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ABSTRACT Communicating via email or various chat applications on smartphones is part of most people’s
daily lives. But in written form, human communication loses a lot of valuable information, such as the facial
expressions and emotions of the person you are communicating with. Thanks to techniques from the field of
image processing, it is now possible to capture these non-verbal phenomena, and supplement written input
with their non-verbal characteristics. In this paper, we explore the possibilities of emotion recognition from
front camera images in mobile and embedded devices. A total of 63 classification and 28 regression models
based on twelve different neural network architectures optimized for low performance mobile devices were
trained and evaluated for success rate and latency. The training and evaluation of each neural network model
is performed within the Keras API of the TensorFlow library and then converted to the TensorFlow Lite
standard to reduce memory and computational requirements. Great care is taken to ensure that the entire
process, from face detection to emotion classification, can operate in real time. To demonstrate and compare
the performance of the evaluatedmodels, a freely available optimized application running onAndroidmobile
devices is created and published on Google Play, the source code of which is also available.

INDEX TERMS Android, emotion classification, face detection, Keras, MLKit, neural networks,
TensorFlow, TensorFlow Lite.

I. INTRODUCTION
Communication via short messages, email or various chat
applications on smartphones is part of most people’s daily
lives. However, human communication loses a lot of valuable
information in its written form, such as the facial expressions
and emotions of the person you are communicating with.

The universality of facial expressions of emotion is one
of the still debated issues in the biological and social
sciences [1], [2], [3], [4], [5], [6]. Darwin’s universality
hypothesis [7] states that all humans communicate the six
basic emotional states (joy, surprise, fear, disgust, anger and
sadness) through the same facial movements based on their
biological and evolutionary origins.

These non-verbal signals can accentuate the meaning
of verbal messages (through accompanying gestures and
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grimaces), complement them, but they can also completely
change the meaning of what is being communicated (e.g.,
an ironic grin accompanied by the comment ‘‘You did it
really well’’ versus the same sentence spoken with genuine
enthusiasm). It also determines much of how we perceive
explicit verbal messages – it has been demonstrated that
decoding the meaning of a message varies with facial
expression [8]. A now-classic study of non-verbal behavior
by Mehrabian [9] and later studies with the contribution of
Ferris [10] showed that attitude toward a stranger who said
‘‘maybe’’ was approximately 1.5 times more influenced by
the stranger’s facial expression than by the tone of his voice.

The question we can ask is whether the representation
of emotions using emoji [11] in computer-mediated com-
munication is an appropriate form of informing about the
speaker’s attitude. Studies [11], [12], [13] have shown that
there is no indication that computer-mediated communi-
cation is less emotional or less personally engaging than

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 15735

https://orcid.org/0000-0002-6153-4212
https://orcid.org/0000-0003-4246-0454


M. Krumnikl, V. Maiwald: Facial Emotion Recognition for Mobile Devices: A Practical Review

face-to-face communication. On the contrary, emotional
communication online and offline is surprisingly similar,
and when differences are found, they unexpectedly point
to more frequent and explicit communication of emotion
in computer-mediated communication [14]. A research [15]
aimed at evaluating emotional responses to facial emoji using
physiological and self-assessment measures showed that
participants’ emotional experience was consistent with the
emotions expressed by facial emoji. No gender differences
were found, and overall the results suggest that emoji are able
to elicit particularly pleasant affective states. In exaggeration,
we can say that emojis are the modern form of Facial action
coding system [16].

Mobile and wearable devices can act as emotion sensors
thanks to their integrated cameras and sensors for various
physical variables. They have enough power to evaluate and
interpret the sensed values as one of the emotional state [17],
[18] and encode it as an appropriate emoji icon. Mobile
phone applications can take advantage of the combination
of facial recognition from a device’s camera and various
built-in or Bluetooth connected sensors measuring EEG,
heart rate, respiration, body temperature and movement [19],
[20], [21]. Facial emotion recognition and its presentation
in form of emoji can be used to observe the behavior of
mobile phone game players [22], drivers in autonomous
cars [23], [24], in enhanced chat application [25] or to
create an emotion-aware mobile applications for autistic
children [21], [26].

Recently published papers [27], [28], [29], [30] focused
on facial expression and emotion recognition have presented
their results on specialized mobile platforms (often single
board computers, typically Raspberry Pi). Although the
authors test their solutions on these embedded devices,
we hardly ever see real tests on the most common type of
mobile devices – mobile phones. Published papers rarely
contain results from practical deployment and operation on
most common types of phones.

The main purpose of this paper is to address this, review
and compare the most widely used methods for facial
emotion recognition and test these methods on several
types of the common mobile devices/phones (and Raspberry
Pi for reference). The presented results evaluate dozens
of different emotion recognition methods [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42] following
the same methodology and compare them with several
commonly available mobile phones. The results provide
a comprehensive overview of the field, comparing neural
network parameters, sizes and latencies on the mobile
devices.

II. NEURAL NETWORKS FOR MOBILE DEVICES
The simplicity of the architecture is essential for the use
of neural networks on mobile phones or microcomputers.
Neither the amount of available memory nor the amount
of computational power can be expected to be comparable

with desktop computers, and GPU acceleration is not the
rule either. Over the years, many approaches have been
devised, most of which have the following architectures
in common. Probably the most fundamental feature is the
use of 1 × 1 convolution, introduced in [43]. It is itself
relatively computationally inexpensive, but it makes subse-
quent passage through other convolutional filters and feature
extractors many times easier with only a slight reduction in
detection quality and accuracy. Another desirable feature of
the architecture is the ability to scale the number of trainable
parameters by changing the number of layers of the network
or its width. This way we can adapt the architecture to
the specific performance of the hardware. Typical activation
functions are usually different variants of ReLU [44], be it
Leaky ReLU [45], ReLU6 [31] or Hard Swish [33], which
are semi-linear and simple to compute.

The following architectures were selected for our review
because they theoretically allow sufficient scalability for
use on mobile devices or because they are designed
specifically for such devices. They also represent most well-
known architectures; almost all are directly available in
the TensorFlow Keras API. We want to achieve latency
suitable for real-time use, so we set a latency threshold of
150 milliseconds for image processing by a particular model.
Memory requirements do not play such a critical role, but the
smaller the model is, the better.

A. MOBILENET
MobileNet neural network models [31], [32], [33] are
renowned solutions for mobile applications and have been
designed for the highest efficiency of operations. MobileNet
type networks are successfully used in many applica-
tions [46], [47], [48] for facial emotion detection. They
belong to convolutional neural networks, but convolution is
computed in a smart way. The method is called depthwise
separable convolution, and splits classical convolution into
two steps: the depth-wise convolution, and the point-wise
convolution [31].
In TensorFlow [49], the MobileNet neural network model

can be built very easily through the Keras API by simply
calling the appropriate method and specifying a few network
parameters such as the input image size, number of color
channels, weights, or the number of desired object classes we
would like to distinguish [50]. Another important parameter
of the model is alpha, which can be used to control
the number of trainable network parameters. Furthermore,
we can choose between different versions of models from the
MobileNet family. The specific versions are MobileNetV1
[31] (2017), MobileNetV2 [32] (2018), MobileNetV3Small,
and MobileNetV3Large [33] (2019). Google has released the
MobileNetEdgeTPUmodel [51] (2019) with optimization on
special TPU computing units. In the mobile version, this chip
architecture is used in the Google Pixel 4 series and newer
phones for hardware acceleration of neural networks and AI
runtime.
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MobileNetV2 is based on the principles of MobileNetV1,
but additionally extends its architecture to include inverse
residue blocks with a convolution function, which allows
combining results from activation functions and results that
have passed the convolution block filter [32].

The latest version of MobileNetV3 [33] is declaring up
to half lower latency compared to the previous generation,
while increasing classification accuracy by an order of
percent [50] on the Google Pixel 1 phone with ImageNet
dataset weights. Compared to the second generation, it brings
a number of improvements. It comes with a new block type
Squeeze-and-Excitation (SE) that better take into account
feature maps based on their channel dependencies. Also,
instead of the ReLU activation function, there is a Hard-swish
function, which reduces the number of multiply–accumulate
operations (MAC) but preserves nonlinearity [52]. It also
comes separately in a version for more powerful and
weaker target devices, and both versions can additionally
be made minimalist or full. With meaningful settings, the
MobileNetV3 model can have 2 to 5.4 million trainable
parameters.

B. NASNET
The abbreviation NAS stands for ‘‘Neural Architecture
Search’’, a reference to the way the network in the original
implementation adjusts its own architecture based on overall
latency, success rate, and dataset size [34]. The way the
network is built also changes the way the network is trained
– instead of looking for the overall most successful network,
the focus is on the best adaptation of a small convolutional
cell to a given problem. NASNet has found its way in driver
emotion recognition [53], [54], among others.
NASNet was created in three variants, labeled A, B, and C.

The resulting architecture is based on the results of opti-
mizing classification accuracy on the ImageNet dataset [55].
Keeping the same number of trainable parameters, the
highest success rate on the CIFAR-10 [56] and ImageNet
datasets comes out for type A, which is also implemented
in TensorFlow. However, instead of being able to scale the
architecture using parameters, the TensorFlow developers
decided to make the models available only in the smallest
and largest configurations and called them NASNetMobile
and NASNetLarge. The number of trainable parameters in
the mobile version is 5.3 million and in the full version it is
88.9 million parameters.

C. SQUEEZENET
Another mobile architecture was developed at a time when
neural networks were deepening and the primary goal was
to increase success rates. SqueezeNet [35] (2016) retained
accuracy comparable to AlexNet [57], but using only about
one-fiftieth of the parameters. With one and a quarter million
trainable parameters, the authors declare a model size of only
0.5 MB, which is on the order of one-hundredth of that of
AlexNet. Also, the training speed is many times faster.

SqueezeNet applications for emotion classification focus
mainly on a different data source, such as EEG [58], [59], but
there are also applications that use facial images [60].

The innovation concerns in particular the so-called Fire
module, which consists of a squeeze and an expansion layer.
In the first layer, a 1 × 1 × K convolution is applied
to the input of K channels, so that the output of the
channel has only one channel. The second layer performs
the expansion to the desired number of channels from
the total fire block output, using two sets of 1 × 1 and 3 ×

3 convolutions with their subsequent concatenation. Fire
blocks, in combination with residual connections between
them, allow to extract even hard-to-find features from
the image.

D. EFFICIENTNET
EfficientNet [36] is a family of convolutional neural networks
designed by a team from Google Brain (2019). The team
set out to create a network architecture that is as efficient
as possible in its operation, and that can easily adapt its
width and depth to a given problem as required. EfficientNet
combines key techniques of the MobileNet and SqueezeNet
architectures to extract a high number of features of
interest from images with a low number of parameters.
EfficientNet is successfully used for emotion classification
in a video sequence processing library designed for mobile
devices [61], [62].

In addition to the original architecture, EfficientNet has
also been released in a revised version, EfficientNetV2 [37]
(2021), which implements the so-called adaptive gradient
clipping (AGC) instead of the traditional batch normalization
(BN). This technique should provide a much smoother
convergence of success rates during training, while being
less computationally intensive [37]. However, it cannot be
generally claimed that AGC achieves better success rates for
the same number of training epochs as BN; the results depend
on the specific network.

Because this architecture is designed from the ground up to
be highly scalable, the authors have provided eight optimized
configurations in the first generation. The smallest, denoted
EfficientNetB0, has just over 5 million trainable parameters
and size about 20 MB. The smallest second-generation
EfficientNet model has about 2 million more parameters
and is about 10MB larger. The largest model, EfficientNetB7,
already has almost 67 million parameters and 250 MB
in size [36]. In the second generation, this is matched
by EfficientNetV2L, which has doubled the number of
parameters and size.

E. SHUFFLENET
Researchers at the University of Hong Kong are behind
another innovative neural network called ShuffleNet [38]
(2017). The word shuffle in this case refers to one of the
key layers of the network. In the residual block, after depth
convolution (over all channels of the tensor), the channels
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of the feature map are swapped before being followed up
with a point convolution. The channels are divided into
several groups, the groups are swapped, and the groups are
transformed back into channels of the original dimension.1

By swapping the internal channel structure within the residual
block, the network learns to perceive the relationships
between the channel groups in the feature map, and the
number of parameters can be reduced while maintaining the
same classification success rate. At the same time, swapping
channel groups is a relatively inexpensive operation, making
the network traversal less computationally intensive.

To maximize the success of ShuffleNet detection, it is
desirable to divide the channels into a higher number of
groups. However, since the convolutions are applied just to
the groups, this increases the overall network fragmentation
and worsens parallelization (especially on GPUs). So the
authors of the original architecture came up with a solution
where they included a new type of block called shuffle block
before each channel split, which has two parallel branches,
the input tensor is split between them and concatenated at
the end. The first branch leaves the input unchanged and the
second branch applies the convolutions 1×1, 3×3 and 1×1 to
it in that order (the input dimension is preserved). In contrast
to the convolutions in the shuffle block, here they are applied
to each channel separately, which makes the parallelization of
the necessary computations easier and more efficient, while
at the same time the number of shuffle blocks to obtain the
features can be reduced. This improved architecture has been
named ShuffleNetV2 [39] (2018). MiniShuffleNet V2 also
occurs in the processing pipeline for realtime face-detection
and emotion recognition [63].

F. DENSENET
DenseNet (2017) is a group of deep neural network
architectures that differ precisely in their depth. The version
with 121 layers is the shallowest and thus the most suitable
for use on a mobile device; other implementations have 169,
201 and 264 layers [40].

DenseNet is often compared to the conceptually similar
ResNet [64] architecture, which deals with the problem
of vanishing gradient by using residual blocks. However,
ResNet will not be discussed in this paper. Initial practical
tests have shown that even in the smallest configuration
with fifty layers (ResNet50), it is not able to compete with
others. Detection accuracy was only average and latency was
many times higher for ResNet than for other networks, which
is essential for mobile devices. According to these criteria,
even the DenseNet121 network cannot be considered a fully
mobile architecture. Due to its greater complexity, DenseNet
is mainly used for emotion classification with less extensive
inputs, e.g., EEG data [65], [66].

1Example: From a feature tensor of dimension 56 × 56 × 24, the
24 channels are divided into two groups of 12 channels each, resulting in
a tensor of dimension 56 × 56 × 2 × 12. The groups swap order and are
reshaped and merged back into the dimension of the original channel.

FIGURE 1. Demonstration application for Android. The left image shows
the results of the classification model (MnasNet in this particular case),
while the right image shows the outputs from the regression model. The
results are displayed at the top of the captured video.

G. GHOSTNET
The authors of the GhostNet architecture [41] (2019) came up
with an interesting finding based on their research into neural
network architectures at the time. They found that very often
the same or very similar feature maps are generated multiple
times from images, which the authors of the architecture
found to be inefficient. They proposed a so-called solution
ghost module, which works by splitting the input data into
two parts - the first part is processed by standard convolutions,
as in common architectures, but by using fewer parameters.
The second part of the module creates other so-called
ghost maps from these maps in a process that could be
likened to augmentation. Using simple operators with linear
computational complexity, the feature maps are transformed
to produce more, similar maps. Subsequently, the feature
maps produced by the convolution pass and the ghost maps
are concatenated together into a single tensor. In this way,
the authors have streamlined the process of creating very
similar symptom maps to each other and thus reducing the
computational demands of the network while maintaining
comparable success rates. The design of this network is
suitable for multimodal emotion recognition [67].

H. MNASNET
In a similar way to NASNet, the architecture of MnasNet [42]
was created, but from the beginning it was designed primarily
for use in mobile devices. It takes inspiration from many
optimization techniques from other mobile architectures,
in particular MobileNet. In designing this architecture, the
authors have drawn on Google’s insights on feedback learn-
ing from theGoogleAutoMLproject, which aims to automate
the design of machine learning models. In practice, this
approach is more applicable to smaller networks and medium
sized datasets [68], but automated network designs perform
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FIGURE 2. Sample of inappropriate images from the FER dataset.
It contains a large number of drawings, badly cropped faces, watermark
overlays or the face is not even present in the photo. It can also be seen
that the original image resolution of only 48 × 48 is really low and many
facial details are lost because of this.

well even compared to those designed by human experts. The
network is suitable for emotion recognition [69].

The particular form of MnasNet was created using
AutoML by continually training and measuring success on
automatically generated architectures. In addition to the
success rate, the real latency on Pixel phones was also
evaluated, and the resulting network design was therefore a
compromise of the aforementioned properties of [70]. The
resulting architecture has, according to the authors, one-third
lower latency thanMobileNetV2 and almost two-thirds lower
latency than NASNet with comparable success rates. While
all of the previous networks mentioned are designed for use
on portable and low-power devices, MnasNet is the only
network designed primarily for use on phone hardware.

III. DATASETS
Choosing an appropriate dataset for training the network is
an essential step in creating a successful neural network. The
ideal dataset should contain as much diverse data as possible,
but still stay within the desired categories, and should reflect
as closely as possible what the network will then encounter
during real deployment. Furthermore, it should be checked
that the categorization of the data actually matches its real
nature, so that the network is not unnecessarily confused by
inconsistencies during training. Ideally, we are looking for
a large dataset of photos that match the outputs of the face
detectors, i.e., only face cutouts from the chin to the forehead
and to the roots of the ears with minimal background.

A. FER2013
FER2013 [71] was created based on Google search results
and is one of the first ever emotion datasets, which is why it
is still widely used for facial emotion recognition. It contains
35,887 black-and-white images of 48×48 pixels, each labeled
with one of seven emotion categories (anger, disgust, fear,
happiness, sadness, surprise, and neutral).

The distribution of categories in the dataset is not very
balanced, with almost half of the imageswith neutral or happy
faces combined, and disgust captured in only 547 images.
On closer examination, we find that there are also images in
the dataset that contain only a face drawing or do not even
contain a face (see Figure 2). FER2013 is often criticized for
the poor quality of the images and the significant number of

annotation errors. Despite this, success rates on this dataset
are still cited in publications as an additional reference.

In 2016, Microsoft released a revision called FER+ [72].
It partially removed the problematic images and completely
changed the annotation. There are a total of 12 categories,
created by combining the two original ones (happy surprise,
sad fear, angry disgust, and so on). This has made it possible
to improve the distribution of categories across the across the
dataset, while maintaining the quality of the images.

B. RAF-DB
When creating this dataset, the authors focused on selecting
photos with the greatest variety in many aspects. The wide
range of ages and races of the people captured, as well as the
backgrounds, lighting, and quality of the photos, were used to
try to approximate real-life conditions as closely as possible.
The images were collected from various search engines and
social networks and annotated by a group of forty people [73].
The dataset contains about thirty thousand images divided

into two groups according to the annotation method. In the
first group, the images are divided into seven categories, as is
the case for FER2013, and the second group contains twelve
categories of combined emotions, as is the case for FER+.
The dataset is freely available for non-commercial use on the
publication’s website and records dozens of citations each
year.

C. SFEW, EXPW AND CK+

The extended Cohn-Kanade dataset (CK+) is a collection
of 593 short video sequences of 123 people of different
ages. A facial change from neutral to one of seven other
emotions is always captured. The emotions are expressed
both purposefully and spontaneously [74]. The representation
of race and gender is very diverse, which was also the goal.
The main difference from other datasets, however, is the very
laboratory/artificial setting of the sampling. Each subject is
always facing the camera with a white background behind.
It is therefore more of a data collection for mimic muscle
analysis. The amount of images that can realistically be used
for the purpose of this paper is very small, on the other hand
the quality is high.

Similarly to RAF-DB, the datasets Static Facial Expression
in the Wild (SFEW) and Expression in the Wild (ExpW) try
to capture the face as realistically as possible. In both cases,
however, the images contain a large number of redundant
areas that do not contain a face, so to train the neural
networks, the face would first need to be found in the
images and cut out at a uniform resolution, only after this
modification could the datasets be used.

D. AFFECTNET
By far the largest and, at the time of writing, by far the most
cited facial emotion dataset is AffectNet [75]. Three kinds of
annotations are created for each image: membership in one of
eight categories of emotion, two values describing the degree
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of arousal and valence of a person’s emotion (see Russell’s
Emotion Diagram2 [76]) and an array of 68 coordinates of
points representing points of interest on the face. It contains
roughly 440,000 human-annotated images, of which less than
300,000 are available for query; the other 550,000 were
annotated by the ResNet neural network learned on the
previous set of images with a reported 65 % success rate in
categorical detection.

The annotation was performed independently by two
people with an overall agreement rate of 60.7 %, which is a
relatively low agreement rate, but the categories of no face,
uncertain expression, and no emotion are included in this
figure. However, since these three categories are not present
in the resulting distributed dataset, after excluding them, the
agreement rate is almost 66 %. The agreement valence value
expressed as the root mean square error is 0.340 and 0.362 for
arousal. In addition, note that the square root mean square
error does not take into account the sign (the numbers 3 and
5 are as far apart as -1 and 1, but the error in the wrong
sign is not negligible in this case). These examples show how
subjective human emotions are and that they cannot always
be clearly categorized.

The dataset is useful for training both the detection of facial
contours in an image, but also the recognition of emotion
within fixed categorical boundaries or an emotion diagram.
The images are focused exclusively on the face region and at
a constant resolution of 224 × 224. Due to the interplay of
all the aforementioned aspects, AffectNet was selected as the
default dataset for use in our evaluation and demonstration
implementation.

The authors of a companion publication to the dataset
also published reference success rates for categorical emotion
detection and RMSE for valence and arousal values. For
this, AlexNet was used with a weighted loss function highly
penalizing the misidentification of the disgust, contempt,
and fear classes because they are the least represented in
the dataset. In the categorization across the entire dataset,
the highest determined success rate was 58 % and the
RMSE values for valence and arousal were 0.37 and 0.41,
respectively. These numbers roughly correspond to the
agreement of the annotators.

IV. EVALUATION IMPLEMENTATION
To improve the ability of the neural network to generalize
the features of interests, we perform augmentation. After
each training epoch, we randomly apply some combination
of image modifications to each individual image. Since we
plan to use the neural network to classify images from the

2Russell’s Emotion Diagram - the vertical axis plots the intensity of
the emotion (arousal) and the horizontal axis plots the positivity of the
emotion (valence). Moving from top to bottom on the Y-axis, we go from
maximum arousal to complete calm, and on the X-axis we express negative
experiences on the left and positive ones on the right. The basic idea is
that although emotions are primarily divided into four quadrants, when their
representative points are close together on the diagram, they share many
key characteristics. This emotional model has become widely accepted in
psychology and beyond.

front camera of the phone, which tends to be of poorer quality,
it is logical to add some level of noise or blur to the dataset,
change the contrast or saturation level, or slightly rotate
the image. Other possible adjustments such as mirroring,
skewing or cropping can be applied to avoid overfitting the
neural network.

The augmentation of the AffectNet dataset for the purposes
of this paper was mediated by the Python library imgaug [77].
The operators were set so that after each epoch, one of the
available transformations is randomly applied to each frame
of the dataset with a probability of 10 %. In the case of
blur, Gaussian Blur and Median Blur were applied with
probability 2 %. Each of the transformations can be applied
in random order independently of the others, but always at
most once per image.

All the above mentioned models were trained for
25 epochs, after each epoch the success of the network was
measured and the models that achieved the highest success
rate throughout the training are shown in this comparison.
It is certainly worth noting the variation in success rates
with different batch sizes, depending on the architecture,
a batch of 8 or 16 seems to be the best, with a decrease
in success rate as the size is increased further. For the
MobileNetV2 architecture, batch 16 was also tested, but the
success rates are almost identical to batch 32.

In order to maximize the potential of each architecture,
it is necessary to adapt its settings to the problem at hand.
Many networks have variable widths and depths, and the
number of trainable parameters as well as their memory and
computational requirements are directly related to this. This
work focuses on the use on mobile devices and the number
of 10 million parameters proved to be quite limiting during
testing; on an average phone, even with good optimization,
such a network cannot operate in real time (a latency of up
to 150 ms can be considered acceptable). For a better idea,
this corresponds to a model size of about 80 MB, which
is about 15 MB after conversion to TensorFlow Lite and
optimization.

The conversion of the model from TensorFlow to the
TensorFlow Lite standard is absolutely necessary to incorpo-
rate the neural network into the testing application running
on Android. For one thing, there is currently no current
TensorFlow API for Java [49], but also TensorFlow models
in the standard format are not at all optimized to run on a
mobile phone. Converting to TensorFlow Lite is lossy due
to its optimization techniques (the converted models will not
have the same success rate as the original ones), but with
reasonable settings the difference is quite negligible, while
the size of the optimized model is fractional. The average size
saving of the models used in this text is around 77 %.

Since the original models are acceptably large for use
on mobile, there is no need to focus the optimization on
size reduction, and since the architectures used are designed
to be compact and efficient, there is therefore no need to
significantly target latency. For this reason, we chose a default
optimization setting at conversion that represents a tradeoff.
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In most architectures there is usually a fixed default input
image size (most often 224 × 224 × 3), but some are able
to work with general size images if no size is specified in
the training settings, for example MobileNetV3. However,
such a model cannot be directly converted to TensorFlow
Lite, since the generic dimension is replaced by dimension
equal to 1 with no possibility to override the value. However,
if we would like to convert such a model, it can be done
indirectly. Using TensorFlow, we create an identical model
(this time with the correct input image dimension), load the
weights from an existing model, and compile and save the
new one. We have verified that the model created in this way
has exactly the same success rate as the original one, and the
conversion to TensorFlow Lite is then possible.

The application and source codes with all converted and
trained models is freely available on Google Play and can
be downloaded to evaluate the methods discussed here.
The Figure 1 shows samples from the running application
demonstrating the classification of emotions of the user’s
chosen model. Links to the application and the repository are
provided in the SUMMARY of the paper.

V. EVALUATION RESULTS
In total, 63 classification and 28 regression models were
trained based on twelve different neural network architec-
tures. The models differed in their internal parameters, where
the implementation allowed, and in the training setup. All
models were evaluated already during the initial training
after each epoch, and always the most successful one was
then converted to the TensorFlow Lite format and retested.
For demonstration purposes our mobile application includes
all the models presented here and gives the reader the
opportunity to try the algorithms on their own mobile phone.

The following Tables 1 and 2 show the ten best performing
models among the regressors and the twenty among the
classifiers. The tables contain the parametric settings used
for the network itself as well as the training settings. In the
last two columns, the RMSE or the percentage success rate
achieved by the model before and after optimization and
conversion to TensorFlow Lite is given.

To shorten the descriptions of the network parameters, the
following abbreviations are used in the tables: A = Alpha;
D = Depth; CH = Channels; SF = Scale Factor; B = Bottle-
neck; C= Compression; MINI=Minimalistic; LR= Learn-
ing Rate; TF = TensorFlow; TFLite = TensorFlow Lite.
By far the most successful is undoubtedly MnasNet,

which appears here with different settings several times,
closely followed by different versions of ShuffleNet. The
differences between the achieved RMSE values are minimal,
and therefore all models in the table can be considered
pretty much equivalent in terms of their ability to determine
emotions. Another interesting fact that can be gleaned
from the Table 1 is that no model experienced a change
in the average RMSE value on the test dataset due to
optimization and conversion to TensorFlow Lite (the values
differ negligibly). Figure 4 shows the RMSE values with

FIGURE 3. Classification models success rate with respect to the size of
the models. Intuitively, we can see that the larger the model, the better
the classification results.

FIGURE 4. Regression models RMSE with respect to the model size. The
lower the RMSE, the better a given model is. The contribution of model
size to the quality of the results here is not obvious. Despite its size,
DenseNet provides the worst results of the entire collection.

respect to the model sizes. As we can see, there is no
significant evidence that model size is a key success factor.

Even as a classifier, MnasNet was among the best with
a slightly bigger difference than the others in Table 2.
ShuffleNet, on the other hand, failed to train to such a success
rate and instead EfficientNet is abundantly represented here.
As in the previous table, the use of a batch size of 8 appears
to be the most optimal for most networks. Further, we see
representation of the Adam optimizer with slightly greater
frequency, but it cannot be concluded that it is superior. In the
case of the classifiers, we can already notice slight differences
in success rates after converting to TensorFlow Lite, even
for some models the success rate paradoxically increased
slightly. In Figure 3 we can see that the success rate of the
network essentially increases with the size of the model.

The AlexNet network RMSE reference trained by the
authors of the AffectNet dataset was 0.37 for valence and
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TABLE 1. Top ten regression models.

TABLE 2. Top twenty classification models.

0.41 for arousal. For the best MnasNet model generated in
the context of this paper, these values are 0.34 and 0.42,
making it a slightly better model on average, but with less
computational effort and significantly smaller size compared
to AlexNet. The benchmark success rate of AlexNet as a
classifier was 58 % in the original AffectNet paper, and
this paper achieved the highest success rate of about 57 %,
also with the MnasNet model. In both categories, the results
obtained are comparable to the benchmarks, but rather than
the excellence of the solution itself, we give most weight here
to the limitations of theAffectNet dataset annotation, which is
very inconsistent, especially in the case of valence and arousal
values.

At the time of writing this paper, the highest classifi-
cation success rate achieved on the AffectNet dataset was
63.03 % [78] with the EfficientNetB2 model, but this is
definitely not suitable for use on a mobile device. The
best RMSE values on the AffectNet dataset were achieved
with the VGG-Face [79] network, specifically the authors
report valence and arousal values of 0.356 and 0.327 [80],
respectively. Unfortunately, they do not state in their paper

whether these values were achieved within the output of a
single model or whether multiple independent models were
trained, which seems more likely. Despite this, the valence
value achieved by the MnasNet model in this paper is better.

The two tables 3 and 4 list the sizes and measured average
latency of TensorFlow Lite models on devices of these
specifications:

• Asus ZenFone 5; CPU Qualcomm Snapdragon 636;
GPU Adreno 509; RAM 4 GB; Android 9

• Google Pixel 6; CPU Google Tensor 1; GPU Mali-G78
MP20; RAM 8 GB; Android 14 Beta

• Samsung Galaxy A40; CPU Exynos 7904; GPU Mali-
G71 MP2; RAM 4 GB; Android 11

• Raspberry Pi 4; CPU Broadcom BCM2711; GPU
Broadcom VideoCore VI; RAM 4 GB; Raspbian

However, only models that differ in network architecture
settings are listed, as training parameters (batch, number
of epochs, optimizer, etc.) do not affect latency or model
size. Table 3 lists the values for regression models and the
Table 4 for classification models. We chose 150 milliseconds
as the reference latency on the least powerful phone, as it
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TABLE 3. Latency of TensorFlow Lite regression models on Android phones.

FIGURE 5. Performance of classifier models. Scatter plots showing the relationship between mobile device latency and success rate. Models are shown
in different colors, with point size reflecting the size of the model. As we can see, MobileNet networks provide very good performance on all devices
while maintaining a small footprint. However, if we consider only latency on powerful devices (like Pixel 6), the difference with MnasNet is negligible.

is not desirable to overload the phone’s system resources
unnecessarily when the demonstration application is running.
Differences in model sizes relative to the sizes of today’s
average applications do not play an important role. All laten-
cies are measured without using TensorFlow Lite delegates,
as these are not compatible with some architectures. At the
same time, delegates are not supported on all device types,
so the most general configuration available on all devices
is measured. For faster orientation in the measured data
we represented the values of both tables by scatterplots in
Figures 5 and 6.

DenseNet121 is the worst in terms of latency and can be
excluded from any further comparisons. The same is true
for the largest configurations of MnasNet (Alpha = 1.5),
ShuffleNet (Channels = 200) and ShuffleNetV2 (Scale Fac-
tor = 1.5), which still have too high latency on less powerful
devices. The other models can be considered usable, but of
course the lower the latency the better. From the Table 1
we know that very good RMSE results were achieved by
MnasNet A= 1.0 D= 1, EfficientNetB0 and all MobileNets,
so with respect to acceptable latency values we can consider
them the best overall.

Even among the classification models, DenseNet121 is
again the worst model due to its huge latency and is thus
almost unusable for mobile devices. The highest success rate
among the classifiers is achieved byMnasNet A= 1.5 D= 3,
but it is too demanding, the other MnasNet configurations
are nevertheless usable. Unfortunately, the EfficientNet
models are a big disappointment even in the smallest
configurations; for real-time image analysis on a phone,
the latency between 200 and 300 milliseconds is still very
high. GhostNet achieved the highest classification success
rate of about 54.7 %, which combined with a latency
of about 100 milliseconds on a low-performance device
is a surprisingly good result. Although the MobileNet
architecture models achieve rather average results in emotion
classification (MobileNetV2 54.8 %, MobileNetV3Small
53.9 % and MobileNetV3Large 54.5 %), their latency is
indeed very low even in the largest configurations. NASNet-
Mobile achieves uncompetitive results in both success rate
and latency, and there is no point in pursuing it further. The
ShuffleNet models in both versions achieve relatively low
success rates (around 50%), andwhile increasing the network
by parameters does increase the success rate, it has too high
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FIGURE 6. Performance of regression models. Graphs showing the characteristics of the models with respect to latency and RMSE values (the smaller
the RMSE value, the better the model). The best models are from Mobilenet, EfficientNet and MnasNet groups. We can regard MnasNet as the best
because we do not consider the differences in latency to be that significant and MnasNet achieved the lowest RMSE values.

TABLE 4. Latency of TensorFlow Lite classification models on Android phones.

an impact on latency, and therefore no ShuffleNet model is
applicable for real deployment on amobile device. A pleasant
surprise is SqueezeNet, which achieves a success rate of about
54.4 %, has very low phone hardware requirements in all
respects, and is also the model with the absolutely shortest
training time.

To summarize the above results, the best models
with respect to latency and RMSE values achieved are
MobileNetV3Large MINI, MobileNetV2, EfficientNetB0
and MnasNet A = 1.0 D = 1. The problem arises more in the
general use of regression models to determine valence and

arousal values with training on the AffectNet dataset. This is
because the values from the test dataset do not quite match
reality.

For the test application, it turns out that it is really
not easy to reach a negative value of arousal and thus to
be in the lower half on the Russell diagram. Thus, the
calmest detectable emotion is only neutral, yet the test dataset
contains fairly uniformly distributed values across the entire
diagram. Although the detections in the upper half of the
diagram are very accurate, we preferred to use a classifier for
real deployment.
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Among the classifiers, GhostNet, MnasNet A= 1.0 D= 1,
SqueezeNet C = 1.0 and MobileNetV2 achieved the highest
success rates. The SqueezeNet model excels only in size; if
our primary limit were model size, it has no competition, but
we consider latency and success rate to be more important.
In terms of success rate, the three remaining models are
almost identical, which shows that they rank right behind
each other in Table 2. However, the difference in latency of
over 10 ms for the less powerful devices is in MobileNet’s
favour. If we consider only latency on powerful devices
(like Pixel 6), the difference with MnasNet is negligible.
So, also in this case, it very much depends on the specific
target application. All three models mentioned above are
supported by TensorFlow Lite GPU Delegate, and with such
a setup their resulting latency is reduced by up to 65 % on
low-performance phones and up to half on Pixel 6.

VI. SUMMARY
In recent years, we have witnessed a great development
of neural networks, and the field of emotion recognition
using neural networks has not been left out. This paper
offers a summary of approaches related to facial emotion
classification, which are widely used in practice, especially
in the mobile application segment. We have attempted to
demonstrate their capabilities on specific mobile devices
commonly encountered and provide a benchmark. The aim
of this paper is not to compare the different models in their
generality, but on one specific, widely used case - facial
emotion classification.

In contrast to individual articles, which are mostly focused
on one particular approach, our aim was to compare each
method from a practical point of view, which is of most
interest to mobile application developers, among others.
We focused on success rate, latency and model size, key
parameters for practical deployment. The best models with
respect to latency and RMSE values achieved in our
evaluation were MobileNetV3Large MINI, MobileNetV2,
EfficientNetB0 andMnasNet. However, a clear determination
of the best model depends on the specific needs of the
application; for the expected use, it would probably be
MnasNet, since we do not consider the differences in latency
to be that significant andMnasNet achieved the lowest RMSE
values.

We implemented and trained all models on popular datasets
and adapted them to run on Android mobile phones. Based on
the feedback from users of our mobile app, we can say that
the MobileNetV3 and MnasNet models indeed performed
subjectively the best in most of the configurations, which is
consistent with their popularity among developers. We also
highlight open problems in this area that may inspire new
approaches to emotion recognition in mobile phones in the
future.

The demonstration application developed for the purpose
of this article can be freely downloaded from Google
Play https://play.google.com/store/apps/details?id=cz.vsb.
faceemotionrecognition. The source code is available on

GitHub for readers’ convenience, see https://github.com/
VojtaMaiwald/FaceEmotionRecognitionTest. Please note
that the application available on GitHub includes all models,
while the application hosted on Google Play doesn’t have
some of the larger models available due to size restrictions
under Google Play policy. No data is transferred to the
Internet. All models are stored and run locally on the device,
so there is no risk of leaking personal or otherwise sensitive
data.

Also, the source code and all the trained models
are publicly available, see https://github.com/VojtaMaiwald/
Diploma. All latency, success rate and RMSE measurements
for both standard TensorFlow models and models converted
to TensorFlow Lite are also available there. The repository
also contains source code for working with the AffectNet
dataset, image augmentation, model training and testing,
and implementations of neural network architectures not
available in the TensorFlow Keras API.
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