernel size and exclusively utilizes 1 and 2 as the kernel size
for the final layer in each block. In this manner, a 1D-CNN
utilizing prime size kernels can effectively transform the time
series by employing various combinations of these prime size
kernels to encompass receptive fields at multiple scales. More
significantly, OS-block can execute the processing of diverse
time series datasets by selecting the maximum prime number
based on the length of each time series.

As shown in Figure7, each even number from 2 to 38 can
be composed of two prime numbers from 1 to 19. According
to Goldbach Conjecture, this phenomenon can be extended
to all even numbers. The OS-block structure is proposed as
depicted in Figure7, based on this conjecture. It constitutes
a-layer multi-kernel 1D-CNN architecture. Specifically, the
first two layers employ prime-sized kernels ranging from 1 to
19 to encompass all even receptive field sizes, while the third
layer utilizes kernels of size 1 and 2. Consequently, diverse
pk are employed to cover all receptive field sizes within the
specified range. The set of kernel sizes at layer i can be
denoted as P(i).

P(i) =

{
{1, 2, 3, 5, . . . , pk} , i ∈ (1, 2),
{1, 2} , i = 3.

(7)

The exceptional feature extraction properties of OS-block
on time series render it a highly favorable choice. The
present study employs an OS-CNNs network composed of
stacked multi-layer OS-blocks to extract features from high-
dimensional data obtained from SGCC. The mathematical

principle of OS-block design, as illustrated in Figure7,
demonstrates its ability to cover receptive fields of all scales
based on the length of time series.

2) ANOMALY CLASSIFICATION BASED ON AutoXGB
The hyperparameter tuning is a pivotal aspect in ML,
and appropriately hyperparameter tuning can significantly
enhance the model’s performance. In the realm of hyper-
parameter tuning, researchers commonly employ network
search and random search techniques. Grid search involves
exhaustively exploring all possible combinations of hyper-
parameters within a given search space to identify the
optimal setting based on evaluation metrics. However, grid
search exhibits evident limitations. Firstly, it necessitates
enumerating all potential values for each hyperparameter
within a given range. This can pose challenges when dealing
with continuous hyperparameters as determining their value
range may be arduous. Furthermore, when the search scope
is excessively broad, there will be a significant increase in
both the time and resources required for web searching,
thereby adversely impacting optimization efficiency. There-
fore, to address the limitations of grid search, random search
employs random sampling within the specified hyperparam-
eter search range to generate candidate hyperparameters and
subsequently selects the optimal combination. This approach
partially mitigates the resource consumption issue associated
with grid searching. However, both random searching and
grid searching suffer from artificially setting the range for
hyperparameter searches which prevents obtaining optimal
hyperparameter settings.

The AutoXGB [30], [31], [32] tool is an open-source, user-
friendly, and highly efficient Automated Machine Learning
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FIGURE 7. OS-block design.

(AutoML) development tool. The AutoXGB framework
leverages the optimized Distributed Gradient Boosting
library XGBoost for model training, while employing
Optuna, an automatic hyperparameter optimization frame-
work tailored for ML and DL, to fine-tune the hyper of
XGBoost. The need for engineers to re-optimize XGBoost
hyperparameters is eliminated, resulting in saved optimiza-
tion steps and time. Optuna, unlike manual experience-based
hyperparameter optimization, offers a range of advanced
parameter tuning algorithms that can terminate underper-
forming sampling points early to expedite the search process.
Additionally, it dynamically constructs the hyperparameter
search space to adapt to various optimization problems. This
enables the discovery of more suitable for enhancing model
performance. The optimal combination of hyperparameters
for XGBoost in ETD, as determined by the Optuna automatic
hyperparameter optimization framework, is presented in
Table2.

XGBoost is an enhanced version of the Gradient Boosting
Decision Tree (GBDT) algorithm. The idea behind XGBoost
is to add one tree at a time in order to fit the residual
of the previous prediction, thereby continuously reducing
the loss by adding new trees. The proposed approach
amalgamates multiple weak classifiers into a robust classifier,
thereby yielding an ML model with exceptional accuracy.
The algorithm utilizes the second-order Taylor expansion
of the loss function and incorporates a regularization term
to mitigate overfitting, rendering it an efficient and high-
precision Boosting ensemble learning algorithm.

For the dataset D = {(xi, yi) (i = 1, 2, . . . , n)}, xi
represents the i sample, while yi represents the true value
corresponding to the i sample. XGBoost utilizes CART

TABLE 2. Hyperparameters of XGBoost.

regression tree as its weak classifier, and the prediction output
of XGBoost for the input xi is:

ŷi = θ (xi) =

K∑
k=1

fk (xi) , fk ∈ F, (8)

where:K represents the number of sub-models;F denotes all
regression trees, while F = {f (x) = ω}, ω refer to weight
vectors comprising weights assigned to each leaf node of the
regression trees. Meanwhile, ŷi signifies the predicted value
of the model’s output;xi represents the sample input; and
finally, fk corresponds to the regression tree indexed as ‘k’.
The model’s objective function is as follows:

O = l
(
yi, ŷi

)
+

K∑
k=1

� (fk) , (9)
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FIGURE 8. Confusion matrix.

where, the loss function, denoted as l
(
yi, ŷi

)
, quantifies the

discrepancy between the predicted value ŷiand the actual
value yi. Meanwhile, the regularization term� plays a crucial
role in mitigating overfitting of the model. In general, the
performance of the XGBoost model is influenced by the size
of the trainset. When confronted with a high-dimensional
feature space and limited training samples, XGBoost may
struggle to capture all relevant information from the data,
leading to overfitting issues that hinder its applicability in
real-world testing scenarios. Therfore, the paper initially
employs OS-CNN for feature extraction, followed by training
the XGBoost model using the extracted features, thereby
significantly enhancing the classification efficacy of the
model.

IV. MODEL PERFORMANCE EVALUATION
A. PERFORMANCE METRICS
The selection of a suitable performance metric is imperative
when dealing with class imbalance [33]. The performance
of the model is assessed by employing various evaluation
metrics, including accuracy, precision, recall, F-1 score, and
AUC score. The confusion matrix serves as a fundamental
tool for assessing the performance of a classifier. The
abnormal power consumption data sample is categorized as
the positive class, while the normal power consumption data
sample is classified as the negative class in this experiment.
The distribution of the confusion matrix is illustrated in
Figure8.

TP: indicates that the predicted abnormal user is actually
an abnormal user;

FN: indicates that the predicted normal user is actually an
abnormal user;

FP: indicates that the predicted abnormal user is actually a
normal user;

TN: indicates that the predicted normal user is actually a
normal user;

The detection effect is enhanced with higher values of TP
and TN.

The following section provides a detailed explanation of
specific metrics:

1) ACCURACY
The accuracy rate is defined as the ratio of correctly

classified samples to the total number of samples, providing
a measure of classification performance. The formula for
calculating accuracy is as follows:

ACC(%) =
TP+ TN

TP+ TN + FP+ FN
× 100. (10)

In the case of datasets that are generally balanced, accu-
racy is commonly employed to assess model performance.
However, for imbalanced datasets, accuracy becomes an
inadequate measure of a model’s true predictive power due
to its susceptibility to sample size variations across different
classes. The testset in this experiment is characterized by
an extreme imbalance, with normal users accounting for
91.0% of the testset. Consequently, if the model were to
predict all instances as normal users, it would achieve a
correct classification rate of up to 91.0%. However, such
performance lacks significance within the context of this
study. Hence, it is not advisable to solely rely on accuracy
as the sole metric for assessing the efficacy of a model.

2) PRECISION
It denotes the ratio of true positive samples to the sum of
true positive and false positive samples, as defined by the
following formula:

Precision(%) =
TP

TP+ FP
× 100. (11)

The higher the precision, the greater the model’s predictive
capacity for normal users. In the context of ETD, a high level
of precision can alleviate the later-stage workload for workers
by reducing misclassifications of normal users as abnormal.

3) RECALL
It denotes the proportion of correctly identified positive

samples to the total number of samples classified as positive.
The formula is defined as follows:

Recall(%) =
TP

TP+ FN
× 100. (12)

The higher the recall, the greater the predictive capacity
of the representation model for identifying abnormal users.
In the ETD, a high recall enables accurate identification of
electricity theft by users, thereby mitigating potential harm
to smart grid companies caused by undetected instances of
electricity theft.
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FIGURE 9. Confusion matrix of the proposed model.

4) F1 SCORE
It represents the harmonic mean between precision and recall,
which is mathematically defined by the following formula:

F1(%) =
2 ∗ Precision ∗ Recall
Precision + Recall

× 100. (13)

In the context of ETD, it is not advisable to solely prioritize
higher precision or recall due to the unique nature of this
task. To ensure accurate identification of electricity theft
users and avoid manual misjudgment troubleshooting in later
stages, a comprehensive consideration of both indicators
is necessary. Hence, the F1 score can be considered as a
well-balanced metric, indicating that the model’s robustness
increases with higher values.

5) AUC SCORE
The calculation involves determining the disparity between

positive and negative samples, where AUC values closer to
1 indicate superior classification performance. The formula
is defined as follows:

AUC =

∑ Ranki −
M (1+M )

2

M × N
, (14)

where, the positive class is represented by i, with the number
of positive samples denoted asM and the number of negative
samples denoted as N .
The AUC score serves as a robust metric that quantifies

the ability to accurately distinguish between positive and
negative classes. In ETD, a higher AUC score indicates
stronger discriminatory power in distinguishing normal users
from those who engage in power theft.

For example, the confusionmatrix of the proposedmodel is
depicted in Figure9, while Figure10 illustrates the ROC curve
and the corresponding area under the curve for our model.

B. COMPARING MODELS
To demonstrate the superiority of our proposed method,
we compared the performance of the OS-CNN-AutoXGB
model with five other well-performing ML algorithms for
ETD on a given trainset. The open-source frameworks

FIGURE 10. ROC curve of the proposed model.

PyTorch and Scikit-Learn were utilized to construct five com-
parative models. The optimal hyperparameters of the model
were obtained through random search. Detailed descriptions
of these five models, along with their corresponding specific
parameters, are provided below.

1) RF [34]: The algorithm in question is an ML technique
that falls under the category of bagging, which itself
belongs to the realm of ensemble learning. The weak
classifiers in RF are constructed in parallel, and their
predictions are integrated through a voting mechanism
to determine the final prediction. Compared to a single
decision number, random forests employ multiple
decision trees trained on different subsets of the
trainset, thereby ensuring diversity among the decision
tree models. The RF algorithm can simultaneously
assign different weights to various categories in order
to address the issue of dataset imbalance.

2) CNN [35]: It is a deep feedforward neural network
that exhibits the characteristics of local connectivity
and weight sharing, making it one of the prominent
algorithms in the field of DL. The CNN composed of
1D convolutional layers has been widely used in ETD,
and different CNNs are used in many stealing models.

3) Wide&Deep CNN [17]: The architecture comprises
two components: a width CNN and a depth CNN. The
width CNN effectively captures the characteristics of
1D electricity data, while the depth CNN accurately
discerns the periodicity of aperiodic electricity theft
and normal electricity consumption based on 2D
electricity data. Thus, The Wide&Deep CNN model
has demonstrated exceptional performance in the ETD.

4) CNN-LSTM [5]: The proposed system integrates a
CNN and a LSTM for ETD. Specifically, the CNN is
employed to extract discriminative features, while the
LSTM is utilized for feature classification. The model
has also demonstrated promising outcomes in the ETD.
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FIGURE 11. Comparison results.

5) TLGRU [36]: The architectural framework consists of
two integral components, namely LSTM and GRU.
The LSTM network is utilized to capture the features
of electricity data for extraction, thereby addressing
the issue of dimensionality catastrophe. Subsequently,
GRU is employed for feature classification. The
TLGRU model demonstrates outstanding performance
in the field of ETD.

The specific hyperparameters and descriptions of the
compared methods are presented in Table3.

C. MODEL COMPARISON RESULTS AND DISCUSSION
The metrics for each contrasting model in the given dataset
are presented in Table4. The proposed model’s performance
is comprehensively summarized in comparison to other
related models. The proposed model achieves the highest
accuracy of 99.2%, precision of 97.5%, F1 score of 95.5%,
and AUC score of 98.4% according to Table4, while
maintaining a recall rate as high as 94.1%. Therefore, the
proposed model demonstrates its outstanding capability in
detecting theft.

Similarly, figure11 presents a graphical representation that
illustrates the performance comparison between the proposed
model and other comparative models. To ensure a more
precise visualization of the AUC gap, this paper provides
a separate graphical representation as depicted in Figure12.
The proposedmodel exhibits significantly enhanced accuracy
and precision, as evident from the observations.

To further demonstrate the model’s exceptional perfor-
mance in detecting abnormal data, its effectiveness can also
be effectively evaluated under conditions of class imbalance.
The ROC curves and PR curves were generated based
on the test outcomes. The ROC and PR curves of the
various methods are depicted in Figures13 and 14. The
results depicted in Figure13 demonstrate the exceptional
performance of the proposed classification model when com-
pared to other models, exhibiting a remarkable True Positive
Rate (TPR) and an impressively low False Positive Rate

TABLE 3. Description of comparison method and Hyper-parameters
selection.

(FPR). The preliminary evaluation based on the ROC curve
demonstrates that, with a limited number of input samples,
the proposed model exhibits effective classification perfor-
mance by achieving the lowest FPR recorded. Moreover, the
model’s curve ensures reliable sample classification across
various FPR levels. Thus, In order to avoid the imbalanced
category, the change in TPR is not readily discernible due
to the abundance of positive examples, which inadequately
represent the model’s efficacy in detecting theft users,
resulting in an overly optimistic effect on the ROC curve.
Therefore, the PR curve can also serve as evidence of the
model’s performance. As depicted in Figure14, the proposed
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TABLE 4. Comparison of performance metrics of various methods.

FIGURE 12. Comparison results of AUC.

FIGURE 13. Comparison results of ROC curve.

model exhibits commendable performance on the PR curve,
indicating its proficiency in classifying positive and negative
samples. When applied to real-world abnormal electricity
consumption detection, it accurately identifies abnormal
electricity users while minimizing interference with normal
electricity users. The model not only demonstrates stability

FIGURE 14. Comparison results of PR curve.

but also significantly alleviates the burden on staff in
rectifying errors.

V. CONCLUSION AND FUTURE WORK
The present study introduces the OS-CNN-AutoXGB model
for the ETD behavior in smart grid systems. In particular, The
OS-CNN is specifically employed to extract features from
smart grid data at its full scale, surpassing the feature extrac-
tion capabilities of both conventional CNN and Wide&Deep
CNN models. This advanced approach effectively captures
the periodic patterns in normal electricity consumption as
well as the irregularities in abnormal electricity consumption,
thereby significantly enhancing the performance of our pro-
posed model. In addition, the utilization of AutoXGB as the
classifier following feature extraction offers enhanced con-
venience and efficiency compared to employing ML alone,
followed by a series of hyperparameter methods. Moreover,
the impact of hyperparameter optimization becomes more
pronounced, eliminating the need for manual expertise in
this regard. The aforementioned experiments collectively
demonstrate that the proposed model exhibits superior
equilibrium and stability in comparison to existing models.

Naturally, there are areas for potential improvement in
the proposed model due to its limited dataset. Specifically,
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within the national smart grid dataset, malicious consumers
constitute only 8.5% of the total consumers, presenting
a significant issue of data imbalance. Despite using the
advanced sampling method SMOTEENN to address class
imbalance and augmenting the trainset with additional
negative samples resulting in improved model performance,
49 out of the 758 malicious samples in the testset were still
misclassified as normal instances. This discrepancy may be
attributed to the limited size of the original negative class
sample and the single distribution learned by the model
from negative class samples. Subsequent research can employ
stealing attack methods to simulate a malicious user who
modifies consumption data and generates new malicious
consumers in order to balance the dataset. Moreover, this
model utilizes a hybrid approach that combines DL and ML,
thereby retaining the robust feature extraction capabilities
of DL while leveraging the classification abilities of ML to
reduce resource overhead. However, it is important to note
that this method requires more rigorous training compared to
conventional approaches. The further research can optimize
the network structure and employ a lightweight architecture
to achieve an equivalent level of effectiveness in detecting
electricity theft. Furthermore, future research will explore the
comparison of different proportions of trainset and testset.
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